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Abstract

We study in this paper the fixed-support Wasserstein barycenter problem (FS-WBP),
which consists in computing the Wasserstein barycenter of m discrete probability measures
supported on a finite metric space of size n. We show first that the constraint matrix
arising from the standard linear programming (LP) representation of the FS-WBP is
not totally unimodular when m ≥ 3 and n ≥ 3. This result answers an open question
pertaining to the relationship between the FS-WBP and the minimum-cost flow (MCF)
problem since it therefore proves that the FS-WBP in the standard LP form is not a
MCF problem when m ≥ 3 and n ≥ 3. We also develop a provably fast deterministic
variant of the celebrated iterative Bregman projection (IBP) algorithm, named FastIBP

algorithm, with the complexity bound of Õ(mn7/3ε−4/3) where ε ∈ (0, 1) is the tolerance.

This complexity bound is better than the best known complexity bound of Õ(mn2ε−2)

from the IBP algorithm in terms of ε, and that of Õ(mn5/2ε−1) from other accelerated
algorithms in terms of n. Finally, we conduct extensive experiments with both synthetic
and real data and demonstrate the favorable performance of the FastIBP algorithm in
practice.

1 Introduction

During the past decade, the Wasserstein barycenter problem [Agueh and Carlier, 2011] (WBP)
has served as a foundation for numerous applications ranging from economics [Carlier and
Ekeland, 2010, Chiappori et al., 2010] and physics [Buttazzo et al., 2012, Cotar et al., 2013,
Trouvé and Younes, 2005] to statistics [Munch et al., 2015, Ho et al., 2017, Srivastava et al.,
2018], image and shape analysis [Rabin et al., 2011, Bonneel et al., 2015, 2016] and machine
learning [Cuturi and Doucet, 2014]. Among all of these applications, a key challenge is to
design provably fast algorithms for the WBP and further understand the computational
hardness [Peyré and Cuturi, 2019].

The WBP has strong connection with the optimal transport (OT) problem since they
both depend on the Wasserstein distance. Compared to the OT problem which computes
the Wasserstein distance between two probability measures, the WBP is harder in that it
requires to minimize the sum of the Wasserstein distance, and typically considers m ≥ 2
probability measures. In that sense, its closest relative is the multimarginal optimal transport
problem [Gangbo and Swiech, 1998], which also compares m measures. A comprehensive
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treatment of OT and its applications is beyond the scope of our work; see Villani [2008], Peyré
and Cuturi [2019] for an introduction. Since Cuturi [2013] showed that the Sinkhorn algorithm
efficiently solves the OT problem, numerous efforts have been made in this direction [Cuturi
and Peyré, 2016, Genevay et al., 2016, Altschuler et al., 2017, Dvurechensky et al., 2018,
Blanchet et al., 2018, Lin et al., 2019b, Lahn et al., 2019, Quanrud, 2019, Jambulapati et al.,
2019, Lin et al., 2019c]. The best-known theoretical complexity bound is O(n2ε−1) [Blanchet
et al., 2018, Quanrud, 2019, Lahn et al., 2019, Jambulapati et al., 2019] while Sinkhorn and
Greenkhorn algorithms [Altschuler et al., 2017, Dvurechensky et al., 2018, Lin et al., 2019b]
serve as the baseline approaches in practice. Recently, Lin et al. [2019a] have provided the
complexity of approximating the multimarginal OT problem.

There have been much efforts devoted to the development of fast algorithms when con-
sidering m ≥ 2 discrete probability measures [Rabin et al., 2011, Cuturi and Doucet, 2014,
Carlier et al., 2015, Bonneel et al., 2015, Benamou et al., 2015, Anderes et al., 2016, Staib
et al., 2017, Ye et al., 2017, Borgwardt and Patterson, 2018, Puccetti et al., 2018, Claici
et al., 2018, Uribe et al., 2018, Dvurechenskii et al., 2018, Yang et al., 2018, Le et al., 2019,
Kroshnin et al., 2019, Guminov et al., 2019, Ge et al., 2019, Borgwardt and Patterson, 2019].
To the best of our knowledge, Rabin et al. [2011] were the first to propose an algorithm to
compute Wasserstein barycenters, but did so using the sliced-Wasserstein distance, which was
an approximation of the Wasserstein distance and went on to find several other usages. Cuturi
and Doucet [2014] proposed to smooth the WBP using an entropic regularization, leading
to the simple gradient-descent scheme that was later improved and simplified to yield gener-
alized Sinkhorn-type projections under the name of the iterative Bregman projection (IBP)
algorithm [Benamou et al., 2015, Kroshnin et al., 2019]. Several contributions have since
been proposed, from semi-dual gradient descent [Cuturi and Peyré, 2016, 2018], accelerated
primal-dual gradient descent (APDAGD) [Dvurechenskii et al., 2018, Kroshnin et al., 2019],
accelerated IBP [Guminov et al., 2019], stochastic gradient descent [Claici et al., 2018], dis-
tributed and parallel gradient descent [Staib et al., 2017, Uribe et al., 2018], alternating
direction method of multipliers (ADMM) [Ye et al., 2017, Yang et al., 2018] and interior-point
algorithm [Ge et al., 2019]. Very recently, Kroshnin et al. [2019], Guminov et al. [2019] have
proposed a novel primal-dual framework, allowing the complexity bound analysis for various
algorithms, e.g., IBP, accelerated IBP and APDAGD.

Concerning the computational hardness of the WBP with free support, Anderes et al.
[2016] proved that the barycenter of m empirical measures is also an empirical measure with
at most the total number of points contained in all of the measures minus m− 1. When m = 2
and the measures are bound and the support is fixed, the computation of the barycenter
amounts to solving a network flow problem on a directed graph. Borgwardt and Patterson
[2019] proved that finding a barycenter of sparse support is NP-hard even under the simple
setting when m = 3. However, their analysis does not work for the WBP with fixed support,
namely when the considered m probability measures have the pre-specified support.

Contribution. We revisit the fixed-support Wasserstein barycenter problem (FS-WBP)
between m discrete probability measures supported on the prespecified finite set of n points.
Our contributions can be summarized as follows:

1. We prove that the FS-WBP in the standard LP form is not a minimum-cost flow (MCF)
problem in general. In particular, we show that the constraint matrix arising from the
standard LP representation of the FS-WBP is (i) totally unimodular when m ≥ 3 and
n = 2 and (ii) not totally unimodular when m ≥ 3 and n ≥ 3. Our results shed light on
the necessity of problem reformulation, which has been suggested by Cuturi and Doucet
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[2014], Benamou et al. [2015] for using the entropic regularization and IBP algorithm
and Ge et al. [2019] for using the block structure and interior-point algorithm.

2. We propose a provably fast deterministic variant of the celebrated iterative Bregman
projection (IBP) algorithm, named FastIBP algorithm, with the complexity bound
of Õ(mn7/3ε−4/3) where ε stands for the tolerance. This improves over the complexity
bound of Õ(mn2ε−2) from the IBP algorithm [Benamou et al., 2015] in terms of ε and
the complexity bound of Õ(mn5/2ε−1) from the accelerated IBP and APDAGD algo-
rithms [Kroshnin et al., 2019, Guminov et al., 2019] in terms of n. Extensive experimental
results on both synthetic and real data demonstrate the favorable performance of the
FastIBP algorithm over the IBP algorithm in practice.

Organization. The remainder of the paper is organized as follows. In Section 2, we provide
the basic setup for the entropic regularized FS-WBP and the dual problem. In Section 3,
we present the computational hardness results of the FS-WBP in the standard LP form. In
Sections 4, we propose and analyze the FastIBP algorithm. Experimental results on both
synthetic and real data are presented in Section 5. Finally, we conclude the paper in Section 6.

Notation. We let [n] be the set {1, 2, . . . , n} and Rn+ be the set of all vectors in Rn with
nonnegative components. 1n and 0n are the n-vectors of ones and zeros. ∆n stands for the
probability simplex: ∆n = {u ∈ Rn+ : 1>n u = 1}. For a differentiable function f , we denote ∇f
and ∇λf for the full gradient of f and its gradient with respect to a variable λ. For x ∈ Rn and
1 ≤ p ≤ ∞, we write ‖x‖p for its `p-norm. For X = (Xij) ∈ Rn×n, the notations vec (X) ∈ Rn2

and det(X) stand for the vector representation and the determinant. In addition, ‖X‖∞ =
max1≤i,j≤n |Xij |, ‖X‖1 =

∑
1≤i,j≤n |Xij |, r(X) = X1n and c(X) = X>1n. Let X,Y ∈ Rn×n,

the Frobenius and Kronecker inner product are denoted by 〈X,Y 〉 :=
∑

1≤i,j≤nXijYij and

X ⊗ Y ∈ Rn2×n2
. Given the dimension n and accuracy ε, the notation a = O(b(n, ε)) stands

for the upper bound a ≤ C · b(n, ε) where C > 0 is independent of n and ε, and a = Õ(b(n, ε))
indicates the previous inequality where C depends only the logarithmic factors of n and ε.

2 Preliminaries and Technical Background

In this section, we provide the basic setup of the fixed-support Wasserstein barycenter problem
(FS-WBP), starting with the standard linear programming (LP) presentation and entropic
regularized formulation with a formal specification of an approximate barycenter.

2.1 Linear programming formulation

For p ≥ 1, let Pp(Ω) be the set of Borel probability measures on Ω with finite p-th moment.
The Wasserstein distance of order p ≥ 1 [Villani, 2008] between µ, ν ∈ Pp(Ω) is defined by

Wp(µ, ν) :=

(
inf

π∈Π(µ,ν)

∫
Ω×Ω

dp(x,y) π(dx, dy)

)1/p

,

where d(·, ·) is a metric on Ω and Π(µ, ν) is the set of couplings between µ and ν. Given
a weight vector (ω1, ω2, . . . , ωm) ∈ ∆m for m ≥ 2, the Wasserstein barycenter [Agueh and
Carlier, 2011] of m probability measures {µk}mk=1 is a solution of the following functional
minimization problem

min
µ∈Pp(Ω)

m∑
k=1

ωkW
p
p (µ, µk). (1)
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Because our goal is to provide computational schemes to approximately solve the WBP, we
first adopt the definition of an ε-approximate solution.

Definition 2.1. The probability measure µ̂ ∈ Pp(Ω) is called an ε-approximate barycenter if∑m
k=1 ωkW

p
p (µ̂, µk) ≤

∑m
k=1 ωkW

p
p (µ?, µk) + ε where µ? is an optimal solution to problem (1).

There are two main settings: (i) free-support Wasserstein barycenter, namely, when
we optimize both the weights and supports of the barycenter in Eq. (1); (ii) fixed-support
Wasserstein barycenter, namely, when the supports of the barycenter are similar to those from
the probability measures {µk}mk=1 and we optimize the weights of the barycenter in Eq. (1).

The free-support WBP problem is notoriously difficult to solve. It can either be solved
using a solution to the multimarginal-OT (MOT) problem, as described in detail by Agueh
and Carlier [2011], or approximated using alternative optimization techniques. Assuming
each measure is supported on n distinct points, the WBP problem can be solved exactly
by solving first a MOT, to then compute (n − 1)m + 1 barycenters of points in Ω (these
barycenters are exactly the support of the barycentric measure). Solving a MOT is however
equivalent to solving an LP with nm variables and (n− 1)m+ 1 constraints. The other route,
alternative optimization, requires setting an initial guess for the barycenter, a discrete measure
supported on k weighted points (where k is predefined). One can then proceed by updating
the locations of µ (or even add new ones) to decrease the objective function in Eq. (1), before
changing their weights. In the Euclidean setting with p = 2, the free-support WBP is closely
related to the clustering problem, and equivalent to k-means when m = 1 [Cuturi and Doucet,
2014]. Whereas solving the free-support WBP using MOT results in a convex (yet intractable)
problem, the alternating mimimization approach is not, in very much the same way that the
k-means problem is not, and results in the minimization of a piece-wise quadratic function.
On the other hand, the fixed-support WBP is comparatively easier to solve, and as such as
played a role in several real-world applications. For instance, in imaging sciences, pixels and
voxels are supported on a predefined, finite grid. In these applications, the barycenter and µk
measures share the same support.

In view of this, throughout the remainder of the paper, we let (µk)mk=1 be discrete probability
measures and the support points {xki }i∈[n] are fixed. Since {µk}mk=1 have the fixed support,

they are fully characterized by the weights {uk}mk=1. Accordingly, the support of the barycenter
{x̂i}i∈[n] is also fixed and can be prespecified by {xki }i∈[n] in many applications. To this end,
the FS-WBP between {µk}mk=1 has the standard LP representation [Cuturi and Doucet, 2014,
Benamou et al., 2015, Peyré and Cuturi, 2019] as follows,

min
{Xi}mi=1⊆R

n×n
+

m∑
k=1

ωk〈Ck, Xk〉, (2)

s.t. r(Xk) = uk, Xk ≥ 0, for all k ∈ [m],

c(Xk+1) = c(Xk), for all k ∈ [m− 1],

where {Xk}mk=1 and {Ck}mk=1 ⊆ Rn×...×n+ denote a set of transportation plans and nonnegative
cost matrices and (Ck)ij = dp(xki , x̂j) for all k ∈ [m]. The fixed-support Wasserstein barycenter
u ∈ ∆n is determined by the weight

∑m
k=1 ωkc(Xk) and the support (x̂1, x̂2, . . . , x̂n).

From Eq. (2), we see the FS-WBP is a linear programming with 2mn− n equality con-
straints and mn2 variables. This inspires various works on solving the FS-WBP using classical
optimization algorithms [Ge et al., 2019, Yang et al., 2018]. Despite some progresses, the un-
derstanding of the structure of FS-WBP has remained limited. While the OT problem [Villani,
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2008] is equivalent to a minimum-cost flow (MCF) problem, it remains unknown whether the
FS-WBP is a MCF problem even under the simplest setting when m = 2.

2.2 Entropic regularized FS-WBP

Using Cuturi’s entropic approach to the OT problem [Cuturi, 2013], we define a regularized
version of the FS-WBP in Eq. (2), where an entropic regularization is added to the Wasserstein
barycenter objective. The resulting formulation is as follows:

min
{Xi}mi=1⊆Rn×n

m∑
k=1

ωk(〈Ck, Xk〉 − ηH(Xk)), (3)

s.t. r(Xk) = uk, Xk ≥ 0, for all k ∈ [m],

c(Xk+1) = c(Xk), for all k ∈ [m− 1],

where η > 0 is the parameter and H(X) denotes the entropic regularization term:

H(X) := −〈X, log(X)− 1n1
>
n 〉.

We refer to Eq. (3) as entropic regularized FS-WBP. When η is large, the optimal value of
entropic regularized FS-WBP may yield a poor approximation of the cost of the FS-WBP.
In order to guarantee a good approximation, we scale the parameter η as a function of the
desired accuracy of the approximation.

Definition 2.2. The probability vector û ∈ ∆n is called an ε-approximate barycenter if there
exists a feasible solution (X̂1, X̂2, . . . , X̂m) ∈ Rn×n+ × · · · × Rn×n+ for the FS-WBP in Eq. (2)

such that û =
∑m

k=1 ωkc(X̂k) for all k ∈ [m] and
∑m

k=1 ωk〈Ck, X̂k〉 ≤
∑m

k=1 ωk〈Ck, X?
k〉 + ε

where (X?
1 , X

?
2 , . . . , X

?
m) is an optimal solution of the FS-WBP in Eq. (2).

With these notions and definitions in mind, we develop efficient algorithms for approximately
solving the FS-WBP where the running time of our algorithms required to obtain an ε-
approximate barycenter achieves at least competitive dependence on m, n and ε than other
state-of-the-art algorithms [Kroshnin et al., 2019, Guminov et al., 2019].

2.3 Dual entropic regularized FS-WBP

Using the duality theory in convex optimization [Rockafellar, 1970], the dual form of entropic
regularized FS-WBP has been derived in Cuturi and Doucet [2014], Kroshnin et al. [2019].
Different from the usual 2-marginal or multimarginal OT [Cuturi and Peyré, 2018, Lin et al.,
2019a], the dual entropic regularized FS-WBP is a convex optimization problem with an affine
constraint set. Let (Bk)ij = eλki+τkj−η

−1(Ck)ij for all i, j ∈ [n] and k ∈ [m], we have

min
λ,τ∈Rmn

ϕ(λ, τ) :=

m∑
k=1

ωk(1
>
nBk(λk, τk)1n − λ>k uk), s.t.

m∑
k=1

ωkτk = 0n. (4)

To derive the dual problem with α = (α1, α2, . . . , αm) with αk ∈ Rn and β = (β1, β2, . . . , βm−1)
with βk ∈ Rn, we define the Lagrangian function as follows:

L({Xk}k∈[m], α, β) =

m∑
k=1

ωk(〈Ck, Xk〉−ηH(Xk))−
m∑
k=1

α>k (r(Xk)−uk)−
m−1∑
k=1

β>k (c(Xk+1)−c(Xk)).
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Taking the derivative and setting the resulting equations to zero, we obtain that the optimal
solution X̄k = X̄k(α, β) for all k ∈ [m] has the following form:

(X̄k)ij = eη
−1(ω−1

k (αki+βk−1,j)−βkj−(Ck)ij) for all k ∈ [m],

with the convention β0 = βm = 0. Performing the change of variable λk = (ηωk)
−1αk and

τk = (ηωk)
−1(βk−1 − βk), we have

∑m
k=1 ωkτk = 0n and

min
X1,...,Xk

L(X1, . . . , Xk, α, β) = −ϕ(λ, τ).

Putting these pieces together yields the desired problem formulation in Eq. (4).
Finally, we provides in the following lemma an upper bound for the `∞-norm of one optimal

solution (λ?, τ?) of the dual entropic regularized FS-WBP.

Lemma 2.1. For the dual entropic regularized FS-WBP, let C̄ = max1≤k≤m ‖Ck‖∞ and
ū = min1≤k≤m,1≤j≤n ukj, there exists an optimal solution (λ?, τ?) such that the following
`∞-norm bound holds true:

‖λ?k‖∞ ≤ Rλ, ‖τ?k‖∞ ≤ Rτ , for all k ∈ [m],

where Rλ = 5η−1C̄ + log(n)− log(ū) and Rτ = 4η−1C̄.

Proof. First, we claim that it holds for any optimal solution (λ?, τ?) to the dual entropic
regularized FS-WBP in Eq. (4),

λ?k = log(uk)− log(e−η
−1Ckdiag(eτ

?
k )1n), (5)

τ?k =
m∑
j=1

ωj log(e−η
−1Cjdiag(eλ

?
j )1n)− log(e−η

−1Ckdiag(eλ
?
k)1n). (6)

Indeed, (λ?, τ?) must satisfy the following KKT condition,(
Bk(λ

?
k, τ

?
k )1n

B>k (λ?k, τ
?
k )1n

)
=

(
uk

z?

)
for all k ∈ [m],

m∑
k=1

ωkτ
?
k = 0n. (7)

Using the definition of Bk(·, ·), we obtain Eq. (5) and τ?k = log(z?)− log(e−η
−1Cdiag(eλ

?
k)1n).

This together with the second equation in Eq. (7) and
∑m

k=1 ωk = 1 yields Eq. (6).
Next we prove the bound with Rτ . Indeed, given that j ∈ [m], we first show that there

exists an optimal solution (λj , τ j) such that

max
1≤i≤n

(τ jk)i ≥ 0 ≥ min
1≤i≤n

(τ jk)i, for all k 6= j. (8)

Letting (λ̂, τ̂) be an optimal solution of the dual entropic regularized FS-WBP in Eq. (4), the
claim holds true if τ̂ satisfies Eq. (8). Otherwise, we define m− 1 shift terms given by

∆τ̂k =
max1≤i≤n(τ̂k)i + min1≤i≤n(τ̂k)i

2
∈ R for all k 6= j,

and let (λj , τ j) with

τ jk = τ̂k −∆τ̂k1n, λjk = λ̂k + ∆τ̂k1n, for all k 6= j,

τ jj = τ̂j + (
∑

k 6=j(
ωk
ωj

)∆τ̂k)1n, λjj = λ̂j − (
∑

k 6=j(
ωk
ωj

)∆τ̂k)1n.
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Using this construction, we have (λjk)i + (τ jk)i′ = (λ̂k)i + (τ̂k)i′ for all i, i′ ∈ [n] and all k ∈ [m].

This implies that Bk(λ̂k, τ̂k) = Bk(λ
k′
k , τ

k′
k ) for all k ∈ [m]. Furthermore, we have

m∑
k=1

ωkτ
j
k =

m∑
k=1

ωkτ̂k,
m∑
k=1

ωk(λ
j
k)
>uk =

m∑
k=1

ωkλ̂
>
k u

k.

Putting these pieces together yields ϕ(λj , τ j) = ϕ(λ̂, τ̂). In addition, by the definition of
(λj , τ j) and m− 1 shift terms, τ j satisfies Eq. (8). Therefore, we conclude that (λj , τ j) is an
optimal solution that satisfies Eq. (8). Then Kroshnin et al. [2019, Lemma 4] implies that

−η−1‖Ck‖∞ + log(1>n e
λjk) ≤ [log(e−η

−1Ckdiag(eλ
j
k)1n)]i′ ≤ log(1>n e

λjk), for all i′ ∈ [n],

Therefore, we have

max
1≤i≤n

(τ tk)i − min
1≤i≤n

(τ tk)i ≤ η−1‖Ck‖∞ +
m∑
i=1

ωiη
−1‖Ci‖∞, for all k ∈ [m]. (9)

Combining Eq. (8) and Eq. (9) yields that

‖τ jk‖∞ ≤ η−1‖Ck‖∞ +
m∑
i=1

ωiη
−1‖Ci‖∞ for all k 6= j. (10)

Since
∑m

i=1 ωiτ
?
i = 0n, we have

‖τ jj ‖∞ ≤ ω
−1
j

∑
i 6=j

ωi‖τ?i ‖∞ ≤ (ηωj)
−1
∑
i 6=j

ωi‖Ci‖∞ + (ηωj)
−1(1− ωj)

m∑
i=1

ωi‖Ci‖∞.

Then we proceed to the key part and define the averaging iterate

λ? =

m∑
j=1

ωjλ
j , τ? =

m∑
j=1

ωjτ
j .

Since ϕ is convex and (ω1, ω2, . . . , ωm) ∈ ∆m, we have ϕ(λ?, τ?) ≤
∑m

j=1 ωjϕ(λj , τ j) and∑m
k=1 ωkτ

?
k = 0n. Since (λj , τ j) are optimal solutions for all j ∈ [m], we conclude that (λ?, τ?)

is an optimal solution and

‖τ?k‖∞ ≤
m∑
j=1

ωj‖τ jk‖∞ = ωk‖τkk ‖∞ +
∑
j 6=k

ωj‖τ jk‖∞

≤ η−1
∑
i 6=k

ωi‖Ci‖∞ + η−1(1− ωk)
m∑
i=1

ωi‖Ci‖∞ + η−1(1− ωk)(‖Ck‖∞ +

m∑
i=1

ωi‖Ci‖∞)

≤ η−1‖Ck‖∞ + 3η−1
m∑
i=1

ωi‖Ci‖∞ ≤ 4η−1C̄.

Finally, we prove the bound with Rλ. Indeed, Eq. (5) implies that

max
1≤i≤n

(λ?k)i ≤ η−1‖Ck‖∞ + log(n) + ‖τ?k‖∞,

min
1≤i≤n

(λ?k)i ≥ log(ū)− log(n)− ‖τ?k‖∞.

Therefore, ‖λ?k‖∞ ≤ η−1‖Ck‖∞ + log(n)− log(ū) + ‖τ?k‖∞ which implies the desired result. �

7



Remark 2.2. Lemma 2.1 is analogues to [Lin et al., 2019b, Lemma 3.2] for the dual entropic
regularized OT problem. Here we hope to remark that the dual entropic regularized FS-WBP is
more complicated and need a novel constructive iterate (λ?, τ?) =

∑m
j=1 ωj(λ

j , τ j) which is not
required before. Moreover, Lemma 2.1 is important to quantify the progress of the FastIBP
algorithm where the techniques in Kroshnin et al. [2019] are not applicable.

The upper bound for the `∞-norm of the optimal solution of dual entropic regularized
FS-WBP in Lemma 2.1 leads to the following straightforward consequence.

Corollary 2.3. For the dual entropic regularized FS-WBP, there exists an optimal solution
(λ?, τ?) such that for all k ∈ [m],

‖λ?k‖ ≤
√
nRλ, ‖τ?k‖ ≤

√
nRτ , for all k ∈ [m],

where Rλ, Rτ > 0 are defined in Lemma 2.1.

Finally, we observe that ϕ can be decomposed into the weighted sum of m functions and
prove that each component function ϕk has Lipschitz continuous gradient with the constant 4
in the following lemma.

Lemma 2.4. The following statement holds true, ϕ(λ, τ) =
∑m

k=1 ϕk(λk, τk) where ϕk(λk, τk) =
1>nBk(λk, τk)1n − λ>k uk for all k ∈ [m]. Moreover, each ϕk has Lipschitz continuous gradient
in `2-norm and the Lipschitz constant is upper bounded by 4. Formally,

‖∇ϕk(λ, τ)−∇ϕk(λ′, τ ′)‖ ≤ 4

∥∥∥∥(λτ
)
−
(
λ′

τ ′

)∥∥∥∥ for all k ∈ [m].

which is equivalent to

ϕ(λ′, τ ′)− ϕ(λ, τ) ≤
(
λ′ − λ
τ ′ − τ

)>
∇ϕ(λ, τ) + 2

(
m∑
k=1

ωk

∥∥∥∥(λ′k − λkτ ′k − τk

)∥∥∥∥2
)
.

Proof. The first statement directly follows from the definition of ϕ in Eq. (4). For the second
statement, we provide the explicit form of the gradient of ϕk as follows,

∇ϕk(λ, τ) =

(
Bk(λ, τ)1n − uk
B>k (λ, τ)1n

)
.

Equivalently, we have

‖∇ϕk(λ′, τ ′)−∇ϕk(λ, τ)‖ =

∥∥∥∥( Bk(λ
′, τ ′)1n −Bk(λ, τ)1n

Bk(λ
′, τ ′)>1n −Bk(λ, τ)>1n

)∥∥∥∥ .
Now we construct the following entropic regularized OT problem,

min
X∈Rn×n

〈Ck, X〉 − ηH(X), s.t.X1n = u, X>1n = v.

where u and v are two probability vectors in ∆n. This belongs to the minimization problem
min

x∈Rn2{f(x) : Ax = b}. Following the derivation in Dvurechensky et al. [2018], Lin et al.
[2019b], the dual function has the following form,

f̃(α, β) = η

 n∑
i,j=1

e
−

(Ck)ij−αi−βj
η

−1

− 〈α, u〉 − 〈β, v〉+ η.

8



Since f is strongly convex on {x : Ax = b} in `1-norm and ‖A‖1→2 = 2, the gradient of f̃ is
Lipschitz continuous with the constant 4η−1 [Nesterov, 2018]. This implies that∥∥∥∥∥
(

diag(eα
′
)e−η

−1C−1n1>n diag(eβ
′
)1n − diag(eα)e−η

−1C−1n1>n diag(eβ)1n
diag(eβ

′
)e−η

−1C−1n1>n diag(eα
′
)1n − diag(eβ)e−η

−1C−1n1>n diag(eα)1n

)∥∥∥∥∥ ≤ 4η−1

∥∥∥∥(α′ − αβ′ − β

)∥∥∥∥ .
Performing the change of variable λ = η−1α− (1/2)1n and τ = η−1β − (1/2)1n together with
the definition of Bk(·, ·), we have∥∥∥∥( Bk(λ

′, τ ′)1n −Bk(λ, τ)1n
Bk(λ

′, τ ′)>1n −Bk(λ, τ)>1n

)∥∥∥∥ ≤ 4

∥∥∥∥(λ′ − λτ ′ − τ

)∥∥∥∥ .
This completes the proof. �

3 Computational Hardness

In this section, we analyze the computational hardness of the fixed-support Wasserstein
barycenter problem (FS-WBP) in Eq. (2). After introducing some well-known characterization
theorems in combinatorial optimization, we show that the FS-WBP in Eq. (2) is a minimum-cost
flow (MCF) problem when m = 2 and n ≥ 3 but is not when m ≥ 3 and n ≥ 3.

3.1 Combinatorial techniques

We present some classical results in combinatorial optimization and graph theory. The first
one is celebrated Ghouila-Houri’s characterization theorem [Ghouila-Houri, 1962].

Definition 3.1. A totally unimodular (TU) matrix is one for which every square submatrix
has determinant −1, 0 or 1.

Proposition 3.1 (Ghouila-Houri). A {−1, 0, 1}-valued matrix A ∈ Rm×n is TU if and only
if for each set I ⊆ [m] there is a partition I1, I2 of I such that∑

i∈I1

aij −
∑
i∈I2

aij ∈ {−1, 0, 1}, ∀j ∈ [n].

The second result [Berge, 2001, Theorem 1, Chapter 15] shows that the incidence matrices
of directed graphs and 2-colorable undirected graphs are TU.

Proposition 3.2. Let A be a {−1, 0, 1}-valued matrix. Then A is TU if each column contains
at most two nonzero entries and all rows are partitioned into two sets I1 and I2 such that: If
two nonzero entries of a column have the same sign, they are in different sets. If these two
entries have different signs, they are in the same set.

Finally, we characterize the constraint matrix arising in a MCF problem.

Definition 3.2. The MCF problem finds the cheapest possible way of sending a certain amount
of flow through a flow network. Formally,

min
∑

(u,v)∈E f(u, v) · a(u, v)

s.t. f(u, v) ≥ 0, for all (u, v) ∈ E,
f(u, v) ≤ c(u, v) for all (u, v) ∈ E,
f(u, v) = −f(v, u) for all (u, v) ∈ E,∑

(u,w)∈E or (w,u)∈E f(u,w) = 0,∑
w∈V f(s, w) = d and

∑
w∈V f(w, t) = d.

9
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Figure 1: Represent the FS-WBP in Eq. (2) as a MCF problem when (m,n) = (2, 4).

The flow network G = (V,E) is a directed graph G = (V,E) with a source vertex s ∈ V and
a sink vertex t ∈ V , where each edge (u, v) ∈ E has capacity c(u, v) > 0, flow f(u, v) ≥ 0
and cost a(u, v), with most MCF algorithms supporting edges with negative costs. The cost
of sending this flow along an edge (u, v) is f(u, v) · a(u, v). The problem requires an amount
of flow d to be sent from source s to sink t. The definition of the problem is to minimize the
total cost of the flow over all edges.

Proposition 3.3. The constraint matrix arising in a MCF problem is TU and its rows are
categorized into a single set using Proposition 3.2.

Proof. The standard LP representation of the MCF problem is

min
x∈R|E|

c>x, s.t. Ax = b, l ≤ x ≤ u.

where x ∈ R|E| with xj being the flow through arc j, b ∈ R|V | with bi being external supply
at node i and 1>b = 0, cj is unit cost of flow through arc j, lj and uj are lower and upper
bounds on flow through arc j and A ∈ R|V |×|E| is the arc-node incidence matrix with entries

Aij =


−1 if arc j starts at node i

1 if arc j ends at node i
0 otherwise

.

Since each arc has two endpoints, the constraint matrix A is a {−1, 0, 1}-valued matrix in
which each column contains two nonzero entries 1 and −1. Using Proposition 3.2, we obtain
that A is TU and the rows of A are categorized into a single set. �

3.2 Main result

We present our main results on the computational hardness of the FS-WBP in Eq. (2). First,
we show that the FS-WBP in this LP form is a MCF problem when m = 2 and n ≥ 2. This
result has been briefly discussed in [Anderes et al., 2016, Page 400] and we provide the details
for the sake of completeness.
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The FS-WBP is a MCF problem when m = 2 and n ≥ 2; see Figure 1 for the graph when
(m,n) = (2, 4). In particular, it is a transportation problem with n warehouse, n transshipment
centers and n retail outlets. Each u1i is the amount of supply provided by ith warehouse and
each u2j is the amount of demand requested by jth retail outlet. (X1)ij is the flow sent from
ith warehouse to jth transshipment center and (X2)ij is the flow sent from ith transshipment
center to jth retail outlet. (C1)ij and (C2)ij refer to the unit cost of corresponding flow. To
this end, the Wasserstein barycenter u ∈ Rn is a flow vector with ui being the flow through
ith transshipment center.

Proceed to the setting m ≥ 3, it is unclear whether the FS-WBP in Eq. (2) has the graph
representation as shown before. Instead, we turn to the algebraic techniques and provide an
explicit form as follows,

min

m∑
k=1

〈Ck, Xk〉 (11)

s.t.



−E · · · · · · · · · · · ·
... E

. . .
. . .

...
...

. . .
. . .

. . .
...

...
. . .

. . . (−1)m−1E
...

...
. . .

. . .
. . . (−1)mE

G −G . . .
. . .

...
... −G G

. . .
...

...
. . .

. . .
. . .

...
· · · · · · · · · (−1)mG (−1)m+1G





vec (X1)
vec (X2)

...

...

...

...
vec (Xm)


=



−u1

u2

...
(−1)m−1um−1

(−1)mum

0n
...

0n


,

where E = In ⊗ 1>n ∈ Rn×n2
and G = 1>n ⊗ In ∈ Rn×n2

. Each column of the constraint matrix
arising in Eq. (11) has either two or three nonzero entries in {−1, 0, 1}. In the following
theorem, we study the structure of the constraint matrix when m ≥ 3 and n = 2.

Theorem 3.4. The constraint matrix arising in Eq. (11) is TU when m ≥ 3 and n = 2.

Proof. When n = 2, the constraint matrix A has E = I2 ⊗ 1>2 and G = 1>2 ⊗ I2. The matrix
A ∈ R(4m−2)×4m is a {−1, 0, 1}-valued matrix with several redundant rows and each column
has at most three nonzero entries in {−1, 0, 1}. Now we simplify the matrix A by removing a
specific set of redundant rows. In particular, we observe that∑

i∈{1,2,3,4,2m+1,2m+2}

aij = 0, ∀j ∈ [4m],

which implies that the (2m+ 2)th row is redundant. Similarly, we have∑
i∈{3,4,5,6,2m+3,2m+4}

aij = 0, ∀j ∈ [4m],

which implies that the (2m+ 3)th row is redundant. Using this argument, we remove m− 1
rows from the last 2m− 2 rows. The resulting matrix Ā ∈ R(3m−1)×4m has very nice structure
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such that each column has only two nonzero entries 1 and −1; see the following matrix when
m is odd:

Ā =



−E · · · · · · · · · · · ·
... E

. . .
. . .

...
...

. . .
. . .

. . .
...

...
. . .

. . . (−1)m−1E
...

...
. . .

. . .
. . . (−1)mE

1>2 ⊗ e1 −1>2 ⊗ e1
. . .

. . .
...

... −1>2 ⊗ e2 1>2 ⊗ e2
. . .

...
...

. . .
. . .

. . .
...

· · · · · · · · · (−1)m1>2 ⊗ e2 (−1)m+11>2 ⊗ e2



.

where e1 and e2 are respectively the first and second standard basis (row) vectors in R2. Fur-
thermore, the rows of Ā are categorized into a single set so that the criterion in Proposition 3.2
holds true (the dashed line in the formulation of Ā serves as a partition of this single set into
two sets). Using Proposition 3.2, we conclude that Ā is TU. �

We first provide an illustrative counterexample for showing that the FS-WBP in Eq. (11)
is not a MCF problem when m = 3 and n = 3.

Example 3.1. When m = 3 and n = 3, the constraint matrix is

A =


−I3 ⊗ 1>3 03×9 03×9

03×9 I3 ⊗ 1>3 03×9

03×9 03×9 −I3 ⊗ 1>3
1>3 ⊗ I3 −1>3 ⊗ I3 03×9

03×9 −1>3 ⊗ I3 1>3 ⊗ I3

 . (12)

Setting the set I = {1, 4, 7, 10, 11, 13, 15} and letting e1, e2 and e3 be the first, second and third
standard basis row vectors in Rn, the resulting matrix with the rows in I is

R =



−e1 ⊗ 1>3 01×9 01×9

01×9 e1 ⊗ 1>3 01×9

01×9 01×9 −e1 ⊗ 1>3
1>3 ⊗ e1 −1>3 ⊗ e1 01×9

1>3 ⊗ e2 −1>3 ⊗ e2 01×9

01×9 −1>3 ⊗ e1 1>3 ⊗ e1

01×9 −1>3 ⊗ e3 1>3 ⊗ e3


.

Instead of considering all columns of R, it suffices to show that no partition of I guarantees
for any j ∈ {1, 2, 11, 12, 13, 19, 21} that∑

i∈I1

Rij −
∑
i∈I2

Rij ∈ {−1, 0, 1}.
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We write the submatrix of R with these columns as

R̄ =



−1 −1 0 0 0 0 0
0 0 1 1 0 0 0
0 0 0 0 0 −1 −1
1 0 0 0 −1 0 0
0 1 −1 0 0 0 0
0 0 0 0 −1 1 0
0 0 0 −1 0 0 1


and perform the following steps:

1. We claim that rows 1, 2, 4, 5 and 7 are in the same set I1. Indeed, columns 1 and 2
imply that rows 1, 4 and 5 are in the same set. Column 3 and 4 imply that rows 2, 5
and 7 are in the same set. Putting these pieces together yields the desired claim.

2. We consider the set that the row 6 belongs to and claim a contradiction. Indeed, row
6 can not be in I1 since column 5 implies that rows 4 and 6 are not in the same set.
However, row 6 must be in I1 since columns 6 and 7 imply that rows 3, 6 and 7 are in
the same set. Putting these pieces together yields the desired contradiction.

Using Propositions 3.1 and 3.3, we conclude that A is not TU and problem (11) is not a MCF
problem when m = 3 and n = 3.

Finally, we prove that the FS-WBP in Eq. (11) is not a MCF when m ≥ 3 and n ≥ 3. The
basic idea is to extend the construction in Example 3.1 to the general case.

Theorem 3.5. The FS-WBP in Eq. (11) is not a MCF problem when m ≥ 3 and n ≥ 3.

Proof. We use the proof by contradiction. In particular, assume that problem (11) is a MCF
problem when m ≥ 3 and n ≥ 3, Proposition 3.3 implies that the constraint matrix A is
TU. Since A is a {−1, 0, 1}-valued matrix, Proposition 3.1 further implies that for each set
I ⊆ [2mn− n] there is a partition I1, I2 of I such that∑

i∈I1

aij −
∑
i∈I2

aij ∈ {−1, 0, 1}, ∀j ∈ [mn2]. (13)

In what follows, for any given m ≥ 3 and n ≥ 3, we construct a set of rows I such that no
partition of I guarantees that Eq. (13) holds true. For the ease of presentation, we rewrite the
matrix A ∈ R(2mn−n)×mn2

as follows,

A =



−In ⊗ 1>n · · · · · · · · · · · ·
... In ⊗ 1>n

. . .
. . .

...
...

. . .
. . .

. . .
...

...
. . .

. . . (−1)m−1In ⊗ 1>n
...

...
. . .

. . .
. . . (−1)mIn ⊗ 1>n

1>n ⊗ In −1>n ⊗ In
. . .

. . .
...

... −1>n ⊗ In 1>n ⊗ In
. . .

...
...

. . .
. . .

. . .
...

· · · · · · · · · (−1)m1>n ⊗ In (−1)m+11>n ⊗ In



.
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Setting the set I = {1, n+ 1, 2n+ 1, 3n+ 1, 3n+ 2, 4n+ 1, 4n+ 3} and letting e1, e2 and e3 be
the first, second and third standard basis row vectors in Rn, the resulting matrix with the
rows in I is

R =



−e1 ⊗ 1>n 01×n2 01×n2 01×n2 · · · 01×n2

01×n2 e1 ⊗ 1>n 01×n2 01×n2 · · · 01×n2

01×n2 01×n2 −e1 ⊗ 1>n 01×n2 · · · 01×n2

1>n ⊗ e1 −1>n ⊗ e1 01×n2 01×n2 · · · 01×n2

1>n ⊗ e2 −1>n ⊗ e2 01×n2 01×n2 · · · 01×n2

01×n2 −1>n ⊗ e1 1>n ⊗ e1 01×n2 · · · 01×n2

01×n2 −1>n ⊗ e3 1>n ⊗ e3 01×n2 · · · 01×n2


.

Instead of considering all columns of R, it suffices to show that no partition of I guarantees∑
i∈I1

Rij −
∑
i∈I2

Rij ∈ {−1, 0, 1},

for all j ∈ {1, 2, n2 + 2, n2 + 3, n2 + n+ 1, 2n2 + 1, 2n2 + 3}. We write the submatrix of R with
these columns as

R̄ =



−1 −1 0 0 0 0 0
0 0 1 1 0 0 0
0 0 0 0 0 −1 −1
1 0 0 0 −1 0 0
0 1 −1 0 0 0 0
0 0 0 0 −1 1 0
0 0 0 −1 0 0 1


.

Applying the same argument used in Example 3.1, we obtain from Propositions 3.1 and 3.3
that A is not TU when m ≥ 3 and n ≥ 3, which is a contradiction. As a consequence, the
conclusion of the theorem follows. �

Remark 3.6. Theorem 3.5 resolves an open question and partially explains why the direct
application of network flow algorithms to the FS-WBP in Eq. (11) is inefficient in practice.
However, this does not eliminate the possibility that the FS-WBP is equivalent to some other LP
with good complexity. For example, Ge et al. [2019] have recently explored the block structure
of the FS-WBP in Eq. (11) and identified an equivalent LP formulation which is suitable for
the interior-point algorithm.

Remark 3.7. Theorem 3.5 supports the problem reformulation of the FS-WBP which forms
the basis for various algorithms, e.g., Benamou et al. [2015], Cuturi and Peyré [2016, 2018],
Claici et al. [2018], Kroshnin et al. [2019], Ge et al. [2019], Guminov et al. [2019] for example.

4 Fast Iterative Bregman Projection

In this section, we present a fast deterministic variant of the iterative Bregman projection
(IBP) algorithm, named FastIBP algorithm, and prove that it achieves the complexity
bound of Õ(mn7/3ε−4/3). This improves over Õ(mn2ε−2) from iterative Bregman projection
algorithm [Benamou et al., 2015] in terms of ε and Õ(mn5/2ε−1) from the APDAGD and
accelerated Sinkhorn algorithms [Kroshnin et al., 2019, Guminov et al., 2019] in terms of n.
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Algorithm 1: FastIBP({Ck, uk}k∈[m], ε)

Initialization: t = 0, θ0 = 1 and λ̌0 = λ̃0 = τ̌0 = τ̃0 = 0mn.
while Et > ε do

Step 1: Compute

(
λ̄t

τ̄ t

)
= (1− θt)

(
λ̌t

τ̌ t

)
+ θt

(
λ̃t

τ̃ t

)
.

Step 2: Compute rk = r(Bk(λ̄
t
k, τ̄

t
k)) and ck = c(Bk(λ̄

t
k, τ̄

t
k)) for all k ∈ [m] and perform

λ̃t+1
k = λ̃tk − (rk − uk)/(4θt), for all k ∈ [m],

τ̃ t+1 = argmin∑m
k=1 ωkτk=0n

m∑
k=1

ωk[(τk − τ̄ tk)>ck + 2θt‖τk − τ̃ tk‖2].

Step 3: Compute

(
λ̂t

τ̂ t

)
=

(
λ̄t

τ̄ t

)
+ θt

(
λ̃t+1

τ̃ t+1

)
− θt

(
λ̃t

τ̃ t

)
.

Step 4: Compute

(
λ́t

τ́ t

)
= argmin

{
ϕ(λ, τ) |

(
λ
τ

)
∈
{(

λ̌t

τ̌ t

)
,

(
λ̂t

τ̂ t

)}}
.

Step 5a: Compute ck = c(Bk(λ́
t
k, τ́

t
k)) for all k ∈ [m].

Step 5b: Compute τ̀ tk = τ́ tk +
∑m

k=1 ωk log(ck)− log(ck) for all k ∈ [m] and λ̀t+1 = λ́t.

Step 6a: Compute rk = r(Bk(λ̀
t
k, τ̀

t
k)) for all k ∈ [m].

Step 6b: Compute λtk = λ̀tk + log(uk)− log(rk) for all k ∈ [m] and τ t = τ̀ t.
Step 7a: Compute ck = c(Bk(λ

t
k, τ

t
k)) for all k ∈ [m].

Step 7b: Compute τ̌ t+1
k = τ tk +

∑m
k=1 ωk log(ck)− log(ck) for all k ∈ [m] and λ̌t+1 = λt.

Step 8: Compute θt+1 = θt(
√
θ2
t + 4− θt)/2.

Step 9: Increment by t = t+ 1.
end while
Output: (B1(λt1, τ

t
1), B2(λt2, τ

t
2), . . . , Bm(λtm, τ

t
m)).

4.1 Algorithmic scheme

To facilitate the later discussion, we present the FastIBP algorithm in pseudocode form in
Algorithm 1 and its application to entropic regularized FS-WBP in Algorithm 2. Note that
(B1(λt1, τ

t
1), . . . , Bm(λtm, τ

t
m)) stand for the primal variables while (λt, τ t) are the dual variables

for the entropic regularized FS-WBP.

The FastIBP algorithm is a deterministic variant of the iterative Bregman projection
(IBP) algorithm [Benamou et al., 2015]. While the IBP algorithm can be interpreted as a
dual coordinate descent, the acceleration achieved by the FastIBP algorithm mostly depends
on the refined characterization of per-iteration progress using the scheme with momentum;
see Step 1-3 and Step 8. To the best of our knowledge, this scheme has been well studied
by [Nesterov, 2012, 2013, Fercoq and Richtárik, 2015, Nesterov and Stich, 2017] yet first
introduced to accelerate the optimal transport algorithms.

Furthermore, Step 4 guarantees that {ϕ(λ̌t, τ̌ t)}t≥0 is monotonically decreasing and Step
7 ensures the sufficient large progress from (λtk, τ

t
k) to (λ̌t+1, τ̌ t+1). Moreover, Step 5a-5b

are performed such that τ tk = τ̀ tk satisfies the bounded difference property: max1≤i≤n(τ tk)i −
min1≤i≤n(τ tk)i ≤ Rτ/2 while Step 6a-6b guarantees that the marginal conditions hold true:
r(Bk(λ

t
k, τ

t
k)) = uk for all k ∈ [m]. We remark that Step 4-7 are specialized to the FS-WBP

in Eq. (2) and have not been appeared in the coordinate descent literature before.
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Algorithm 2: Finding Wasserstein barycenter by the FastIBP algorithm

Input: η = ε/(4 log(n)) and ε̄ = ε/(4 max1≤k≤m ‖Ck‖∞).
Step 1: Compute (ũ1, . . . , ũm) = (1− ε̄/4)(u1, . . . , um) + (ε̄/4n)(1n, . . . ,1n).
Step 2: Compute (X̃1, X̃2, . . . , X̃m) = FastIBP({Ck, ũk}k∈[m], ε̄/2).

Step 3: Round (X̃1, X̃2, . . . , X̃m) to (X̂1, X̂2, . . . , X̂m) using Kroshnin et al. [2019,
Algorithm 4] such that (X̂1, X̂2, . . . , X̂m) is feasible to the FS-WBP in Eq. (2).
Step 4: Compute û =

∑m
k=1 ωkX̂

>
k 1n

Output: û.

The optimality conditions of primal entropic regularized WBP in Eq. (3) and dual entropic
regularized WBP in Eq. (4) are

0n = r(Bk(λk, τk))− uk, for all k ∈ [m],
0n = c(Bk(λk, τk))−

∑m
i=1 ωic(Bi(λi, τi)), for all k ∈ [m],

0n =
∑m

k=1 ωkτk.

Since the FastIBP algorithm guarantees that
∑m

k=1 ωkτ
t
k = 0n and r(Bk(λ

t
k, τ

t
k)) = uk for

all k ∈ [m], we can solve simultaneously primal and dual entropic regularized FS-WBP with
an adaptive stopping criterion which does not require to calculate any objective value. The
criterion depends on the following quantity to measure the residue at each iteration:

Et :=
m∑
k=1

ωk‖c(Bk(λtk, τ tk))−
m∑
i=1

ωic(Bi(λ
t
i, τ

t
i ))‖1. (14)

Remark 4.1. We provide some comments on the FastIBP algorithm. First, each iteration
updates O(mn2) entries which is similar to the IBP algorithm. Updating λ̃ and λ̌ can be
efficiently implemented in distributed manner and each of m machine updates O(n2) entries at
each iteration. Second, the computation of 4m marginals can be performed using implementation
tricks. Indeed, this can be done effectively by using r(e−η

−1Ck) and c(e−η
−1Ck) for all k ∈ [m],

which are computed and stored at the beginning of the algorithm.

4.2 Convergence analysis

We present several technical lemmas which are important to analyzing the FastIBP algorithm.
The first lemma provides the inductive formula and the upper bound for θt.

Lemma 4.2. Let {θt}t≥0 be the iterates generated by the FastIBP algorithm. Then we have
0 < θt ≤ 2/(t+ 2) and θ−2

t = (1− θt+1)θ−2
t+1 for all t ≥ 0.

Proof. By the definition of θt, we have(
θt+1

θt

)2

=
1

4

(√
θ2
t + 4− θt

)2

= 1 +
θt
2

(
θt −

√
θ2
t + 4

)
= 1− θt+1,

which implies the desired inductive formula and θt > 0 for all t ≥ 0. Then we proceed to prove
that 0 < θt ≤ 2/(t+ 2) for all t ≥ 0 using the induction. Indeed, the claim trivially holds when
t = 0 as θ0 = 1. Assume that the hypothesis holds for t ≤ t0, i.e., θt0 ≤ 2/(t0 + 2), we have

θt0+1 =
2

1 +
√

1 + 4
θ2t0

≤ 2

t0 + 3
.
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This completes the proof of the lemma. �

The second lemma shows that all the iterates generated by the FastIBP algorithm are
feasible to the dual entropic regularized FS-WBP for all t ≥ 1.

Lemma 4.3. Let {(λ̌t, τ̌ t)}t≥0, {(λ̃t, τ̃ t)}t≥0, {(λ̄t, τ̄ t)}t≥0, {(λ̂t, τ̂ t)}t≥0, {(λ́t, τ́ t)}t≥0, and
{(λt, τ t)}t≥0 be the iterates generated by the FastIBP algorithm. Then, we have

m∑
k=1

ωkτ̌
t
k =

m∑
k=1

ωkτ̃
t
k =

m∑
k=1

ωkτ̄
t
k =

m∑
k=1

ωkτ̂
t
k =

m∑
k=1

ωkτ́
t
k =

m∑
k=1

ωkτ̀
t
k =

m∑
k=1

ωkτ
t
k = 0n for all t ≥ 0.

Proof. We first verify Lemma 4.3 when t = 0. Indeed,

m∑
k=1

ωkτ̌
0
k =

m∑
k=1

ωkτ̃
0
k = 0n.

By the definition, τ̄0 is a convex combination of τ̌0 and τ̃0 and τ̂0 is a linear combination of
τ̄0, τ̃1 and τ̃0. Thus, we have

m∑
k=1

ωkτ̄
0
k =

m∑
k=1

ωkτ̂
0
k = 0n.

This also implies that
∑m

k=1 ωkτ́
0
k = 0n. Using the update formula for τ̀0, τ0 and τ̌1, we have

m∑
k=1

ωkτ̀
0
k =

m∑
k=1

ωkτ
0
k =

m∑
k=1

ωkτ̌
1
k = 0n.

Besides that, the update formula for τ̃1 implies
∑m

k=1 ωkτ̃
1
k = 0n. Repeating this argument,

we obtain the desired equality in the conclusion of Lemma 4.3 for all t ≥ 0. �

The third lemma shows that the iterates {τ t}t≥0 generated by the FastIBP algorithm
satisfies the bounded difference property: max1≤i≤n(τ tk)i −min1≤i≤n(τ tk)i ≤ Rτ/2.

Lemma 4.4. Let {(λt, τ t)}t≥0 be the iterates generated by the FastIBP algorithm. Then the
following statement holds true:

max
1≤i≤n

(τ tk)i − min
1≤i≤n

(τ tk)i ≤ Rτ/2,

where Rτ > 0 is defined in Lemma 2.1.

Proof. We observe that τ tk = τ̀ tk for all k ∈ [m]. By the update formula for τ̀ tk, we have

τ̀ tk = τ́ tk+

m∑
i=1

ωi log(ci)−log(ck) =

m∑
i=1

ωi log(e−η
−1Cidiag(eλ́

t
i)1n)−log(e−η

−1Ckdiag(eλ́
t
k)1n).

After the simple calculation, we have

−η−1‖Ck‖∞ + 1>n e
λ́tk ≤ log(e−η

−1Ckdiag(eλ́
t
k)1n)]j ≤ 1>n e

λ́tk .
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Therefore, the following inequality holds true for all k ∈ [m],

max
1≤i≤n

(τ tk)i − min
1≤i≤n

(τ tk)i ≤ η−1‖Ck‖∞ + η−1

(
m∑
i=1

ωi‖Ci‖∞

)
= 2η−1( max

1≤k≤m
‖Ck‖∞).

This together with the definition of Rτ yields the desired inequality. �

The final lemma presents a key descent inequality for the FastIBP algorithm.

Lemma 4.5. Let {(λ̌t, τ̌ t)}t≥0 be the iterates generated by the FastIBP algorithm and let
(λ?, τ?) be an optimal solution in Lemma 2.1. Then the following statement holds true:

ϕ(λ̌t+1, τ̌ t+1)−(1−θt)ϕ(λ̌t, τ̌ t)−θtϕ(λ?, τ?) ≤ 2θ2
t

(
m∑
k=1

ωk

(∥∥∥∥(λ?k − λ̃tkτ?k − τ̃ tk

)∥∥∥∥2

−
∥∥∥∥(λ?k − λ̃t+1

k

τ?k − τ̃
t+1
k

)∥∥∥∥2
))

.

Proof. Using Lemma 2.4 with (λ′, τ ′) = (λ̂t+1, τ̂ t+1) and (λ, τ) = (λ̄t, τ̄ t), we have

ϕ(λ̂t+1, τ̂ t+1) ≤ ϕ(λ̄t, τ̄ t) + θt

(
λ̃t+1 − λ̃t
τ̃ t+1 − τ̃ t

)>
∇ϕ(λ̄t, τ̄ t) + 2θ2

t

(
m∑
k=1

ωk

∥∥∥∥(λ̃t+1
k − λ̃tk
τ̃ t+1
k − τ̃ tk

)∥∥∥∥2
)
.

After some simple calculations, we find that

ϕ(λ̄t, τ̄ t) = (1− θt)ϕ(λ̄t, τ̄ t) + θtϕ(λ̄t, τ̄ t),(
λ̃t+1 − λ̃t
τ̃ t+1 − τ̃ t

)>
∇ϕ(λ̄t, τ̄ t) = −

(
λ̃t − λ̄t
τ̃ t − τ̄ t

)>
∇ϕ(λ̄t, τ̄ t) +

(
λ̃t+1 − λ̄t
τ̃ t+1 − τ̄ t

)>
∇ϕ(λ̄t, τ̄ t).

Putting these pieces together yields that

ϕ(λ̂t+1, τ̂ t+1) ≤ (1− θt)ϕ(λ̄t, τ̄ t)− θt
(
λ̃t − λ̄t
τ̃ t − τ̄ t

)>
∇ϕ(λ̄t, τ̄ t)︸ ︷︷ ︸

I

(15)

+θt

ϕ(λ̄t, τ̄ t) +

(
λ̃t+1 − λ̄t
τ̃ t+1 − τ̄ t

)>
∇ϕ(λ̄t, τ̄ t) + 2θt

(
m∑
k=1

ωk

∥∥∥∥(λ̃t+1 − λ̃t
τ̃ t+1 − τ̃ t

)∥∥∥∥2
)

︸ ︷︷ ︸
II

 .

For the term I in equation (15), we derive from the definition of (λ̄t, τ̄ t) that

−θt
(
λ̃t − λ̄t
τ̃ t − τ̄ t

)
= θt

(
λ̄t

τ̄ t

)
+ (1− θt)

(
λ̌t

τ̌ t

)
−
(
λ̄t

τ̄ t

)
= (1− θt)

(
λ̌t − λ̄t
τ̌ t − τ̄ t

)
.

Using this equality and the convexity of ϕ, we have

I = (1− θt)

(
ϕ(λ̄t, τ̄ t) +

(
λ̌t − λ̄t
τ̌ t − τ̄ t

)>
∇ϕ(λ̄t, τ̄ t)

)
≤ (1− θt)ϕ(λ̌t, τ̌ t). (16)
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For the term II in equation (15), the definition of (λ̃t+1, τ̃ t+1) implies that

(
λ− λ̃t+1

τ − τ̃ t+1

)>

∇ϕ(λ̄t, τ̄ t) + 4θt



ω1(λ̃t+1
1 − λ̃t1)

...

ωm(λ̃t+1
m − λ̃tm)

ω1(τ̃ t+1
1 − τ̃ t1)

...
ωm(τ̃ t+1

m − τ̃ tm)




≥ 0, for all (λ, τ) ∈ Rmn × P.

Letting (λ, τ) = (λ?, τ?) and rearranging the resulting inequality yields that(
λ̃t+1 − λ̄t
τ̃ t+1 − τ̄ t

)>
∇ϕ(λ̄t, τ̄ t) + 2θt

(
m∑
k=1

ωk

∥∥∥∥(λ̃t+1
k − λ̃tk
τ̃ t+1
k − τ̃ tk

)∥∥∥∥2
)

≤
(
λ? − λ̄t
τ? − τ̄ t

)>
∇ϕ(λ̄t, τ̄ t) + 2θt

(
m∑
k=1

ωk

(∥∥∥∥(λ?k − λ̃tkτ?k − τ̃ tk

)∥∥∥∥2

−
∥∥∥∥(λ?k − λ̃t+1

k

τ?k − τ̃
t+1
k

)∥∥∥∥2
))

.

Using the convexity of ϕ again, we have(
λ? − λ̄t
τ? − τ̄ t

)>
∇ϕ(λ̄t, τ̄ t) ≤ ϕ(λ?, τ?)− ϕ(λ̄t, τ̄ t).

Putting these pieces together yields that

I ≤ ϕ(λ?, τ?) + 2θt

(
m∑
k=1

ωk

(∥∥∥∥(λ?k − λ̃tkτ?k − τ̃ tk

)∥∥∥∥2

−
∥∥∥∥(λ?k − λ̃t+1

k

τ?k − τ̃
t+1
k

)∥∥∥∥2
))

. (17)

Plugging Eq. (16) and Eq. (17) into Eq. (15) yields that

ϕ(λ̂t+1, τ̂ t+1) ≤ (1−θt)ϕ(λ̌t, τ̌ t)+θtϕ(λ?, τ?)+2θ2
t

(
m∑
k=1

ωk

(∥∥∥∥(λ?k − λ̃tkτ?k − τ̃ tk

)∥∥∥∥2

−
∥∥∥∥(λ?k − λ̃t+1

k

τ?k − τ̃
t+1
k

)∥∥∥∥2
))

.

Since (λ̌t+1, τ̌ t+1) is obtained by an exact coordinate update from (λt, τ t), we have ϕ(λt, τ t) ≥
ϕ(λ̌t+1, τ̌ t+1). Using the similar argument, we have ϕ(λ́t, τ́ t) ≥ ϕ(λ̀t, τ̀ t) ≥ ϕ(λt, τ t). By the
definition of (λ́t, τ́ t), we have ϕ(λ̂t, τ̂ t) ≥ ϕ(λ́t, τ́ t). Putting these pieces together yields the
desired inequality. �

4.3 Main result

We present an upper bound for the iteration numbers required by the FastIBP algorithm.

Theorem 4.6. Let {(λt, τ t)}t≥0 be the iterates generated by the FastIBP algorithm. Then
the number of iterations required to reach the stopping criterion Et ≤ ε satisfies

t ≤ 1 + 10

(
n(R2

λ +R2
τ )

ε2

)1/3

,

where Rλ, Rτ > 0 are defined in Lemma 2.1.
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Proof. First, let δt = ϕ(λ̌t, τ̌ t)− ϕ(λ?, τ?), we show that

δt ≤
8n(R2

λ +R2
τ )

(t+ 1)2
. (18)

Indeed, by Lemma 4.2 and 4.5, we have(
1− θt+1

θ2
t+1

)
δt+1 −

(
1− θt
θ2
t

)
δt ≤ 2

(
m∑
k=1

ωk

(∥∥∥∥(λ?k − λ̃tkτ?k − τ̃ tk

)∥∥∥∥2

−
∥∥∥∥(λ?k − λ̃t+1

k

τ?k − τ̃
t+1
k

)∥∥∥∥2
))

.

By unrolling the recurrence and using θ0 = 1 and λ̃0 = τ̃0 = 0mn, we have(
1− θt
θ2
t

)
δt + 2

(
m∑
k=1

ωk

∥∥∥∥(λ?k − λ̃tkτ?k − τ̃ tk

)∥∥∥∥2
)
≤

(
1− θ0

θ2
0

)
δ0 + 2

(
m∑
k=1

ωk

∥∥∥∥(λ?k − λ̃0
k

τ?k − τ̃0
k

)∥∥∥∥2
)

≤ 2

(
m∑
k=1

ωk

∥∥∥∥(λ?kτ?k
)∥∥∥∥2

)
Corollary 2.3
≤ 2n(R2

λ +R2
τ ).

For t ≥ 1, Lemma 4.2 implies that θ−2
t−1 = (1− θt)θ−2

t . Therefore, we conclude that

δt ≤ 2θ2
t−1n(R2

λ +R2
τ ).

This together with the fact that 0 < θt−1 ≤ 2/(t+ 1) yields the desired inequality.
Furthermore, we show that

δt − δt+1 ≥
E2
t

11
. (19)

Indeed, by the definition of ∆t, we have

δt − δt+1 = ϕ(λ̌t, τ̌ t)− ϕ(λ̌t+1, τ̌ t+1) ≥ ϕ(λt, τ t)− ϕ(λ̌t+1, τ̌ t+1).

By the definition of ϕ and the update formula of (λ̌t+1, τ̌ t+1), we have

ϕ(λt, τ t)− ϕ(λ̌t+1, τ̌ t+1) =
m∑
k=1

ωk(1
>
nBk(λ

t
k, τ

t
k)1n − 1>nBk(λ̌

t+1
k , τ̌ t+1

k )1n)

= 1>n

(
m∑
k=1

ωkc(Bk(λ
t
k, τ

t
k))− e

∑m
k=1 ωk log(c(Bk(λtk,τ

t
k)))

)
.

Since r(Bk(λ
t
k, τ

t
k)) = uk ∈ ∆n for all k ∈ [m], we have 1>n c(Bk(λ

t
k, τ

t
k)) = 1. By applying the

arguments in Kroshnin et al. [2019, Lemma 6], we have

ϕ(λt, τ t)− ϕ(λ̌t+1, τ̌ t+1) ≥ 1

11

m∑
k=1

ωk‖c(Bk(λtk, τ tk))−
m∑
i=1

ωic(Bi(λ
t
i, τ

t
i ))‖21.

Using the Cauchy-Schwarz inequality together with
∑m

k=1 ωk = 1, we have

E2
t ≤

m∑
k=1

ωk‖c(Bk(λtk, τ tk))−
m∑
i=1

ωic(Bi(λi, τi))‖21.

Putting these pieces together yields the desired inequality.
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Finally, we derive from Eq. (18) and (19) and the non-negativeness of δt that

+∞∑
i=t

E2
i ≤ 11

(
+∞∑
i=t

(δi − δi+1)

)
≤ 11δt ≤

88n(R2
λ +R2

τ )

(t+ 1)2

Let T > 0 satisfy ET ≤ ε, we have Et > ε for all t ∈ [T ]. Without loss of generality, we assume
T is even. Then the following statement holds true:

ε2 ≤
704n(R2

λ +R2
τ )

T 3
.

Rearranging the above inequality yields the desired inequality. �

Equipped with the result of Theorem 4.6, we are ready to present the complexity bound of
Algorithm 2 for approximating the FS-WBP in Eq. (2).

Theorem 4.7. The FastIBP algorithm for approximately solving the FS-WBP in Eq. (2)
(Algorithm 2) returns an ε-approximate barycenter û ∈ Rn within

O

mn7/3

(
(max1≤k≤m ‖Ck‖∞)

√
log(n)

ε

)4/3


arithmetic operations.

Proof. Consider the iterate (X̃1, X̃2, . . . , X̃m) be generated by the FastIBP algorithm (cf.
Algorithm 1), the rounding scheme (cf. Kroshnin et al. [2019, Algorithm 4]) returns the feasible
solution (X̂1, X̂2, . . . , X̂m) to the FS-WBP in Eq. (2) and c(X̂k) are the same for all k ∈ [m].

To show that û =
∑m

k=1 ωkc(X̂k) is an ε-approximate barycenter (cf. Definition 2.2), it
suffices to show that

m∑
k=1

ωk〈Ck, X̂k〉 ≤
m∑
k=1

ωk〈Ck, X?
k〉+ ε, (20)

where (X?
1 , X

?
2 , . . . , X

?
m) is a set of optimal transportation plan between m measures {uk}k∈[m]

and the barycenter of the FS-WBP.
First, we derive from the scheme of Kroshnin et al. [2019, Algorithm 4] that the following

inequality holds for all k ∈ [m],

‖X̂k − X̃k‖1 ≤ ‖c(X̃k)−
m∑
i=1

ωic(X̃i)‖1.

This together with the Hölder’s inequality implies that

m∑
k=1

ωk〈Ck, X̂k − X̃k〉 ≤
(

max
1≤k≤m

‖Ck‖∞
)( m∑

k=1

ωk‖c(X̃k)−
m∑
i=1

ωic(X̃i)‖1

)
. (21)

Furthermore, we have

m∑
k=1

ωk〈Ck, X̃k −X?
k〉 =

m∑
k=1

ωk(〈Ck, X̃k〉 − ηH(X̃k))−
m∑
k=1

ωk(〈Ck, X?
k〉 − ηH(X?

k))

+

m∑
k=1

ωkηH(X̃k)−
m∑
k=1

ωkηH(X?
k).
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Since 0 ≤ H(X) ≤ 2 log(n) for any X ∈ Rn×n+ satisfying that ‖X‖1 = 1 [Cover and Thomas,
2012] and

∑m
k=1 ωk = 1, we have

m∑
k=1

ωk〈Ck, X̃k −X?
k〉 ≤ 2η log(n) +

m∑
k=1

ωk(〈Ck, X̃k〉 − ηH(X̃k))−
m∑
k=1

ωk(〈Ck, X?
k〉 − ηH(X?

k)).

Let (Xη
1 , X

η
2 , . . . , X

η
m) be a set of optimal transportation plans to the entropic regularized

FS-WBP in Eq. (3), we have

m∑
k=1

ωk(〈Ck, Xη
k 〉 − ηH(Xη

k )) ≤
m∑
k=1

ωk(〈Ck, X?
k〉 − ηH(X?

k)).

By the optimality of (Xη
1 , X

η
2 , . . . , X

η
m), we have

m∑
k=1

ωk(〈Ck, Xη
k 〉 − ηH(Xη

k )) = −η
(

min
λ∈Rmn,τ∈P

ϕ(λ, τ)

)
≥ −ηϕ(λt, τ t).

Since (X̃1, X̃2, . . . , X̃m) is generated by the FastIBP algorithm, we have X̃k = Bk(λ
t
k, τ

t
k) for

all k ∈ [m] where (λt, τ t) are the dual iterates. Then

m∑
k=1

ωk(〈Ck, X̃k〉 − ηH(X̃k)) =
m∑
k=1

ωk(〈Ck, Bk(λtk, τ tk)〉 − ηH(Bk(λ
t
k, τ

t
k)))

= −η

(
m∑
k=1

ωk(1
>
nBk(λ

t
k, τ

t
k)1n − (λtk)

>uk)

)
+ η

m∑
k=1

ωk(τ
t
k)
>c(Bk(λ

t
k, τ

t
k))

= −ηϕ(λt, τ t) + η

(
m∑
k=1

ωk(τ
t
k)
>

(
c(Bk(λ

t
k, τ

t
k))−

m∑
i=1

ωic(Bi(λ
t
i, τ

t
i ))

))
.

Putting these pieces together yields that

m∑
k=1

ωk〈Ck, X̃k −X?
k〉 ≤ 2η log(n) + η

(
m∑
k=1

ωk(τ
t
k)
>

(
c(Bk(λ

t
k, τ

t
k))−

m∑
i=1

ωic(Bi(λ
t
i, τ

t
i ))

))
.

Since 1>n c(Bk(λ
t
k, τ

t
k)) = 1 for all k ∈ [m], we have(

m∑
k=1

ωk(τ
t
k)
>

(
c(Bk(λ

t
k, τ

t
k))−

m∑
i=1

ωic(Bi(λ
t
i, τ

t
i ))

))

=

(
m∑
k=1

ωk

(
τ tk −

max1≤i≤n(τ tk)i + min1≤i≤n(τ tk)i
2

1n

)>(
c(Bk(λ

t
k, τ

t
k))−

m∑
i=1

ωic(Bi(λ
t
i, τ

t
i ))

))

≤
∥∥∥∥τ tk − max1≤i≤n(τ tk)i + min1≤i≤n(τ tk)i

2
1n

∥∥∥∥
∞

(
m∑
k=1

ωk‖c(X̃k)−
m∑
i=1

ωic(X̃i)‖1

)
.

Using Lemma 4.4, we have∥∥∥∥τ tk − max1≤i≤n(τ tk)i + min1≤i≤n(τ tk)i
2

1n

∥∥∥∥
∞
≤ Rτ

2
.
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Putting these pieces together yields that

m∑
k=1

ωk〈Ck, X̃k −X?
k〉 ≤ 2η log(n) +

ηRτ
2

(
m∑
k=1

ωk‖c(X̃k)−
m∑
i=1

ωic(X̃i)‖1

)
. (22)

Recall that Et =
∑m

k=1 ωk‖c(X̃k)−
∑m

i=1 ωic(X̃i)‖1 and Rτ = 4η−1(max1≤k≤m ‖Ck‖∞). Then
Eq. (21) and Eq. (22) together imply that

m∑
k=1

ωk〈Ck, X̂k −X?
k〉 ≤ 2η log(n) + 3

(
max

1≤k≤m
‖Ck‖∞

)
Et.

This together with Et ≤ ε̄/2 and the choice of η and ε̄ implies Eq. (20) as desired.

Complexity bound estimation. We first bound the number of iterations required by the
FastIBP algorithm (cf. Algorithm 1) to reach Et ≤ ε̄/2. Indeed, Theorem 4.6 implies that

t ≤ 1 + 20

(
n(R2

λ +R2
τ )

ε̄2

)1/3

≤ 20 3
√
n

(
Rλ +Rτ

ε̄

)2/3

.

For the simplicity, we let C̄ = max1≤k≤m ‖Ck‖∞. Using the definition of Rλ and Rτ in
Lemma 2.1, the construction of {ũk}k∈[m] and the choice of η and ε̄, we have

t ≤ 1 + 20 3
√
n

(
4C̄

ε

(
36 log(n)C̄

ε
+ log(n)− log

(
16nC̄

ε

)))2/3

= O

 3
√
n

(
C̄
√

log(n)

ε

)4/3
 .

Recall that each iteration of the FastIBP algorithm requires O(mn2) arithmetic operations,
the total arithmetic operations required by the FastIBP algorithm as the subroutine in
Algorithm 2 is bounded by

O

mn7/3

(
C̄
√

log(n)

ε

)4/3
 .

Computing a collection of vectors {ũk}k∈[m] needs O(mn) arithmetic operations while the
rounding scheme in Kroshnin et al. [2019, Algorithm 4] requires O(mn2) arithmetic operations.
Putting these pieces together yields that the desired complexity bound of Algorithm 2. �

Remark 4.8. First, we notice that (X̂1, X̂2, . . . , X̂m) are one set of approximate optimal trans-
portation plans between m measures {uk}k∈[m] and an ε-approximate barycenter û. These ma-
trices are equivalent to those constructed by using [Altschuler et al., 2017, Algorithm 2]. We also
remark that the approximate barycenter û can be constructed by only using (X̃1, X̃2, . . . , X̃m);
see [Kroshnin et al., 2019, Section 2.2] for the details.
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5 Experiments

In this section, we conduct extensive numerical experiments to evaluate the FastIBP algorithm
for computing the fixed-support Wasserstein barycenters, i.e., solving Eq. (2). In all our
experiments, we consider the Wasserstein distance with `2-norm, i.e., second order Wasserstein
distance. We also compare our FastIBP algorithm with the commercial software Gurobi
and the existing state-of-the-art algorithms, including the iterative Bregman projection (IBP)
algorithm [Benamou et al., 2015] and the modified Bregman ADMM (BADMM) [Ye et al.,
2017]. All the experiments are run in MATLAB R2016a on a MacBook Pro with a Intel i5
2.6GHz Intel Core i5 (this processor has 2 cores and 4 threads) and 16GB memory, equipped
with Mac OS High Sierra 10.13.6.

5.1 Implementation details

For the FastIBP algorithm, the regularization parameter η is chosen from {0.01, 0.001} in
our experiments. We follow Benamou et al. [2015, Remark 3] to implement the algorithm and
terminate it when∑m

k=1 ωk‖c(Bk(λtk, τ tk))−
∑m

i=1 ωic(Bi(λ
t
i, τ

t
i ))‖

1 +
∑m

k=1 ωk‖c(Bk(λtk, τ tk))‖+ ‖
∑m

i=1 ωic(Bi(λ
t
i, τ

t
i ))‖

≤ Tolfibp,∑m
k=1 ωk‖r(Bk(λtk, τ tk))− uk‖

1 +
∑m

k=1 ωk‖r(Bk(λtk, τ tk))‖+
∑m

k=1 ωk‖uk‖
≤ Tolfibp,

‖
∑m

i=1 ωic(Bi(λ
t
i, τ

t
i ))−

∑m
i=1 ωic(Bi(λ

t−1
i , τ t−1

i ))‖
1 + ‖

∑m
i=1 ωic(Bi(λ

t
i, τ

t
i ))‖+ ‖

∑m
i=1 ωic(Bi(λ

t−1
i , τ t−1

i ))‖
≤ Tolfibp,∑m

k=1 ωk‖Bk(λtk, τ tk)−Bk(λ
t−1
k , τ t−1

k )‖F
1 +

∑m
k=1 ωk‖Bk(λtk, τ tk)‖F +

∑m
k=1 ωk‖Bk(λ

t−1
k , τ t−1

k )‖F
≤ Tolfibp,∑m

k=1 ωk‖λtk − λ
t−1
k ‖

1 +
∑m

k=1 ωk‖λtk‖+
∑m

k=1 ωk‖λ
t−1
k ‖

≤ Tolfibp,∑m
k=1 ωk‖τ tk − τ

t−1
k ‖

1 +
∑m

k=1 ωk‖τ tk‖+
∑m

k=1 ωk‖τ
t−1
k ‖

≤ Tolfibp.

These inequalities guarantee that (i) the infeasibility violations for marginal constraints, (ii)
the iterative gap between approximate barycenters, and (iii) the iterative gap between dual
variables are relatively small. Computing all the above residuals is expensive. Thus, in
our implementations, we only compute them and check the termination criteria at every 20
iterations when η = 0.01 and every 200 iteration when η = 0.001. We set Tolfibp = 10−6 and
MaxIterfibp = 10000 on synthetic data and Tolfibp = 10−10 on MNIST images.

For IBP and BADMM, we use the Matlab code1 implemented by Ye et al. [2017] and
terminate them with the refined stopping criterion provided by Yang et al. [2018]. The
regularization parameter η for the IBP algorithm is still chosen from {0.01, 0.001}. For
synthetic data, we set Tolbadmm = 10−5 and Tolibp = 10−6 with MaxIterbadmm = 5000 and
MaxIteribp = 10000. For MNIST images, we set Tolibp = 10−10.

For the linear programming algorithm, we apply Gurobi 9.0.2 (Gurobi Optimization, 2019)
(with an academic license) to solve the FS-WBP in Eq. (2). Since Gurobi can provide high
quality solutions when the problem of medium size, we use the solution obtained by Gurobi as

1Available in https://github.com/bobye/WBC Matlab
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a benchmark to evaluate the qualities of solution obtained by different algorithms on synthetic
data. In our experiments, we force Gurobi to only run the dual simplex algorithm and use
other parameters in the default settings.

For the evaluation metrics, “normalized obj” stands for the normalized objective value
which is defined by

normalized obj :=
|
∑m

k=1 ωk〈Ck, X̂k〉 −
∑m

k=1 ωk〈Ck, X
g
k〉|

|
∑m

k=1 ωk〈Ck, X
g
k〉|

where (X̂1, . . . , X̂m) is the solution obtained by each algorithm and (Xg
1 , . . . , X

g
m) denotes the

solution obtained by Gurobi. Additionally, “feasibility” denotes the the deviation of the
terminating solution from the feasible set2; see Yang et al. [2018, Section 5.1]. Furthermore,
“iteration” denotes the number of iterations. Finally, “time (in seconds)” denotes the
computational time.

In what follows, we present our experimental results. In Section 5.2, we evaluate all the
candidate algorithms on synthetic data and compare their computational performance in
terms of accuracy and speed. In Section 5.3, we compare our algorithm with IBP on the
MNIST dataset to visualize the quality of approximate barycenters obtained by each algorithm.
For the simplicity of the presentation, in our figures “g” stands for Gurobi; “b” stands for
BADMM; “i1” and “i2” stand for the IBP algorithm with η = 0.01 and η = 0.001; “f1” and
“f2” stand for the FastIBP algorithm with η = 0.01 and η = 0.001.

5.2 Experiments on synthetic data

In this section, we generate a set of discrete probability distributions {µk}mk=1 with µk =
{(uki ,xi) ∈ R+ × Rd | i ∈ [n]} and

∑n
i=1 u

k
i = 1. The fixed-support Wasserstein barycenter

µ̂ = {(ûi,xi) ∈ R+ × Rd | i ∈ [n]} where (x1,x2, . . . ,xn) are known and shared with {µk}mk=1.
In our experiment, we set d = 3 and choose different values of (m,n). Then, given each tuple
(m,n), we randomly generate a trial as follows.

First, we generate the support points (xk1,x
k
2, . . . ,x

k
n) whose entries are drawn from a

Gaussian mixture distribution via the Matlab commands provided by Yang et al. [2018]:

gm num = 5; gm mean = [-20; -10; 0; 10; 20];
sigma = zeros(1, 1, gm num); sigma(1, 1, :) = 5*ones(gm num, 1);
gm weights = rand(gm num, 1); gm weights = gm weights/sum(gm weights);
distrib = gmdistribution(gm mean, sigma, gm weights);

For each k ∈ [m], we generate the weight vector (uk1, u
k
2, . . . , u

k
n) whose entries are drawn

from the uniform distribution on the interval (0, 1), and normalize it such that
∑n

i=1 u
k
i = 1.

After generating all {µk}mk=1, we use the k-means3 method to choose n points from {xki | i ∈
[n], k ∈ [m]} to be the support points of the barycenter. Finally, we generate the weight vector
(ω1, ω2, . . . , ωm) whose entries are drawn from the uniform distribution on the interval (0, 1),
and normalize it such that

∑m
k=1 ωk = 1.

We present some representative numerical results in Figure 2. Given n = 100, we evaluate
the performance of FastIBP, IBP, BADMM algorithms, and commercial software Gurobi by

2Since we do not put the iterative gap between dual variables in “feasibility” and the FS-WBP is relatively
easier than general WBP, our results for BADMM and IBP are consistently smaller than that presented by Ye
et al. [2017], Yang et al. [2018], Ge et al. [2019].

3In our experiments, we call the Matlab function kmeans, which is built in machine learning toolbox.
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Figure 2: The left and right figures present the average normalized objective value and
computational time (in seconds) of all the algorithms from 10 independent trials.

varying m ∈ {20, 50, 100, 200}. As indicated in Figure 2, the FastIBP algorithm performs
better than BADMM and IBP algorithms in the sense that it consistently returns an objective
value closer to that of Gurobi in less computational time. More specifically, IBP achieves high
feasibility accuracy and converges very fast when η = 0.01, but suffers from a crude solution
with poor objective value; BADMM takes much more time with unsatisfactory objective value,
and is not provably convergent in theory; Gurobi is highly optimized and can solve the problem
of relatively small size very efficiently. However, when the problem size becomes larger, Gurobi
would take much more time. As an example, for the case where (m,n) = (200, 100), we see that
Gurobi is about 10 times slower than the FastIBP algorithm with η = 0.001 while keeping
relatively small normalized objective value. To further facilitate the readers, we present the
averaged results from 10 independent trials with FastIBP, IBP, BADMM algorithms, and
commercial software Gurobi in Table 1.

To further compare the performances of Gurobi and the FastIBP algorithm, we conduct one
more experiment with n = 50 and the varying number of marginals m ∈ {200, 500, 1000, 2000}.
We keep Tolfibp = 10−6 but without setting the maximum iteration number. Figure 3 shows
the running time taken by the two algorithms across a wide range of m and each value is an
average over 5 independent trials. From the results, we observe that the FastIBP algorithm
is competitive with Gurobi in terms of objective value and feasibility violation. For the
computational time, the FastIBP algorithm increases linearly with respect to the number of
marginals, while Gurobi increases much more rapidly. Yang et al. [2018], Ge et al. [2019] have
presented similar results for Gurobi before but we hope to remark two main differences: (i)
the feasibility violation in our paper is better; (ii) the computational time in our paper grows
faster. This is because we force Gurobi to run the dual simplex algorithm, which iterates
over the feasible solutions but can be more computationally expensive than the interior-point
algorithm. This also demonstrates that the structure of the FS-WBP is not favorable to
traditional LP algorithms.

5.3 Experiments on MNIST

To better visualize the quality of approximate barycenters obtained by each algorithm, we
follow Cuturi and Doucet [2014] on the MNIST4 dataset [LeCun et al., 1998]. We randomly

4Available in http://yann.lecun.com/exdb/mnist/
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Table 1: Numerical results on synthetic data where each distribution has different dense
weights and share the same support points.

m n g b i1 i2 f1 f2

normalized obj

20 50 - 5.49e-01 1.89e-01 1.75e-01 6.42e-02 1.62e-03
20 100 - 6.51e-01 3.11e-01 3.87e-01 5.20e-02 1.01e-03
20 200 - 7.42e-01 4.73e-01 6.42e-01 5.24e-02 2.18e-03
50 50 - 4.28e-01 1.45e-01 1.39e-01 5.97e-02 2.18e-03
50 100 - 8.12e-01 4.92e-01 5.15e-01 7.00e-02 2.53e-03
50 200 - 6.97e-01 4.76e-01 6.46e-01 6.29e-02 4.06e-03
100 50 - 3.94e-01 1.91e-01 1.21e-01 9.35e-02 2.94e-03
100 100 - 6.70e-01 4.14e-01 5.43e-01 6.87e-02 2.74e-03
100 200 - 8.25e-01 6.23e-01 6.61e-01 6.32e-02 5.82e-03
200 50 - 2.57e-01 8.11e-02 4.48e-02 5.77e-02 2.84e-03
200 100 - 4.21e-01 2.69e-01 3.23e-01 8.02e-02 3.98e-03
200 200 - 7.31e-01 5.51e-01 7.25e-01 5.92e-02 5.40e-03

feasibility

20 50 4.32e-16 4.04e-07 8.79e-07 9.26e-07 7.96e-07 5.54e-07
20 100 6.73e-16 2.01e-07 8.27e-07 7.20e-07 3.04e-07 5.73e-07
20 200 1.05e-15 1.04e-07 6.49e-07 8.06e-07 1.44e-07 5.98e-07
50 50 7.37e-16 6.25e-07 9.63e-07 7.66e-07 2.68e-08 7.63e-07
50 100 1.59e-15 2.19e-07 9.59e-07 3.08e-05 6.91e-08 1.36e-08
50 200 6.58e-07 1.42e-07 8.89e-07 8.43e-07 7.99e-08 3.02e-07
100 50 1.15e-15 7.28e-07 8.94e-07 7.75e-07 3.94e-07 5.89e-07
100 100 7.88e-16 3.81e-07 9.61e-07 8.16e-07 4.51e-09 5.91e-07
100 200 2.37e-15 1.40e-07 9.93e-07 9.83e-07 2.29e-07 3.84e-10
200 50 2.34e-07 5.51e-07 3.91e-07 9.95e-07 2.75e-07 8.39e-07
200 100 1.51e-15 4.97e-07 9.86e-07 9.39e-07 9.91e-09 7.81e-07
200 200 2.41e-15 2.40e-07 9.66e-07 8.83e-06 6.80e-07 5.12e-07

iteration

20 50 3585 5000 240 3200 120 1800
20 100 6572 5000 280 9800 140 1200
20 200 13051 5000 220 6600 120 4400
50 50 11352 5000 580 9800 60 3000
50 100 15567 5000 920 10000 60 600
50 200 59218 5000 460 9000 60 1400
100 50 24415 5000 1160 5000 60 2600
100 100 56266 5000 640 10000 100 1200
100 200 95256 5000 720 6000 80 200
200 50 55953 5000 80 8800 60 4800
200 100 145137 5000 1040 10000 20 2600
200 200 373216 5000 1400 10000 40 400

time (in seconds)

20 50 0.61 15.80 0.27 3.17 0.31 4.05
20 100 2.05 61.76 1.03 36.43 1.03 9.35
20 200 9.05 278.02 3.57 91.07 3.84 159.43
50 50 3.39 39.93 1.50 21.53 0.37 14.17
50 100 7.87 195.55 8.79 92.30 2.07 12.04
50 200 64.19 743.65 18.89 375.97 5.01 113.29
100 50 14.79 73.43 5.54 21.42 0.68 27.44
100 100 49.09 335.90 12.17 172.35 3.96 50.30
100 200 163.47 1410.32 60.01 493.02 13.16 31.46
200 50 62.48 167.54 1.01 77.64 1.37 90.10
200 100 364.77 682.24 43.21 373.95 2.05 201.76
200 200 1217.02 2922.03 211.61 1475.05 12.69 110.50
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Figure 3: Preliminary results with Gurobi and the FastIBP algorithm (η = 0.001).

select 15 images for each digit (1∼9) and resize each image to ζ times of its original size of
28 × 28, where ζ is drawn uniformly at random from [0.5, 2]. We randomly put each resized
image in a larger 56 × 56 blank image and normalize the resulting image so that all pixel
values add up to 1. Each image can be viewed as a discrete distribution supported on grids.
Additionally, we set the weight vector (ω1, ω2, . . . , ωm) such that ωk = 1/m for all k ∈ [m].

We apply the FastIBP algorithm (η = 0.001) to compute the Wasserstein barycenter of
the resulting images for each digit on the MNIST dataset and compare it to IBP (η = 0.001).
We exclude BADMM since Yang et al. [2018, Figure 3] and Ge et al. [2019, Table 1] have
shown that IBP outperforms BADMM on the MNIST dataset. The size of barycenter is set
to 56 × 56. For a fair comparison, we do not implement convolutional technique [Solomon
et al., 2015] and its stabilized version [Schmitzer, 2019, Section 4.1.2], which can be used
to substantially improve IBP with small η. The approximate barycenters obtained by the
FastIBP and IBP algorithms are presented in Table 2. It can be seen that the FastIBP
algorithm provides a slightly “smoother” approximate barycenter than IBP when η = 0.001 is
set for both. This demonstrates the good quality of the solution obtained by our algorithm.

6 Conclusions

In this paper, we study the computational hardness for solving the fixed-support Wasserstein
barycenter problem (FS-WBP) and proves that the FS-WBP in the standard linear program-
ming form is not a minimum-cost flow (MCF) problem when m ≥ 3 and n ≥ 3. Our results
suggest that the direct application of network flow algorithms to the FS-WBP in standard
LP form is inefficient, shedding the light on the practical performance of various existing
algorithms, which are developed based on problem reformulation of the FS-WBP. Moreover,
we propose a deterministic variant of iterative Bregman projection (IBP) algorithm, namely
FastIBP, and prove that the complexity bound is Õ(mn7/3ε−4/3). This bound is better
than the complexity bound of Õ(mn2ε−2) from the IBP algorithm in terms of ε, and that of
Õ(mn5/2ε−1) from other accelerated algorithms in terms of n. Careful experimental results on
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FastIBP (η = 0.001)

100s

200s

400s

800s

IBP (η = 0.001)

100s

200s

400s

800s

Table 2: Approximate barycenters obtained by running the FastIBP algorithm and IBP for
100s, 200s, 400s and 800s.

synthetic and real datasets demonstrate the favorable performance of the FastIBP algorithm
in practice.
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