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CHAPTER 7

Green  Factories:  Plants  As  A  Platform  For  Cost-
effective Production of High-value Targets
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Abstract:  Transgenic  plants  have  been  developed  since  the  early  1980s,  when
researchers were able to transform a piece of foreign DNA into a plant genome. Since
then, the technology has expanded enormously, giving rise to many private and public
ventures in the field of plant-based recombinant technology. The technology has helped
in crop improvement against various biotic and abiotic stresses such as insect resistance
and  herbicide  tolerance,  as  well  as  improving  their  nutritional  values,  for  example,
Golden rice. In addition to crop improvement, the technology has enabled plants to be
used as green factories for the production of recombinant proteins. Several platforms
are  available  for  the  heterologous  expression  of  foreign  proteins,  each  of  which
represents its own set of advantages and limitations. Plants offer many advantages for
inexpensive yet large-scale production of high-value targets, making them extremely
attractive for commercial applications. In this chapter, we briefly discuss the need for
using plants as solar-powered cellular factories to produce recombinant proteins. We
provide  a  snapshot  of  different  expression  systems  and  argue  that  the  plant-based
expression system is highly commercially feasible not only for the production of high-
value targets but also to help address global challenges like Covid-19.
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3. WHY PLANT-BASED EXPRESSION SYSTEMS?

Heterologous  expression  of  recombinant  proteins  for  different  applications  has
become  a  focus  of  intensive  research  for  a  while,  paving  the  way  for  another
revolution in the area for the development of new production technologies. The
demand  for  cost-effective  yet  large-scale  production  of  protein  and  secondary
metabolites for various purposes, such as medical   reagents,   cosmetic   products,
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and  industrial  enzymes,  in  terms  of  quantity,  diversity,  and,  most  importantly,
quality  has  dramatically  increased  since  the  past  decade  [1].  The  gap  between
demand and supply has further increased due to inefficient yet highly expensive
production systems [2, 3]. Several systems, including bacteria, yeasts, animal cells,
transgenic  animals,  plant  cells,  and  transgenic  plants,  are  available  for  the
heterologous  production  of  high-value  targets  [4,  5].  All  available  expression
systems have their pros and cons in terms of cost, time, efficiency, product size,
growth conditions, yield, post-translational modification, downstream processing,
and  regulatory  approval  [6].  The  advantages  of  plant  expression  platforms  are
cited in several earlier reports [7 - 12]. Table 1 shows head-to-head comparisons
of  all  existing  platforms.  Transgenic  plants  have  become a  focus  of  interest  as
new generation bioreactors mainly due to: i) reduced up-front production costs, ii)
lower risk of endotoxins as well as human pathogen contamination, iii) scalability,
iv) availability of existing infrastructure for the cultivation of transgenic plants, v)
assemble complex protein with eukaryotic-like post-transcriptional modifications.
However,  plants  lack  the  human-like  N-glycosylation  mechanism  for  protein
processing that has been overcome by engineering tactics to ensure the authentic
quality, homogeneity, and quantity [13]

Table 1. Comparison of different expression system [10].

PARAMETER BACTERIA YEAST INSECT
CELLS

MICROALGAE MAMMALIAN
CELLS

TRANSGENIC
PLANTS

Capital cost Medium Medium High Medium Very high Low

Operating cost Low Medium High Low Very high Low

Production
scale

Short Short Medium Short Long Long

Speed Fast Fast Medium Fast Slow Slow

Multigene
engineering

Yes No No Yes No Yes

Glycosylation Absent Incorrect Yes Yes, absent in
chloroplast

Yes Yes, absent in
chloroplast

Contamination
risk

High Medium High Low High Low

Multimeric
assembly

No No No Yes No Yes

Protein folding Low Medium High High High High

Protein yield High Moderate
high

Medium High Medium Low-High

Scale up cost High High Very high Medium Very high Very low

Safety Low Unknown Medium Low High
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PARAMETER BACTERIA YEAST INSECT
CELLS

MICROALGAE MAMMALIAN
CELLS

TRANSGENIC
PLANTS

Storage Very cheap Costly Expensive Low Very expensive Very cheap

Distribution Easy Feasible Difficult Easy Difficult Easy

Plant  molecular  farming  (PMF)  is  termed  as  the  technique  of  producing  high-
value  proteins  recombinantly  in  plants  without  disturbing  their  phenotype,
metabolism, or performance. The proteins have been produced by this technique
for more than 30 years, either in purified form, crude extract, or in planta [3, 14].
The idea of molecular farming based on the genetic transformation of plants was
first  proposed  in  the  1980s  [15],  which  has  now become  a  reality  and  is  often
termed as the 3rd generation of biotechnology [6]. The first examples of molecular
farming using transgenic plants  and plant  cell  suspension cultures  involved the
production of a human growth hormone, Nopaline synthase [16], and an antibody
IgG1  (6D4)  [17].  However,  the  commercial  application  of  this  platform  came
years  later  when  avidin  was  recombinantly  produced  in  transgenic  maize  [18].
The breakthrough to commercial success for plant-derived biologics culminated in
2012 when the first plant-made pharmaceutical, Taliglucerase alfa, commercially
known as Elelyso®, was developed by Protalix BioTherapeutics, was approved by
the  US  Food  and  Drug  Administration  [19].  Elelyso®  is  a  recombinant  human
glucocerebrocidase  used  for  the  treatment  of  Gaucher’s  disease  (lysosomal
storage  disorder)  [20].

The  use  of  plants  for  the  production  of  valuable  proteins  has  been  refined  and
improved over the years due to advancements in knowledge and technology. This
has led to a major paradigm shift in the pharma sector, as the potential drawbacks
associated  with  the  early  stages  of  PMF,  including  high  expression  level  and
efficient  downstream  processes,  have  been  attained  [6].  The  product  portfolio
ranges from pharmaceutical therapeutics to non-pharmaceutical products such as
antibodies,  vaccine  antigens,  enzymes,  growth  factors,  research  or  diagnostic
reagents, and cosmetic ingredients. A number of ‘proof-of-concept’ studies have
been  performed  to  evaluate  the  potential  of  different  plant  species  as  hosts  for
molecular  pharming  [21,  22].  The  host  cells  or  the  plant  used  for  molecular
farming purposes, depending upon target protein and its application, range from
crop  plants  (rice,  maize,  tobacco,  alfalfa,  safflower,  and  lettuce)  to  pondweed,
algae,  microalgae,  and  mosses.  The  Nicotiana  genus  has  been  widely  used  for
genetic transformation studies as it is easily genetically manipulated and has a fast
growth  rate.  Two  species,  Nicotiana  benthamiana  and  Nicotiana  tabacum  are
considered as ‘biological warehouses’ for the production of many pharma or non-
pharma products  by the stable and transient  expression [21].  Many plant-based
proteins, including antibodies, either pharmaceutical or nonpharmaceutical, are in

(Table 1) cont.....
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the  pipeline  of  clinical  or  preclinical  trials,  and  some are  in  the  developmental
stage for commercialization ( Table 2 & Table 3).

Table 2. Selected list of antibodies expressed in plants against various diseases.

RECOMBINANT
PROTEIN PATHOGEN/DISEASE HOST

PLANT
TRANSFORMATION

METHOD
EXPRESSION

LEVEL REFERENCES

cT84.66 Cancer (tumor marker) Nicotiana
tabacum

Transient expression 1 mg/kg FW [66]

scFvT84.66 Cancer (tumor marker) Nicotiana
tabacum

Transient expression 5 mg/kg FW [66]

scFvT84.66 Cancer (tumor marker) Oryza sativa Nuclear transformation 3.8 _g/g FW [67]

scFvT84.66 Cancer (tumor marker) Wheat and
rice

Nuclear transformation 30 _g/g FWY [68]

BR55-2 Human colorectal cancer Nicotiana
tabacum

Nuclear transformation 30 mg/kg FW [69]

2F5 HIV Nicotiana
benthamiana

Nuclear transformation 0.01% of TSP [70]

2G12 HIV Nicotiana
benthamiana

Transient expression 0.3 g/kg FW [71]

2G12 HIV Nicotiana
benthamiana

Nuclear transformation 8 mg/L culture
medium

[72]

6D8 Ebola virus Nicotiana
benthamiana

Transient expression 0.5 mg/g FW [73]

6D8 Ebola virus Lettuce (L.
sativa)

Transient expression 0.23–0.27 mg/g
FW

[74]

CO17-1AK Human colorectal cancer Nicotiana
tabacum

Nuclear transformation 0.25 mg/kg FW [75]

Palivizumab-N Respiratory syncytial
virus

Nicotiana
benthamiana

Transient expression 180 mg/kg FW [76]

E559 Rabies Nicotiana
tabacum

Nuclear transformation 1.8 mg/kg FW (
0.04% of TSP

[77]

pE16 West Nile virus Nicotiana
benthamiana

Transient expression 0.74 mg/g FW [78]

pE16scFv-CH West Nile virus Nicotiana
benthamiana

Transient expression 0.77 mg/g FW [78]

E60 Dengue virus Nicotiana
benthamiana

Transient expression 120 _g/g FW [79]

2G12 HIV Oryza sativa Nuclear transformation 46.4 g g DW
(seed)

[80]

8B10 Chikungunya virus Nicotiana
benthamiana

Transient expression 20–30 mg/kg
FW

[81]

5F10 Chikungunya virus Nicotiana
benthamiana

Transient expression 20–30 mg/kg
FW

[81]

SO57 Rabies virus Nicotiana
tabacum

Transient expression 0.014–0.019%
of TSP

[82]
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RECOMBINANT
PROTEIN PATHOGEN/DISEASE HOST

PLANT
TRANSFORMATION

METHOD
EXPRESSION

LEVEL REFERENCES

cD5 Enterovirus 71 Nicotiana
benthamiana

Transient expression 50 _g/g FW [83]

PD1 Cancer Nicotiana
benthamiana

Transient expression 140 _g/g FW [84]

c2A10G6 Zika virus Nicotiana
benthamiana

Transient expression 1.47 mg/g FW [85]

6D8 Ebola Nicotiana
benthamiana

Transient expression 1.21 mg/g FW [85]

HSV8 Herpes simplex virus Nicotiana
benthamiana

Transient expression 1.42 mg/g FW [85]

CHKV mab Chikungunya virus Nicotiana
benthamiana

Transient expression 100 _g/g FW [86]

2C10 Porcine epidemic
diarrhea virus

Nicotiana
benthamiana
& (L. Sativa)

Transient expression NR [87]

KPF1-Antx Influenza Nicotiana
benthamiana

Transient expression NR [88]

Table 3. Plant-derived antibodies in clinical stages of development or on market.

PRODUCT DISEASE PLANT CLINICAL
TRIAL

STATUS

COMPANY REFERENCE

CaroRX Dental caries Tobacco EU approved
as medical

advice

Planet
Biotechnology,

USA

www.planetbiotechnology.com

DoxoRX Side-effects of
cancer therapy

Tobacco Phase I
completed

Planet
Biotechnology,

USA

www.planetbiotechnology.com

RhinoRX Common cold Tobacco Phase I
completed

Planet
Biotechnology,

USA

www.planetbiotechnology.com

Fv
antibodies

Non-Hodgkin's
lymphoma

Tobacco Phase I Large Scale
Biology, USA

www.lsbc.coma

IgG (ICAM1) Common cold Tobacco Phase I Planet
Biotechnology,

USA

www.planetbiotechnology.com

Antibody
against

hepatitis B

Vaccine
purification

Tobacco On market CIGB, Cuba
Kaiser

www.planetbiotechnology.com/
Kaiser,2008.

The PMF, with more than 120 companies, universities, and research institutes, is
involved in realizing the fullest potential of this area. Therefore, it has emerged as

(Table 2) cont.....
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a vibrant segment of the biotech industry [14]. [10] have critically reviewed the
strengths and bottlenecks of the commercial potential of plant-based expression
platforms. The pharmaceuticals products which are endorsed from 2014 to mid of
2018  are  7  vaccines,  9  enzymes,  16  coagulating  factors,  23  hormones,  and  68
monoclonal  antibodies  [23].  There  are  several  reports  to  prove  the  significant
efficiency of plant-based pharmaceuticals compared with mammalian cell-based
protein,  which  provides  efficacious  and  less  costly  strategies  to  treat  emerging
infectious diseases. The plant-based expression system can be quickly up-scaled
to satisfy the sudden and unexpected arising demands such as Covid-19 pandemic
crisis (Covid-19) [24].

This  chapter  is  aimed  at  describing  the  principles,  current  advancements  in
methodology  for  plant  molecular  pharming.  We  argue  that  plant  molecular
pharming  has  presented  itself  as  a  viable  as  well  as  a  competitive  platform  to
produce recombinant proteins inexpensively at a large scale. Different strategical
system  for  plant  transformation  and  expression  is  discussed,  that  have  been
developed  to  produce  commercially  important  proteins.  The  advantages  and
disadvantages  of  each  system  have  been  well  considered.  The  chapter  also
reviews the high-value bio-products (pharmaceutical or non-pharmaceutical) that
are  successfully  being  produced  in  the  established  and  emerging  plant  systems
and  are  in  the  pipeline  of  commercialization.  The  final  section  focuses  on  the
outlook and perspective  of  plant  molecular  pharming as  a  potential  therapeutic
intervention  against  the  ongoing  human  pandemic  –  COVID19  (SARS-nCo-
-2019).

4. DEVELOPMENT OF TRANSGENIC PLANTS

Traditionally,  crop  plants  have  been  improved  through  artificial  selection  and
breeding  based  on  phenotypic  characteristics  such  as  reduced  susceptibility  to
biotic  and  abiotic  stresses,  plant  height,  grain  size,  and  higher  yield  [25].  This
approach has been quite instrumental in attaining supply-demand equilibrium, but
the  continuous  increase  in  human  population  and  a  decline  in  arable  land  area
necessitates to devise of new strategies for crop plant improvement. Conventional
methods are limited by a narrow gene pool and lengthy procedures of selection
[26];  however,  transgenic  technology  offers  the  ability  to  develop  transgenic
plants  with  novel  traits  from  varied  taxonomic  groups  [27].  In  this  scenario,
several  candidate  genes  conferring  novel  traits  such  as  insect  resistance,  salt
tolerance, herbicide tolerance, heat tolerance, biofortification, and value addition
have  been  identified  and  evaluated  in  model  systems  for  their  functioning  into
higher plants [28 - 63]. In addition, plants can also be developed having improved
nutritional status [64] or value-addition such as delayed fruit ripening to improve
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the shelf life of perishable commodities such as tomatoes, so that they can reach
the  consumer  intact  preserving  their  taste,  smell,  color,  and  texture  [65].
Transgenic plants can also be developed to produce high-value targets which are
cheaper and are in larger quantities, such as recombinant proteins and metabolites
of  industrial  importance,  including  antibodies  (  Table  2,  Table  3),  vaccine
antigens  (  Table  4),  industrial  enzymes  (  Table  5),  non-pharmaceutical
recombinant proteins ( Table 6, Table 7), human therapeutics ( Table 8) and even
nutraceuticals  (  Table  9).  In  this  section,  we  will  discuss,  briefly,  that  how
transgenic  plants  can be developed,  and the advantages  and challenges  of  each
methodology used for the development of transgenic plants.

Table 4. Selected vaccine antigens produced in plants.

Expressed Protein Disease Gene Plant Expression
level

Reference

Cholera toxin B subunit Cholera Codon  optimized
CTB  of  Vibrio
cholerae

Nicotiana
tabacum

4.1% [89]

Bovine group A rotavirus
VP6

Rotavirus VP6 Nicotiana
tabacum

3% [90]

Canine  parvovirus;
Cholera  toxin  B  subunit

Parvovirus  and
Cholera

CTP-2L21 Nicotiana
tabacum

31.3% [91]

Anthrax protective antigen Anthrax pagA Nicotiana
tabacum

14.2% [92]

Bacterial lipoprotein A Lyme disease OspA Nicotiana
tabacum

10% [93]

Cysteine  rich  region  of
lectin

Entamoeba
histolytica

LecA Nicotiana
tabacum

6.3% [94]

Cholera  toxin  B
subunit–human  proinsulin

Cholera CTB-Pins Nicotiana
tabacum

16% [95]

Cholera  toxin  B
subunit–human  proinsulin

Cholera CTB-Pins Lactuca sativa 2.5% [95]

Human papillomavirus L1
protein

Cervical cancer L1 HPV-16 Nicotiana
tabacum

24% [96]

VP1 of the foot and mouth
disease virus

Foot  and  Mouth
Disease

VP1 Stylosanthes
guianensis

0.1-0.5% [97]

A27L of vaccinia virus Orthopoxviruses (
OPVs)

A27L Nicotiana
tabacum

18% [98]

Heat  labile  toxin  B
subunit  and  heat-stable
toxin

Enterotoxigenic
Escherichia coli (
ETEC)

LTB:ST Nicotiana
tabacum

2.3% [99]
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Expressed Protein Disease Gene Plant Expression
level

Reference

LTB–HN-neutralizing
epitope

New  Castle
Disease  Virus
(NDV)

LTB-HNE Nicotiana
tabacum

0.5% [100]

Cholera  toxin-B  subunit
fused  with  apical
membrane  antigen-1

CTB:AMA1 Cholera  and
Malaria

Nicotiana
tabacum

13.17% [101]

Cholera  toxin-B  subunit
fused  with  merozoite
surface  protein-1

CTB:MSP1 Cholera  and
Malaria

Nicotiana
tabacum

10.11% [101]

Cholera toxin-B subunit  (
CTB)  fused  with  apical
membrane  antigen-1

CTB:AMA1 Cholera  and
Malaria

Lactuca sativa 7.3% [101]

Cholera toxin-B subunit  (
CTB)  fused  with
merozoite surface protein-
1

CTB:MSP1 Cholera  and
Malaria

Lactuca sativa 6.1% [101]

human  b-site  APP
cleaving  enzyme

BACE Alzheimer
disease

Nicotiana
tabacum

2% [102]

GRA4 antigen GRA4 Toxoplasma
gondii

Nicotiana
tabacum

0.2% [103]

Hemagglutinin  (HA)
proteins

HA Influenza virus Nicotiana
benthamiana

1300mg/kg [104]

Mtb72F  fused  with
cholera  toxin  B-subunit

CTB-Mtb72F Mycobacterium
tuberculosis

Nicotiana
tabacum

1.2% [105]

ESAT-6  fused  with
cholera  toxin  B-subunit

CTB-ESAT6 Mycobacterium
tuberculosis

Nicotiana
tabacum

7.5% [105]

ESAT-6  fused  with
cholera  toxin  B-subunit

CTB-ESAT6 Mycobacterium
tuberculosis

Lactuca sativa 0.75% [105]

Tetra-epitope antigen cE-DI/IIp Dengue virus Lactuca sativa - [106]

Hepatitis  C  virus  E1E2
heterodimer

HCVE1E2 Hepatitis  C virus
(HCV)

Lactuca sativa 1.6 ug/mL [107]

M2e  Peptide  fused  with
Ricin  Toxin  B  Chain

M2e Avian  Influenza
Virus

Wolffia
globosa

0.01% [108]

E2  protein  of  classical
swine  fever  virus

E2 classical swine
fever  virus
(CSFV)

Arabidopsis
thaliana

0.7% [109]

Human  Papillomavirus
(HPV) type 16 E7 protein

E7 Human
Papillomavirus  (
HPV)

Solanum
lycopersicum

35.5 μg/g [110]

Enterotoxin B subunit LTB-Syn Parkinson’s
disease

Nicotiana
tabacum

0.27ug/g [111]

(Table 4) cont.....
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Expressed Protein Disease Gene Plant Expression
level

Reference

A region of
PAc  protein  and  cholera
toxin  B  subunit

PAcA-ctxB Streptococcus
mutans

Solanum
lycopersicum

- [112]

VP1  capsid  protein  of
FMDV  serotype  O

VP1 Foot  and  Mouth
Disease (FMDV)

Nicotiana
tabacum

0.72% [113]

non-toxic
carboxylterminal
domain  of  a-toxin  (PlcC)
and  attenuated  mutant  of
NetB
(NetB-W262A)

PlcC-NetB Clostridium
perfringens

Nicotiana
benthamiana

20% [114]

LamB  outer  membrane
protein of Vibrio bacteria

LamB Vibrio
alginolyticus

Wolffia
globosa

- [115]

Four  African  horse
sickness  (AHS)  capsid
proteins

AHSV-1  VP2,
VP5,  VP3  and
VP7

African  horse
sickness  virus
(AHSV)

Nicotiana
benthamiana

- [116]

Table 5. Industrial enzymes and biomaterials obtained via chloroplast production in tobacco.

GENE/S PRODUCT HOST PLANT EXPRESSION
LEVEL REFERENCE

bgl-1 β-Glucosidase Tobacco
Chloroplast 44.4 U/g FW [117]

bgl1, celA, celB β-Glucosidase, Cellulases Tobacco
Chloroplast

9.9–58.2 U/mg of
TSP [118]

endo, celB, xyn Cellulases, Xylanase Tobacco
Chloroplast 0.38–75.6% TSP [119]

bgl1C, cel6B,
cel9A, xeg74

Cell wall-degrading
enzyme

Tobacco
Chloroplast 5–40% TSP [120]

manI β-Mannanase Tobacco
Chloroplast 25 U/g FW [121]

xynA, xyn10A,
xyn11B Xylanase Tobacco

Chloroplast 0.2–6% TSP [122]

UbiC p-Hydroxybenzoic acid Tobacco
Chloroplast 25% DW [123]

PHB pathway
genes Polyhydroxybutyrate Tobacco

Chloroplast 18.8% TSP [124]

xynA xylanase Tobacco
Chloroplast 6% TSP [125]

xyn2 xylanase Tobacco
Chloroplast 421 U/mg TSP [126]

(Table 4) cont.....
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GENE/S PRODUCT HOST PLANT EXPRESSION
LEVEL REFERENCE

xyl10B xylanase Tobacco
Chloroplast

13% TSP, 61.9 U/mg
D [127]

E1 Endo- β -1,4-glucanase Tobacco
Chloroplast 1.35% TSP [128 - 130]

E1 Endo- β -1,4-glucanase Potato chloroplast 2.6% TSP [131]

EG Endo- β -1,4-glucanase Sugarcane
chloroplast Avg 223.8 ng/mg, [132]

CBH I, CBH II Cellobiohydrolase Sugarcane
chloroplast - [132]

Cel6A,Cel6B Endo- β -1,4-glucanase Tobacco chloroplast 2-4% TSP [133]

BglB Betaglucosidase Tobacco chloroplast 5.8% TSP [134]

BglB Betaglucosidase Tobacco chloroplast 9.3% TSP [135]

XylII Endo-1,4-β –xylanase Arabidopsis
Chloroplast 3-4.8% TSP [136]

XynII Endo-1,4-β –xylanase Arabidopsis
Chloroplast 1.4-3.2% TSP [137]

Chitinase Chitinase Tobacco
Chloroplast 0.8-1% TSP [138]

Chitinase Glucanase Tobacco
Chloroplast 0.3% TSP [139]

Table 6. Selected list of various non-pharmaceutical proteins produced in plants.

RECOMBINANT
PROTEIN

HOST
PLANT

TRANSFORMATION
METHOD

EXPRESSION
LEVEL

REFERENCES

Human serum albumin Solanum
tuberosum

Nuclear transformation 0.25 g/mg (0.02%
of TSP)

[140]

Erythropoietin Nicotiana
tabacum

Nuclear transformation 4.6–5.7 mg/g dry
cell

[141]

1-antitrypsin Oriza sativa
japonica

Nuclear transformation 4.6–5.7 mg/g dry
cell

[142]

Aprotinin Zea mays Nuclear transformation 0.069% of total
seed protein

[143]

Human-secreted
alkaline phosphatase

Nicotiana
tabacum

Nuclear transformation 1.1 _g/g FW (3%
of TSPs

[144]

Collagen Nicotiana
tabacum

Nuclear transformation 0.03 g/kg
powdered plants

[145]

Human somatotropin Nicotiana
tabacum

Chloroplast transformation >7% of TSP [146]

(Table 5) cont.....
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RECOMBINANT
PROTEIN

HOST
PLANT

TRANSFORMATION
METHOD

EXPRESSION
LEVEL

REFERENCES

Bacillus thuringiensis (
Bt) cry2Aa2

Nicotiana
tabacum

Chloroplast transformation 5 mg/g FW
(45.3–46.1% of

TSPs

[147]

Human serum albumin Nicotiana
tabacum

Chloroplast transformation 11.1% of TPs [148]

Human epidermal
growth factor

Nicotiana
tabacum

Nuclear transformation 34.2 _g/g FW [149]

Human basic fibroblast
growth factor

Glycine max Nuclear transformation 2.3% of TSP [150]

Type I interferon
(IFN_2b)

Nicotiana
tabacum

Chloroplast transformation 3 mg/g FW (20%
of TSP

[151]

Human growth
hormone

Oryza sativa Nuclear transformation 57 mg/L culture
medium

[152]

PlyGBS lysin Nicotiana
tabacum

Chloroplast transformation >70% of TSP [153]

Human growth
hormone

Tobacco BY-2
cells

Nuclear transformation 35 mg/L or 2-4%
of TSP

[154]

Human basic fibroblast
growth factor

Oryza sativa Nuclear transformation 185.66 mg/kg [155]

Lumbrokinase Helianthus
annuus

Nuclear transformation 5.1 g/kg seeds [156]

Human acidic fibroblast
growth factor 1

Salvia
miltiorrhiza

Nuclear transformation 272 ng/g FW [157]

Glucocerebrosidase Nicotiana
benthamiana

Nuclear transformation 68 _g/g FW (1.45%
of TSP

[158]

Human acid alpha
glucosidase

Nicotiana
tabacum

Chloroplast transformation 6.38 _g/g FW [159]

Human basic fibroblast
growth factor

Nicotiana
tabacum

Chloroplast transformation 0.1% of TSP [160]

Endo-_-1,4-xylanase Nicotiana
tabacum

Chloroplast transformation 35.7% of TSP [119]

Glucosidase Nicotiana
tabacum

Chloroplast transformation >75% of TSP [119]

Osteopontin Nicotiana
benthamiana

Transient expression 100 ng/g FW [87]

Dentin matrix protein-1 Nicotiana
benthamiana

Transient expression 0.3 _g/g FW [161]

(Table 6) cont.....
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Table 7. Commercial development of nonpharmaceutical proteins produced in plants.

PRODUCT APPLICATION PLANT
SPECIES

PROCESSING
DEGREE ADVANTAGE DEVELOPMENT

STAGE COMPANY SOURCE

Trypsin Technical
reagents

Maize
seeds

Purified Cost, animal-
free

Commercialized ProdiGene/
Sigma-
Aldrich,

United States

www.sigmaaldrich.com

Avidin Technical
reagents

Maize
seeds

Purified Cost, animal-
free

Commercialized ProdiGene/
Sigma-
Aldrich,

United States

www.sigmaaldrich.com

Endo-1,4-β-D-
glucanase

Technical
reagents

Maize
seeds

Purified Cost, animal-
free

Commercialized ProdiGene/
Sigma-
Aldrich,

United States

www.sigmaaldrich.com

Cellobiohydrolase
I

Technical
reagent

Maize
seeds

Purified Cost, integrated
production

Commercialized Infinite
Enzymes/

Sigma Aldrich,
United States

www.sigmaaldrich.com

Growth factors Research
reagents

Tobacco
leaves,

transient

Purified Cost, animal-
free

Commercialized Agrenvec,
Spain

www.agrenvec.com

Cytokines Research
reagents

Tobacco
leaves,

transient

Purified Cost, animal-
free

Commercialized Agrenvec,
Spain

www.agrenvec.com

Thioredoxin Research
reagents

Tobacco
leaves,

transient

Purified Cost, animal-
free

Commercialized Agrenvec,
Spain

www.agrenvec.com

TIMP-2 Research
reagents

Tobacco
leaves,

transient’s

Purified Cost, animal-
free

Commercialized Agrenvec,
Spain

www.agrenvec.com

Growth factors Research reagent Barley
seeds

Purified Cost, animal-
free

Commercialized ORF Genetics,
Iceland

www.orfgenetics.com

Cytokines Research reagent Barley
seeds

Purified Cost, animal-
free

Commercialized ORF Genetics,
Iceland

www.orfgenetics.com

Epithelial growth
factor

Cosmetics Barley
seeds

Purified Cost, animal-
free

Commercialized Sif Cosmetics,
Iceland

www.sifcosmetics.com

Albumin Research
reagents

Rice seeds Purified Cost, animal-
free

Commercialized Ventria
Bioscience/

InVitria,
United States

www.invitria.com

Lactoferrin Research
reagents

Rice seeds Purified Cost, animal-
free

Commercialized Ventria
Bioscience/

InVitria,
United States

www.invitria.com
www.invitria.com

Lysozyme Research
reagents

Rice seeds Purified Cost, animal-
free

Commercialized Ventria
Bioscience/

InVitria,
United States

www.invitria.com

Transferrin Research
reagents

Rice seeds Purified Cost, animal-
free

Commercialized Ventria
Bioscience/

InVitria,
United States

www.invitria.com

Insulin Research
reagents

Rice seeds Purified Cost, animal-
free

Commercialized Ventria
Bioscience/

InVitria,
United States

www.invitria.com

http://www.sigmaaldrich.com
http://www.sigmaaldrich.com
http://www.sigmaaldrich.com
http://www.sigmaaldrich.com
http://www.agrenvec.com
http://www.agrenvec.com
http://www.agrenvec.com
http://www.agrenvec.com
http://www.orfgenetics.com
http://www.orfgenetics.com
http://www.sifcosmetics.com
http://www.invitria.com
http://www.invitria.com
http://www.invitria.com
http://www.invitria.com
http://www.invitria.com
http://www.invitria.com
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PRODUCT APPLICATION PLANT
SPECIES

PROCESSING
DEGREE ADVANTAGE DEVELOPMENT

STAGE COMPANY SOURCE

Aprotinin Research reagent Tobacco
leaves,

transient

Purified Cost Commercialized Kentucky
Bioprocessing,
United States

www.kbpllc.com

Collagen Research reagent,
tissue culture,

health
applications

Transgenic
tobacco

Purified Cost, animal-
free

Commercialized CollPlant,
Israel

www.collplant.com

Trypsin Research
reagents,
cosmetic

ingredients

Rice cell
suspension

Purified Cost, animal-
free

Commercialized Natural
BioMaterials,
South Korea

www.nbms.co.kr

Enterokinase Research
reagents,
cosmetic

ingredients

Rice cell
suspension

Purified Cost, animal-
free

Commercialized Natural
BioMaterials,
South Korea

www.nbms.co.kr

Growth factors Research
reagents,
cosmetic

ingredients

Rice cell
suspension

Purified Cost, animal-
free

Commercialized Natural
BioMaterials,
South Korea

www.nbms.co.kr

Cytokines Research
reagents,
cosmetic

ingredients

Rice cell
suspension

Purified Cost, animal-
free

Commercialized Natural
BioMaterials,
South Korea

www.nbms.co.kr

Antibody Purification of a
hepatitis B

vaccine

Transgenic
tobacco

Purified Cost Commercial
application

Center for
Genetic

Engineering
and

Biotechnology,
Cuba

gndp.cigb. edu.cu

Α-Amylase Bioethanol
production

Maize
seeds

Biomass extract Cost, integrated
production

Commercialized Syngenta,
United States

www.syngenta.com

Phytase Feed Maize
seeds

Delivered in
biomass

Increased
mineral

availability,
integrated
production

Commercialization
pending

Origin
Agritech,

China

www.originseed.com.
cn

Growth factors Tissue culture
reagent

Tobacco
leaves,

transient

Purified Cost, animal-
free

Commercialized NexGen,
South Korea

www.exgen.com

Table 8. Plant-derived therapeutic human protein in clinical stages of development or on market.

PRODUCT DISEASE PLANT CLINICAL
TRIAL

STATUTS

COMPANY REFERENCE

Gastric lipase,
Merispase®

Cystic fibrosis Maize On market Meristem
Therapeutics

France

www.meristem-therapeutics.com

α-Galactosidase Fabry disease Tobacco Phase I Planet
Biotechnology,

USA

www.planetbiotechnology.com

Lactoferon™ (α-
interferon)

Hepatitis B
and C

Duckweed Phase II Biolex, USA www.biolex.com

(Table 7) cont.....

http://www.kbpllc.com
http://www.collplant.com
http://www.nbms.co.kr
http://www.nbms.co.kr
http://www.nbms.co.kr
http://www.nbms.co.kr
http://www.syngenta.com
http://www.originseed.com
http://www.exgen.com
http://www.meristem-therapeutics.com
http://www.planetbiotechnology.com
http://www.biolex.com
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PRODUCT DISEASE PLANT CLINICAL
TRIAL

STATUTS

COMPANY REFERENCE

Fibrinolytic drug
(thrombolytic drug)

Blood clot Duckweed Phase I Biolex, USA www.biolex.com

Human
glucocerebrosidase

Gaucher ‘s
disease

Carrot
suspension

cells

Awaiting
USDA's
approval

Protalix
Biotherapeutics,

Israel

www.protalix.com

Insulin Diabetes Safflower Phase III SemBioSys,
Canada

www.sembiosys.com

Apolipoprotein Cardiovascular Safflower Phase I SemBioSys,
Canada

www.sembiosys.com

Table 9. Plant-derived nutraceuticals in advanced clinical stages of development or on market.

PRODUCT DISEASE PLANT CLINICAL
TRIAL

STATUTS

COMPANY REFERENCE

ISOkine™ Human growth
factor

Barley On market ORF Genetics www.orfgenetics.com

DERMOkine™ Human growth
factor

Barley On market ORF Genetics www.orfgenetics.com

Human intrinsic
factor

Vitamin B12
deficiency

Arabidopsis On market Cobento
Biotech AS

www.cobento.dk

Coban Vitamin B12
deficiency

Arabidopsis On market Cobento
Biotech AS

www.cobento.dk

Human lactoferrin Anti-infection, anti-
inflammatory

Rice Advanced
stage

Ventria, USA www.ventriabio.com

Human lysozyme Anti-infection, anti-
inflammatory

Rice Advanced
stage

Ventria, USA www.ventria.com

Immunosphere™ Food additive for
shrimps

Safflower On market SemBioSys,
Canada

www.sembiosys.com

Genetic engineering of plants comprises of several steps: identifying and isolating
the  gene  of  interest,  choice  of  the  promoter,  construction  of  expression  and
selection  cassette,  selection  of  a  suitable  cloning  and  expression  vector,  an
appropriate  method  for  stable  or  transient  DNA  introduction  into  the  plant
genome,  tissue  culture  system  that  allows  the  regeneration  of  whole  plants,
selection pressure for the distinction of transgenic plants from non-transformants
followed by biochemical methods to detect the expression of foreign genes.

The  plant  genome  is  compartmentalized  into  the  nucleus,  mitochondria,  and
plastids;  each  of  which  possesses  its  genome  and  genetic  machinery.  The

(Table 8) cont.....
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development of transgenic plants depends on recombinant DNA technology for
the stable or transient expression of foreign gene(s) into any of the plant genomes.
Stable  transformation refers  to  the  permanent  integration  of  exogenous  gene(s)
into the plant genome while transient expression refers to a temporary high-level
transgene  expression,  generally  but  not  limited  to  validate  the  constructs.
Transformation of the nuclear genome is now a routine in tailoring agronomical
traits [31, 54, 62, 162] while that of organellar genomes, mitochondrial or plastids,
is  also  emerging  as  an  alternative  target  for  the  transformation  process.
Mitochondrial genome transformation is relatively a new concept and very limited
success  has  been  achieved  so  far,  however,  the  transformation  of  the  plastid
genome has become an established platform for the production of commercially
important  compounds  due  to  high  expression  and  confinement  into  bona  fide
structure  [153].  Plastids  are  a  group  of  semi-autonomous  organelles  found  in
green  plants,  algae,  and  cyanobacteria  that  possess  a  great  capacity  for
differentiation, de-differentiation, and re-differentiation. Their major roles include
photosynthesis, storage of various products, and synthesis of key molecules which
maintain the basic architecture and operation of cells.  These organelles vary in
size, shape, content, and function. Pro-plastids are the precursors of all plastids
and are present in the meristematic regions of the plant. The plastid DNA (ptDNA)
is present in the form of DNA-protein complexes known as plastid nucleoids and
are  attached  to  the  inner  membrane  of  the  plastids.  Each  plastid  nucleoid
possesses 10-100 copies of ptDNA. The size of chloroplast genomes is ~140 kbp
in higher plants while <200 kbp in unicellular eukaryotes. The copy number of the
chloroplast genome is variable and ranges between 1,000-10,000 per plant cell.
Transformation  of  both  the  chloroplast  genome  as  well  as  the  nuclear  genome
offers its own set of features which are discussed in Table 1.

TABLE 7. Comparison of nuclear and chloroplast expression approaches.

FEATURE NUCLEAR TRANSFORMATION CHLOROPLAST
TRANSFORMATION

Copy number Low copy number
Specific chromosome number in each

species

High copy number
2 Inverted repeats (IR)/ptDNA

10-100 ptDNA/plastid
10-100 plastid/cell

~20,000 transgene copies/cell

Level of gene
expression

Low
1-2% of TSP

High
5-25% of TSP

Integration Random
May interrupt expression of other genes

Site specific
No effect on the expression of other genes

due to homologous recombination
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FEATURE NUCLEAR TRANSFORMATION CHLOROPLAST
TRANSFORMATION

Gene silencing Yes
Natural phenomenon of RNAi in

eukaryotes

No
Prokaryotic in nature

Gene containment Transgene escape
Non-maternal mode of inheritance

No gene pollution
Maternal mode of inheritance

Formation of
disulphides

Yes Yes

Toxic proteins No
Severe pleiotropic effects

Yes
Plastid expressed proteins are contained

within the plastid

Gene expression Monocistronic Polycistronic (Operon)

There are various methods to introduce transgene into the plant genome, however,
in  this  chapter,  we  will  discuss  the  commonly  used  system  such  as
Agrobacterium-mediated transformation, biolistic, and viral (transient expression).

Agrobacterium is a gram-negative soil bacterium that causes crown gall or hairy
roots  in  most  of  the  dicotyledonous  plants  to  produce  amino  acids  and  sugar-
phosphate  compounds  known  as  opines  for  its  energy  source.  The  cells  of
Agrobacterium  tumefaciens  and  Agrobacterium  rhizogenes  contain  Ti  (tumor-
inducing)  plasmid  and  Ri  (roots-inducing)  plasmids,  respectively.  Commonly
Agrobacterium tumefaciens is used for plant transformation by replacing the T-
DNA region with the gene of interest and selection cassette. Injured plant tissues
release  a  phenolic  compound  (acetosyringone)  that  triggers  Agrobacterium
recognition  in  which  VirA  protein  acts  as  an  antenna  and  autophosphorylates
itself  consequently  phosphorylation  VirG  [163].  This  triggers  a  cascade  of
chemical  reactions  wherein  type  IV  secretion  system  is  formed  consisting  of
VirD4  and  11  VirB  proteins  [164].  T-DNA  is  replicated  to  produce  T-
DNA/VirD2 complex; Vir protein complex (VirB2, VirB5, VirB7) work together
to  allow  VirD2-DNA  complex  (immature  T-DNA  complex)  to  enter  the
cytoplasm of the recipient cell, VirE2 is combined with T-strand to form mature
T-DNA complex [165], which passes through the cytoplasm to reach the nucleus;
the T-DNA complex enters the nucleus of the recipient cell through the nuclear
pore targeting the integration site. The T-complex removes the guard protein, and
the T-DNA is integrated into the nuclear genome. The gene expression regulatory
sequence in the T-DNA region is like that of eukaryotes, so it can be expressed in
plant  cells.  Agrobacterium-mediated  transformation  is  a  method  of  choice  for
transformation  of  the  nuclear  genome  of  dicotyledonous  plants  due  to  simple
operation,  low  cost,  high  success  rate  [166].  However  naturally  the  bacterium
offers limited host range and organellar genomes cannot be transformed. Different
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steps  involved  in  the  Agrobacterium-mediated  transformation  procedure  are
shown  in  Fig.  (1)  .

Fig.  (1).   Illustration  of  different  steps  involved  in  the  development  of  transgenic  plants  using  nuclear
transformation.

As  illustrated  in  Fig.  (2)  ,  the  microprojectile  bombardment  method  employs
physical  means  of  transforming  cells;  also  known  as  biolistics  or  gene-gun
method.  It  accelerates  the  metal  particles  (tungsten,  gold)  coated  with  foreign
DNA so that they can penetrate the cell  wall [167]. It  can be used to introduce
foreign  genes  into  plant  cells,  tissues,  and  organs.  PDS-1000/He  uses  rupture
discs of different thicknesses to regulate the helium pressure. When the helium
pressure  reaches  the  capacity  of  rupture  disc  it  bursts  to  generate  a  strong
acceleration  of  macrocarrier  to  carry  the  microcarriers  at  high  speed.  When  it
encounters  the  rigid  blocking  mesh,  the  macrocarrier  is  blocked  while
microcarriers use inertia to continue to move forward at high speed, bombarding
target  cells  or  tissues,  thereby  carrying  foreign  genes  into  the  cells.  The  gene
bombardment method is not restricted by the recipient's genotype, a wide range of
explants, rapid and simple operation, and can effectively transform plastids, thus
turning  a  new  page  in  the  genetic  transformation  of  plants.  However,  this
technology is expensive, and large DNA fragments can be easily sheared during
the transformation process, multiple insertions are also a limitation.
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Fig.  (2).   Development  of  transgenic  plants  via  transformation  of  the  chloroplast  genome.  a)  Displays  a
typical vector construction scheme and the homologous recombination for the integration of transgene into
chloroplast genome at the chosen location. b) Shows the delivery of transgene into chloroplast genome via
particle bombardment system using a gene gun. c) Demonstrates the progression of homoplasmy (right; in
which all chloroplasts are transformed) a heteroplasmic cell (left; in which untransformed chloroplasts are
also present).



178   Frontiers in Molecular Pharming, Vol. 1 Khan et al.

Plant viruses such as Tobacco Mosaic Virus (TMV), and Potato Virus X (PVX)
can also be used for plant transformation exploiting their natural capability [168].
Viruses can spread rapidly and produce a large number of foreign protein(s) due
to  their  efficient  self-replication  and  expression  ability  [169].  The  introduction
and  expression  of  new  genes  can  be  achieved  in  most  cells  of  a  mature  plant
without the need to undergo a long-term transformation process from explants to
regenerated  plants.  This  method  is  used  for  transient  expression  since  the
transgene is not integrated into plant genome and therefore, cannot be transferred
to next generation [168]. It will not affect the expression of other functional genes
in  the  recipient  plant.  Two  types  of  viral  expression  systems  are  available:  i)
independent viral vectors-harboring the transgene in place of capsid protein [170]
or  alongside  all  required  viral  proteins.  However,  this  system  suffered  from
transgene size limitation, ii) minimal viral vectors-harboring the transgene with
minimal viral proteins capable of accommodating larger transgene at the cost of
systemic infection. This was compensated by the transformation of agrobacterium
with  minimal  viral  vector  and  infiltrating  the  inoculum into  the  host  plant  leaf
using  vacuum.  It  helps  to  quickly  validate  the  cassette  for  its  successful
expression in plants. However, there are several limitations associated with virus-
mediated plant transformation such as viral vectors cannot integrate foreign genes
into  chromosomes,  so  they  cannot  be  passed  to  the  offspring  according  to
Mendelian laws, and they have no advantage in long-term expression of foreign
proteins.  The  frequency  of  mutations  in  the  genome  is  relatively  high.  The
instability of the viral vector itself can easily cause the loss of foreign genes. In
view of this, viral vector-mediated genetic transformation is mainly used in two
fields: the application of virus-induced gene silencing (VIGS) and high efficiency
transient expression of foreign protein(s).

5. SUMMARY AND OUTLOOK

It  has  now  been  established  that  plants  are  capable  of  producing  recombinant
proteins  of  industrial  importance  at  commercially  feasible  levels.  Plants  offer
several  advantages  compared  to  conventional  systems.  Although,  the  lengthy
procedures  to  produce transgenic  plants  are  considered a  big  hurdle  at  present,
several  tissue-culture  independent  methods  such  as  the  floral  dip  method  to
generate transgenic plants have been devised. However, they are currently limited
to few plant species such as Arabidopsis. The success of such methods depends
on the use of an efficient selectable marker system that could effectively suppress
the growth of non-transformed plants at the seedling stage. Such methods have
been attempted for other species as well however, they have not been successful
yet. Once, the transgenic plants have been developed, then they offer significant
advantages compared to other systems particularly in terms of scaling up. With
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minimum efforts  and  existing  infrastructure  deployed,  transgenic  plants  can  be
grown on several thousand hectares in one planting season.

In  situations  like  Covid-19  pandemic  calling  for  sudden,  huge,  and  cheap
production  of  vaccines,  the  plant-based  production  system  of  recombinant
vaccines  also  holds  great  promise.  Covid-19,  a  novel  coronavirus  with  the
potential of lethality has created an alarming situation at a global scale. The virus
was  first  identified  in  late  December  2019  in  Wuhan,  China,  and  has  been
declared a serious global health concern by WHO [171]. The virus is responsible
for  acute  respiratory  (pneumonia-like)  infection  characterized  by  different
symptoms.  Critical  cases  can  cause  respiratory  failure,  septic  shock,  or  organ
failure  which  then  requires  intensive  care  support.  The  rapid  outbreak  of  this
deadly virus through human transmission has provoked governments across the
world  to  ensure  and address  the  emergency control  and containment  measures,
treating patients with quarantine facilities and vaccine development. As the virus
has  emerged  suddenly  with  no  available  vaccination  and  other  treatments,
prevention  of  infection  is  the  current  priority  to  control  the  pandemic.  This
outbreak with massive mortalities and newly reported cases has created an urgent
demand for vaccine development. Although the traditional expression system is
flexible for biopharmaceutical  production the transient expression in plants has
carved a niche in the biopharmaceutical sector for producing biopharma products.
Genetic engineering of plant has evolved smarter for the transient expression with
profound benefits  and have been substantially fruitful  in achieving its  worth in
biopharmaceutical sector. Therefore, in such emergencies, vaccine antigens can be
produced  transiently  without  stably  integrating  the  transgenes  into  the  plant
genome [172]. The amazing speed of this system was very recently demonstrated
by Medicago Inc, a pioneer of plant-based transient expression and manufacturing,
by producing VLPs (Virus-Like Particles) in just 20 days after having access to
SARS-nCoV-2’s spike (S) protein sequence [173].

There are other concerns of transgene spread to weedy relatives through pollen.
However, the chance of spreading transgenes become meager if the transgenes-
coding for a fitness-enhancing trait under certain circumstances such as herbicide
tolerance is not used. Any transgene offering no selective advantage under certain
circumstances  to  the  host  plant  would remain neutral  and pose no threat  to  the
population. Research shows that transgenes offering no selection advantage to the
host would rather become a source of extra metabolic burden at the cellular level.
Nevertheless,  researchers  have  developed  alternative  approaches  such  as  the
manipulation  of  non-nuclear  genomes  to  address  such  pollen-mediated  gene
transfer to weedy relatives from transgenic plants when cultivated in open fields.
Non-nuclear  genomes  such  as  plastids  and  mitochondria  are  often  inherited
maternally,  and  therefore,  provide  a  sort  of  natural  gene  compartment  for  the
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transgene(s).  Manipulation  of  the  plastid  genome  has  emerged  as  a  successful
alternative  to  nuclear  transformation  while  the  efforts  to  engineer  the
mitochondrial  genome  are  underway.  Another  significant  advantage  of  using
plants as a host for the production of recombinant proteins lies in their suitability
for the development of edible vaccines. Vaccine antigen production in edible parts
of  plants  would  offer  a  significant  advance  not  only  in  the  cost-effective
production but also downstream application including purification, distribution as
well  as  administration  of  the  vaccines—the  three  major  phases  incurring  high
input costs. The seeds of plants expressing edible vaccine/recombinant protein can
be  stored  at  room temperature  for  quite  long  periods  and  can  be  distributed  to
remote  distances  without  requiring  special  cold  storage  as  well  as  special
transportation  facilities.  Despite  these  advantages,  plant-made  pharmaceuticals
have  not  yet  reached  the  market  or  captured  the  market  share.  However,  the
situation  is  changing  now.  Many  funding  agencies  are  funding  proposals
revolving  the  recombinant  protein  productions  using  plant-based  expression
systems.
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