Nele FamaeyKU Leuven | ku leuven · Department of Mechanical Engineering
Nele Famaey
PhD, MSc
About
117
Publications
13,541
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,464
Citations
Introduction
Publications
Publications (117)
Accurate modeling of cardiovascular tissues is crucial for understanding and predicting their behavior in various physiological and pathological conditions. In this study, we specifically focus on the pulmonary artery in the context of the Ross procedure, using neural networks to discover the most suitable material model. The Ross procedure is a co...
Cardiovascular simulators are used in the preclinical testing phase of medical devices. Their reliability increases the more they resemble clinically relevant scenarios. In this study, a physiologically actuated soft robotic left ventricle (SRLV) embedded in a hybrid (in silico- in vitro) simulator of the cardiovascular system is presented, along w...
Articular cartilage undergoes significant degeneration during osteoarthritis, currently lacking effective treatments. This study explores mechanical influences on cartilage health using a novel finite element-based mechanoregulatory model, predicting combined degenerative and regenerative responses to mechanical loading. Calibrated and validated th...
Simulations of arterial wall mechanics often use image-based data to define the in vivo geometry. This state is not stress-free, and prestressing algorithms are required to ensure mechanical equilibrium given the corresponding in vivo boundary conditions. This study aims to investigate the uniqueness of prestressing algorithms in numerical simulati...
In vivo estimation of material properties of arterial tissue can provide essential insights into the development and progression of cardiovascular diseases. Furthermore, these properties can be used as an input to finite element simulations of potential medical treatments.
This study uses non-invasively measured pressure, diameter and wall thicknes...
While transitioning from the acute to chronic phase, the wall of a dissected aorta often expands in diameter and adaptations in thickness and microstructure take place in the dissected membrane. Including the mechanisms, leading to these changes, in a computational model is expected to improve the accuracy of predictions of the long-term complicati...
Objectives
Rupture and dissection are feared complications of ascending thoracic aortic aneurysms caused by mechanical failure of the wall. The current method of using the aortic diameter to predict the risk of wall failure and to determine the need for surgical resection lacks accuracy. Therefore, this study aims to identify reliable and clinicall...
Biological soft tissues are constantly adapting to their mechanical environment and remodel to restore certain mechanobiological homeostatic conditions. These effects can be modeled using the constrained mixture theory, that assumes degradation of material over time and the gradual replacement of extant material by newly deposited material. While t...
Determining proper material parameters from clinical data remains a large, though unavoidable, challenge in patient-specific computational cardiovascular modeling. In an attempt to couple the clinical and modelling practice, this study investigated whether pulse wave velocity (PWV), a clinical arterial stiffness measure, can guide in determining ap...
Objectives:
Current experimental approaches cannot elucidate the effect of maladaptive changes on the main cartilage constituents during the degeneration process in osteoarthritis (OA). In silico approaches, however, allow creating 'virtual knock-out' cases to elucidate these effects in a constituent-specific manner. We used such an approach to st...
Mechanical characterization of articular cartilage and cell-seeded hydrogel constructs is a challenging task due to the complex biphasic behavior of these materials. Here we describe a step-by-step unconfined compression testing protocol for inverse mechanical characterization of these materials from sample preparation to parameter identification....
Planar biaxial testing is a popular experimental technique for characterizing and comparing biological soft tissues. A correct identification of the different stress states of the tissue sample is therefore essential. However, the difference between the zero-stress reference state and the sample state prior to the loading cycle caused by the mounti...
Secondary mitral regurgitation occurs when a left ventricular problem causes leaking of the mitral valve. The altered left ventricular geometry changes the orientation of the subvalvular apparatus, thereby affecting the mechanical stress on the mitral valve. This in turn leads to active remodeling of the mitral valve, in order to compensate for the...
Collagen fibers and their orientation greatly influence an artery's mechanical characteristics, determining its transversely isotropic behavior. It is generally assumed that these fibers are deposited along a preferred direction to maximize the load bearing capacity of the vessel wall. This implies a large spatial variation in collagen orientation...
The Ross, or pulmonary autograft, procedure presents a fascinating mechanobiological scenario. Due to the common embryological origin of the aortic and pulmonary root, the conotruncus, several authors have hypothesized that a pulmonary autograft has the innate potential to remodel into an aortic phenotype once exposed to systemic conditions. Most o...
Computational investigations of how soft tissues grow and remodel are gaining more and more interest and several growth and remodeling theories have been developed. Roughly, two main groups of theories for soft tissues can be distinguished: kinematic-based growth theory and theories based on constrained mixture theory. Our goal was to apply these t...
Controlled cortical impact (CCI) on porcine brain is often utilized to investigate the pathophysiology and functional outcome of focal traumatic brain injury (TBI), such as cerebral contusion (CC). Using a finite element (FE) model of the porcine brain, the localized brain strain and strain rate resulting from CCI can be computed and compared to th...
Objective
Cerebral contusions (CC) represent a frequent lesion in traumatic brain injury, with potential morbidity from mass effect and tissue loss. Better understanding of the mechanical etiology will help to improve head protection. The goal of this study is to investigate the threshold for mechanical impact parameters to induce CC in an in vivo...
Osteoarthritis is a whole joint disease with cartilage degeneration being an important manifestation. Tissue engineering treatment is a solution for repairing cartilage defects by implantation of chondrocyte-laden hydrogel constructs within the defect. In silico models have recently been introduced to simulate and optimize the design of these const...
Injurious mechanical loading of articular cartilage and associated lesions compromise the mechanical and structural integrity of joints and contribute to the onset and progression of cartilage degeneration leading to osteoarthritis (OA). Despite extensive in vitro and in vivo research, it remains unclear how the changes in cartilage composition and...
The excellent clinical outcome of the Ross procedure and previous histological studies suggest that the pulmonary autograft has the potential to offer young patients a permanent solution to aortic valve disease. We aim to study the early mechanobiological adaptation of the autograft. To this end, we have reviewed relevant existing animal models, in...
Restenosis is one of the main adverse effects of the treatment of atherosclerosis through balloon angioplasty or stenting. During the intervention, the arterial wall is overstretched, causing a cascade of cellular events and subsequent neointima formation. This mechanical stimulus and its mechanobiological effects can be reproduced in biomechanical...
The excellent clinical outcome of the Ross procedure and previous histological studies suggest that the pulmonary autograft has the potential to offer young patients a permanent solution to aortic valve disease. We aim to study the early mechanobiological adaptation of the autograft. To this end, we have reviewed relevant existing animal models, in...
The excellent clinical outcome of the Ross procedure and previous histological studies suggest that the pulmonary autograft has the potential to offer young patients a permanent solution to aortic valve disease. We aim to study the early mechanobiological adaptation of the autograft. To this end, we have reviewed relevant existing animal models, in...
Vascular clamping often causes injury to arterial tissue, leading to a cascade of cellular and extracellular events. A reliable in silico prediction of these processes following vascular injury could help us to increase our understanding thereof, and eventually optimize surgical techniques or drug delivery to minimize the amount of long-term damage...
Bridging veins (BVs) drain the blood from the cerebral cortex into dural sinuses.
BVs have one end attached to the brain and the other to the superior sagittal sinus (SSS), which is attached to the skull. Relative movement between these two structures can cause BV to rupture producing acute subdural haematoma, a head injury with a mortality rate be...
The regional dynamic mechanical properties of mouse, rat, pig, and human brain tissue were compared directly in this first-of-its-kind study. Our results suggest the use of pig or mouse brain tissue as suitable surrogates to characterise human brain tissue. The importance of this work is highlighted by the extensive use of constitutive data from an...
Biomechanical evaluation of personalized external aortic root support (PEARS): case-study.
Traumatic brain injury (TBI) is an important cause of mortality and morbidity worldwide. Finite element models of the human head are used widely to simulate TBI loading scenarios, to improve the understanding of the mechanical pathogenesis of head trauma. The reliability of such computational models depends strongly on the accuracy of the mechanica...
Finite element modeling is often used in biomechanical engineering to evaluate medical devices, treatments and diagnostic tools. Using an adequate material model that describes the mechanical behavior of biological tissues is essential for a reliable outcome of the simulation. Pre-programmed material models for biological tissues are available in m...
Cardiac surgeries may expose pulmonary arterial tissue to systemic conditions, potentially resulting in failure of that tissue. Our goal was to quantitatively assess pulmonary artery adaptation due to changes in mechanical environment. In 17 sheep, we placed a pulmonary autograft in aortic position, with or without macroporous mesh reinforcement. I...
Mechano-biological adaptation of the pulmonary artery exposed to systemic conditions.
Reliable computer models are needed for a better understanding of the physical mechanisms of skull fracture in accidental hits, falls, bicycle - motor vehicle & car accidents and assaults. The performance and biofidelity of these models depend on the correct anatomical representation and material description of these structures. In literature, a st...
To understand traumas to the nervous system, the relation between mechanical load and functional impairment needs to be explained. Cellular-level computational models are being used to capture the mechanism behind mechanically-induced injuries and possibly predict these events. However, uncertainties in the material properties used in computational...
Acute subdural hematoma (ASDH) is one of the most frequent traumatic brain injuries (TBIs) with high mortality rate. Bridging vein (BV) ruptures is a major cause of ASDH. The KTH finite element head model includes bridging veins to predict acute subdural hematoma due to BV rupture. In this model, BVs were positioned according to Oka et al. (1985)....
As degenerative joint diseases such as osteoarthritis (OA) progress, the matrix constituents, particularly collagen fibrils and proteoglycans, become damaged, therefore deteriorating the tissue’s mechanical properties. This study aims to further the understanding of the effect of degradation of the different cartilage constituents on the mechanical...
The constrained mixture theory is an elegant way to incorporate the phenomenon of residual stresses in patient-specific finite element models of arteries. This theory assumes an in vivo reference geometry, obtained from medical imaging, and constituent-specific deposition stretches in the assumed reference state. It allows to model residual stresse...
A correct estimation of the material parameters from a planar biaxial test is crucial since they will affect the outcome of the finite element model in which they are used. In a virtual planar biaxial experiment, a difference can be noticed in the stress calculated from the force measured experimentally at the rakes and the actual stress at the cen...
Objectives
The current study quantified the influence of cartilage defect location on the tibiofemoral load distribution during gait. Furthermore, changes in local mechanical stiffness representative for matrix damage or bone ingrowth were investigated. This may provide insights in the mechanical factors contributing to cartilage degeneration in th...
Effect of cartilage defect location and stiffness on knee kinematics.
(DOCX)
The correlation coefficients between the reference and defect kinematics throughout the stance phase.
(XLSX)
Raw data compartimental load distribution and compressive strains.
Supporting data Fig 3.
(XLSX)
Effect of cartilage defect location and stiffness on resultant compartmental contact force.
Average tibiofemoral contact force for the different cartilage defect locations (Fig 1) throughout the stance phase of gait in the medial and lateral compartment of the tibiofemoral joint. The resultant contact force was scaled to body weight (BW). Bold labe...
The root mean squared difference between the reference and defect kinematics throughout the stance phase.
(XLSX)
Raw data load distribution of defect and surrounding tissue throughout the stance phase of gait.
Supporting data Fig 6. Average contact area [mm2]; Contact pressure [MPa]; Force [BW]; Strain [%].
(XLSX)
Objective: This study aims to characterize the deformations in articular cartilage under compressive loading and link these to changes in the extracellular matrix constituents described by magnetic resonance imaging (MRI) relaxation times in an experimental model mimicking in vivo cartilage-on-cartilage contact.
Design: Quantitative MRI images, T1,...
Finite element models of biomedical applications increasingly use anisotropic hyperelastic material formulations. Appropriate material parameters are essential for a reliable outcome of these simulations, which is why planar biaxial testing of soft biological tissues is gaining importance. However, much is still to be learned regarding the ideal me...
The Ross procedure is a surgical procedure where a diseased aortic valve is replaced by the person's own pulmonary valve. The proximal segment of the pulmonary artery is thereby placed in aortic position and therefore suddenly exposed to a sevenfold increase in blood pressure. Excessive dilatation of this pulmonary autograft is a common complicatio...
Objectives:
The Ross procedure involves replacing a patient's diseased aortic valve with their own pulmonary valve. The most common failure mode is dilatation of the autograft. Various strategies to reinforce the autograft have been proposed. Personalized external aortic root support has been shown to be effective in stabilizing the aortic root in...
Patient-specific biomechanical modelling can improve preoperative surgical planning. This requires patient-specific geometry as well as patient-specific material properties as input. The latter are, however, still quite challenging to estimate in vivo. This study focuses on the estimation of the mechanical properties of the arterial wall. Firstly,...
Finite element (FE) simulations are increasingly valuable in assessing and improving the performance of biomedical devices and procedures. Due to high computational demands such simulations may become difficult or even infeasible, especially when considering nearly incompressible and anisotropic material models prevalent in analyses of soft tissues...
A commonly heard concern in the Ross procedure, where a diseased aortic valve is replaced by the patient's own pulmonary valve, is the possibility of pulmonary autograft dilatation. We performed a biomechanical investigation of the use of a personalized external aortic root support or exostent as a possibility for supporting the autograft.
In ten s...
Wall stress estimation through biomechanical simulations represents a promising tool to support aneurysm risk stratification and has the potential to provide a more individual risk assessment. Accurate computation of the stress field necessitates the use of robust and biofidelic models based on patient-specific information. A multidisciplinary appr...
Objectives:
Wrapping with various materials was an early treatment for aortic aneurysms. Wrapping with low-porosity vascular grafts has been associated with graft migration and vascular erosion. An alternative is to use a macroporous mesh (MPM) made of the same polymer (polyethylene terephalate). We compared the histological outcome 1 year after w...
Objective:
Vaginal childbirth is believed to be a significant risk factor for the development of pelvic floor dysfunction later in life. Previous studies have explored the use of medical imaging and simulations of childbirth to determine the stretch in the levator ani muscle. Bamberg et al, 2012, have recorded MR images of a live childbirth of a 2...
Ascending thoracic aortic aneurysms (ATAAs) are a silent disease, ultimately leading to dissection or rupture of the arterial wall. There is a growing consensus that diameter information is insufficient to assess rupture risk, whereas wall stress and strength provide a more reliable estimate. The latter parameters cannot be measured directly and mu...
Accurate estimation of peak wall stress (PWS) is the crux of biomechanically motivated rupture risk assessment for abdominal aortic aneurysms aimed to improve clinical outcomes. Such assessments often use the finite element (FE) method to obtain PWS, albeit at a high computational cost, motivating simplifications in material or element formulations...
Acute subdural hematoma (ASDH) is a type of intracranial haemorrhage following head impact, with high mortality rates. Bridging vein (BV) rupture is a major cause of ASDH, which is why a biofidelic representation of BVs in finite element (FE) head models is essential for the successful prediction of ASDH. We investigated the mechanical behavior of...
External aortic root support with macroporous mesh compared with low-porosity vascular graft material: a histological study in sheep.
Cardiovascular surgeons increasingly resort to catheter-based diagnostic and therapeutic interventions because of their limited invasiveness. Although, these approaches allow treatment of patients considered unfit for conventional open surgery, exposure to radiation and high procedural complexity could lead to complications. These factors motivated...
Using realistic benchtop models in early stages of device development can reduce time and efforts necessary to move the device to further testing. In this study, we propose several patient specific vascular benchtop models for the development and validation of a robotic catheter for transcatheter aortic valve implantation. The design and manufactur...
Advances in miniaturized surgical instrumentation are key to less demanding and safer medical interventions. In cardiovascular procedures interventionalists turn towards catheter-based interventions, treating patients considered unfit for more invasive approaches. A positive outcome is not guaranteed. The risk for calcium dislodgement, tissue damag...