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Effective conservation planning of globally endangered tigers (Panthera tigris) requires a good under-
standing of their population dynamics. Territoriality, an essential characteristic of many wildlife species,
plays a crucial role in the population dynamics of tigers. However, previous models of tiger population
dynamics have not adequately incorporated territoriality. We therefore developed and implemented a
spatially explicit agent-based model of tiger population dynamics shaped by different territorial behav-
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Carnivore are not imposed but emerge from the tigers’ perception of habitat quality and from their interactions

with each other. Tiger population dynamics is deduced from merging territory dynamics with observed
Population dynamics demographic rates. We apply the model to Nepal's Chitwan National Park, part of a global biodiversity
Territory hotspot and home to a large (~125) population of tigers. Our model matched closely with observed
Tiger patterns of the real tiger population in the park, including reproduction, mortality, dispersal, resource
selection, male and female land tenure, territory size and spatial distribution, and tiger population size
and age structure. The ultimate purpose of the model, which will be presented in follow-up work, is to
explore human-tiger interactions and assess threats to tiger populations across contexts and scales. The
model can thus be used to better inform decision makers on how to conserve tigers under uncertain and

changing future conditions.
© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Panthera tigris

1. Introduction

Tigers (Panthera tigris) are a globally endangered species, with
their remaining populations throughout South Asia threatened pri-
marily by habitat loss, prey depletion, and illegal killing by people
(Dinerstein et al., 2007; The World Bank, 2011). Effective tiger
management and conservation planning requires a good under-
standing of tiger population dynamics (Lindenmayer et al., 1993;
Margules and Pressey, 2000). Territoriality, an essential character-
istic of many wildlife species (Adams, 2001; Burt, 1943), plays a
crucial role in the population dynamics of tigers (Sunquist, 1981).
As demonstrated in various wildlife species, for example, territorial
behavior influences social organization, mating, disease transmis-
sion, demography, and the spatial distribution of individual animals
(Craftetal., 2011; Moorcroft et al., 2006). By exerting a strong effect

* Corresponding author. Tel.: +1 8584140434.
E-mail addresses: nhcarter07@gmail.com (N. Carter), slevin@princeton.edu
(S. Levin), adam@wild-team.org (A. Barlow), volker.grimm@ufz.de (V. Grimm).

http://dx.doi.org/10.1016/j.ecolmodel.2015.06.008

on population regulation (Dhondt et al., 1992; Wang and Grimm,
2007), territoriality likely influences the susceptibility of tigers to
anthropogenic and natural disturbances (Letcher et al., 1998).
Integrating territoriality in computer models of tiger popu-
lations can give us tools to evaluate future impacts of various
threats. However, previous models of tiger population dynamics,
while making important contributions, have not adequately
incorporated territoriality. For example, the models of Kenney
et al. (2014, 1995) and Karanth and Stith (1999) do not include
real spatial data or dynamic territories and are therefore not
useful for simulating tiger population response to changing habitat
conditions (e.g., infrastructure development) on spatially hetero-
geneous landscapes. The spatially explicit model of Ahearn et al.
(2001) imposed territory sizes on males and females and did not
include conspecific interactions, thus limiting the ecological and
conservation questions that the model can address. To help fill
these information gaps, we developed and implemented a spatially
explicit agent-based model (ABM) of tiger population dynamics
shaped by different territorial behaviors of males and females. In
this paper we describe the model and how it has been tested and
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then applied it to Nepal’s Chitwan National Park, part of a global
biodiversity hotspot and home to a large (~125) population of
tigers (Carter et al., 2015; Myers et al., 2000).

The design of our model was determined by basic principles
underlying territorial behavior observed across a range of species
(Borger et al., 2008). Territories or home ranges are mechanisms
by which animals acquire resources such as food, but also shel-
ter and mates (Brown and Orians, 1970; Burt, 1943). As such, the
size and spatial structure of animal territories or home ranges are
strongly related to environmental resource abundance and distri-
bution (Mitchell and Powell, 2007; Moorcroft et al., 2006). Since
territory size is correlated with food productivity across landscapes,
the population densities of many bird and mammal species are
inversely related to their home range or territory sizes (Makarieva
et al., 2005).

Territories and home ranges are also influenced by the loca-
tion, behavior, and identity of conspecifics. Agonistic interactions
between animals in adjacent territories (or core parts of home
ranges) are costly, with outcomes including loss of resources,
mates, injury, and sometimes death (Jacobs et al., 2008). Direct
interactions with neighbors (e.g., fights) and indirect interactions,
such as avoidance of negative encounters, can influence territory
size and shape (Moorcroft et al., 2006). In general, territory size is
reduced by interactions among neighbors or with potential settlers
(Adams, 2001). Such interactions redistribute resources among
competitors, affecting individual fitness. Agonistic interactions also
somewhat decouple territory size and shape from landscape food
supply (Adams, 2001).

Furthermore, for many wildlife species, including conservation-
priority species like the tiger, agonistic interactions between males
for females are common and influence male territories and their
reproduction in a different way than females (Bond and Wolff,
1999; Creel, 1998; Pusey and Packer, 1994; Sunquist, 1981). Male
competition for access to females, for example, can completely
displace males from a territory (Piper et al., 2000), significantly
reducing fitness of the displaced male. Appropriation of a male ter-
ritory by another male is also sometimes followed by infanticide,
triggering estrous in the resident female and potentially allowing
the new male to quickly sire a litter with her (Barlow et al., 2009;
Pusey and Packer, 1994). The significant consequences of male-
male competition on dispersal, reproduction, and population size
and structure provide strong rationale for developing a model with
separate but interacting female and male territory processes.

ABMs (also referred to as individual-based models) have the
flexibility and capacity to incorporate these principles of territo-
riality (DeAngelis and Grimm, 2014). ABMs explicitly represent
individual behaviors and local interactions (Grimm and Railsback,
2005; Semeniuketal.,2011,2012). By simulating the life of individ-
ual animals, ABMs operate at a scale at which population dynamics
are based (DeAngelis and Mooij, 2005; Letcher et al., 1998). Fur-
thermore, in an ABM, population dynamics are not pre-defined by
aggregate-level equations but emerge due to events and behaviors
at the individual level (Grimm and Railsback, 2005; Semeniuk et al.,
2012). In terms of territoriality, individual behaviors and interac-
tions can be directly informed by observations in the field (Watkins
et al., 2014), if they exist, or used to guide field data collection. An
ABM approach is especially useful for modeling species inhabiting
spatially heterogeneous environments and for which social dynam-
ics strongly influence population structure (DeAngelis et al., 1998;
Federico et al., 2013; Watkins et al., 2014).

ABMs have incorporated territories and home ranges in the past.
Some of the earlier uses of ABMs integrated territories and home
ranges into population models; however, they treat territories and
home ranges as equal or static in size or represent them with
overly simplistic shapes, such as circles (Ahearn et al.,2001; Grimm
et al,, 2003; Kostova et al., 2004; Letcher et al., 1998; Wiegand

et al., 2004). Other studies have explicitly modeled more complex
shapes and sizes of territories and home ranges as functions of
intraspecific interactions and/or resource spatiotemporal hetero-
geneity (Giuggiolietal.,2011; Mitchell and Powell, 2004; Moorcroft
et al., 2006; Nabe-Nielsen et al., 2013; Van Moorter et al., 2009).
These studies provide very useful insights; however, they do not
integrate territory or home ranges into population dynamic models.

The recent models by Wang and Grimm (2007, 2010) and Liu
et al. (2013) are different, as they incorporate dynamic territories
into population modeling of the common shrew (Sorex araneus)
and the wood mouse (Apodemus sylvaticus), respectively. In the
wood-mouse model (Liu et al., 2013), only females are considered;
territory acquisition is based on vegetation cover and the presence
of conspecifics. In the common shrew model (Wang and Grimm,
2007, 2010), territory acquisition for both females and males was
based mostly on food resources, although males preferred locations
where females were present.

Our model thus builds on the resource-based acquisition of
territories used by Wang and Grimm (2007, 2010), but adds fur-
ther rules representing interactions between females and males.
In our model, female tiger territories fluctuate based on local prey
biomass production and the presence of neighboring female terri-
tories (Smith et al., 1987). Male tigers try to overlap the territories
of multiple females, with young males challenging resident (i.e.,
territory-holding) males for access to their females (Smith, 1993;
Sunquist, 1981). Tigers in the model reproduce, disperse, estab-
lish and modify territories, and die, with other tigers dispersing
to and establishing territories in the gaps left by dead tigers. By
applying the model to Nepal’s Chitwan National Park, where empir-
ical data on tigers and their habitat have been collected for several
decades, we demonstrate its utility at simulating tiger population
dynamics in a real landscape. The model presented here does not
include interactions with humans, but the ultimate purpose of the
model is to explore the consequences of various threats on tigers
(e.g., poaching and resource depletion), as well as feedbacks of tiger
behaviors on human communities. As such, the model can be a use-
ful tool for informing decision-makers on how to conserve tigers
under uncertain and changing future conditions.

1.1. Study site and biological background

The model was parameterized for Nepal's Chitwan National
Park (27°20’'N to 27°43’'N, 83°5’E to 84°46’E), where long-term
tiger behavioral and ecological data have been collected (Barlow
et al., 2009; Eisenberg and Seidensticker, 1976; Seidensticker
and McDougal, 1993; Seidensticker et al., 1999; Shrestha, 2004;
Smith and McDougal, 1991; Smith, 1993; Smith et al., 1999, 1987;
Sunquist, 1981). The park is situated in south central Nepal and
located in a river valley basin along the flood plains of the Rapti,
Reu, and Narayani Rivers with an elevation range of 150-815 m.
Climate in Chitwan is subtropical with a summer monsoon season
from mid-June to late-September, and a cool dry winter. The park
consists of Sal (Shorea robusta) forest, khair (Acacia catechu) and
sissoo (Dalbergia sissoo) riverine forests, and grasslands dominated
by species of the genera Saccharum, Themeda, and Imperata (Carter
et al,, 2013; Chaudhary, 1998).

Tigers are obligate carnivores that crop approximately 10% of
available prey in a landscape, with females in Chitwan consuming
5-6 kg of prey/day (Karanth et al., 2004; Sunquist, 1981). Tiger prey
is abundant in Chitwan, consisting primarily of spotted deer (Axis
axis), barking deer (Muntiacus muntjak), hog deer (Axis porcinus),
wild boar (Sus scrofa), sambar (Rusa unicolor), and gaur (Bos gau-
rus). Prey biomass generally corresponds to land cover, with prey
biomass highest in grassland/riverine forest complexes (Eisenberg
and Seidensticker, 1976; Shrestha, 2004; Smith et al., 1987).
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Fig. 1. Image of model landscape with 50 adult female tiger and 20 adult male tiger territories (shown as 100% minimum convex polygons) distributed across a landscape
with square habitat cells (250 m x 250 m). Female tigers are indicated with orange circle and female territory boundaries are orange. Male tigers are indicated with blue
triangles and male territory boundaries are blue. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Both male and female tigers exhibit site fidelity and maintain
exclusive territories that are not shared with neighboring adults
of the same sex (Seidensticker et al., 1999; Smith et al., 1987;
Sunquist, 1981). Mean tiger territory size in Chitwan is 20.7 km?
(range 10-51) for females and 54.4 km?2 (range 19-151) for males
(Smith et al., 1987). Male territories encompass 1-6 female territo-
ries (Smith, 1993; Sunquist, 1981).

Female tigers breed at about 3 years old after establishing a
territory. Gestation is 103 days (Karanth and Stith, 1999). Litter
size in Chitwan is between 2 and 5 cubs with an average of 2.98
(Smith and McDougal, 1991). Interbirth period is approximately 2
years, however, the interbirth period can be considerably shorter
if a mother’s litter has died (e.g., through infanticide by adults
males, Sunquist et al., 1999). Tigers disperse when they are about
2 years old and search for a location to establish their territory
(Smith, 1993). Females will tend to settle closer to their natal range
(mean 9.7 km, range 0.2-33 km) than males (mean 33 km, range
9.5-66 km, Smith, 1993). Dispersing tigers have higher mortality
rates than resident tigers (Karanth and Stith, 1999). Dispersing
males will often challenge other males for their territory and access
to females. Infanticide by new resident male tigers is common
(Barlow et al., 2009).

2. Model description

The model description follows the ODD (Overview, Design con-
cepts, Details) protocol for describing agent-based models (Grimm

et al,, 2010, 2006). The model was implemented in NetLogo 5.0.4
(Wilensky, 1999) and the program used to simulate the tiger
population on Chitwan National Park, Nepal, is available in the
Supplementary Material.

2.1. Purpose

The proximate purpose of the model is to predict the dynamics
of the number, location, and size of tiger territories in response to
habitat quality and tiger density. To allow for predictions to new
conditions, for which no data exist, territories are not imposed but
emerge from the tigers’ perception of habitat quality and from their
interactions with each other. Tiger population dynamics is deduced
from merging territory dynamics with observed demographicrates.
The ultimate purpose of the model, which will be presented in
follow-up work, is to explore human-tiger interactions.

2.2. Entities, state variables and scales

Model entities are the square spatial units or habitat cells com-
prising the landscape, male and female tigers, and tiger territories
(Fig. 1). All state variables characterizing these entities are listed in
Table 1. Female territories consist of a set of habitat cells, which the
females add to their territory based on prey availability and absence
or rank of other females. Male territories consist of a set of up to six
female territories (Smith, 1993; Sunquist, 1981), which the males
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park boundary (Chitwan landscape only)

Table 1
Summary of state variables in model for female and male tigers and habitat cells.
Entity Variable name Description Possible values Units
Female Age Age in months 1-180 Months
Fertile? Indicates whether female is fertile True/false -
Gestating? Indicates whether female is gestating True/false -
Males-in-my-territory Identities of males overlapping female territory Set of male identities -
My-mom Identity of mom Identity of female tiger -
My-offspring Number of offspring in current litter 1-5 Individual cubs
Natal-origin Cell where female was initialized at or the 0-maxX,0-maxY Cell units
centroid cell of mother’s territory
Num-litters Total number of litters the female has had up 0 - max number of litters over lifetime -
until current time
Age-class Indicates development stage of female Cub, Juvenile, Transient, or Breeder -
Territory Set of cells belonging to territory Set of cell coordinates -
terr-orig Cell that female was initialized at or first cell of 0-maxX,0-maxY Cell units
territory
t-gestation Indicates how long female has gestated 0-3or4 Months
t-parenting Indicates how long female has been a parent of 0-24 Months
current litter
Male Age Age in months 1-180 Months
Dominant-males Identities of males that have beaten male in Set of male identities -
challenges
Females-in-my-territory Identities of females overlapping male territory Set of female identities -
Initial-male? Indicates whether male was created at True/false -
beginning of simulation
Lost-territory? Indicates if male lost a territory to a challenger True/false -
Male-land-tenure Total time male held onto territory 0 - entire breeding phase until death Months
My-mom Identity of mom Identity of female tiger -
Natal-origin Cell where male was initialized at or the 0-maxX,0-maxY Cell units
centroid cell of mother’s territory
Age-class Indicates development stage of male Cub, Juvenile, Transient, or Breeder -
Territory Set of cells belonging to territory Set of cell coordinates -
Cell Owner-fem Identity of female with cell in her territory Identity of female tiger -
Owner-male Identity of male with cell in his territory Identity of male tiger -
Prey Prey produced at cell 0 - max prey production kg/month
Is-churia? Indicates whether cell falls within churia hill True/false -
boundary (Chitwan landscape only)
Is-park? Indicates whether cell falls within national True/false -

add to their territory based on their spatial proximity and absence
or rank of other males.

Habitat cells have a side length of 250 m and are characterized by
their prey biomass production rate (prey, kg/month) and whether
or not they are part of a female or male territory (owner-fem, owner-
male). Simulations were carried out on a small landscape of 40 x 40
cells (100 km?), a larger landscape of 128 x 125 cells (1000 km?),
and the Chitwan landscape of 157 x 345 cells (3385 km? though
only 1239 km? of it comprises park). The boundaries in the model
landscapes were impermeable (i.e., the tigers and their territories
could not extend beyond the boundaries). The small landscape size
was chosen to develop and test the models of behavior and fine-
scale interactions of a few tigers, whereas the larger landscape size
was used to explore interactions of a larger tiger population. In
addition, many protected areas are approximately the same size
as the large landscape (Sanderson et al., 2006). Lastly, the Chitwan
landscape was used to assess how well the model fits observed data.
A time step in the model corresponds to 1 month and simulations
were run for 1-20 years. One month is a suitably long enough time
step for tigers to establish and maintain a territory. In addition,
previous empirical studies reported data at the monthly time scale
allowing for comparison with model results.

2.3. Process overview and scheduling

Each time step (1 month), the following processes are processed
inthe given order (Fig. 2). Model entities are processed in a random-
ized order, unless stated otherwise, and changes in state variables
are updated immediately. The submodels implementing these pro-
cesses are described in detail in Section 2.7 below. Note that in the

program there are mutual links between tigers and territory cells,
and males and females, which implies that these links have to be
updated every time a tiger dies or a territory is changed or lost;
these technical updates are not described in the following.

2.3.1. Mortality
Depends on sex, age, and on whether the tiger is a territory
holder or disperser.

2.3.2. Update-age-stage-class
Tigers age and develop and may proceed to the next age class,
i.e., cub, juvenile, transient, or breeder (Karanth and Stith, 1999).

2.3.3. Female-select-location
Upon reaching breeding stage, females select a location to begin
establishing a territory.

2.3.4. Male-select-location
Upon reaching breeding stage, males select a location to begin
looking for available females.

2.3.5. Update-female-territory

Females try to add habitat cells to their territory until the total
amount of prey available reaches a certain threshold. They select
new cells based on their prey availability and presence and rank,
which are correlated to age, of other females. Within a time step,
females can try up to 48 times to add a new cell. In other words,
females can potentially add up to 3 km? to their territory in a time
step, which is approximately the area added per month observed
in the field (Sunquist, 1981). If the resulting set of habitat cells
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Fig. 2. Overview of model processes.

consists of two or more non-contiguous clusters of cells, all but
the largest cluster are removed from the territory (find-clusters,
remove-clusters).

2.3.6. Female-starvation

Females die if the total prey production within their territory is
below 76 kg/month (derived from Miller et al., 2014) and the food
within their territory has not increased.

2.3.7. Calculate-fem-centroid

Calculates the centroid of female territory, i.e., the cell which
has the average X and Y coordinates of cells of the female’s territory.
These centroids are used to assign female to male territories.

2.3.8. Establish-or-update-male-territory

A model territory is established or updated. The selection of
female territories to be added to a male’s territory is based on the
proximity of female territories (their centroids) and the rank of
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nearby males. Males with less than six female territories may add
territories; males with six female territories may replace, if pos-
sible, the female whose centroid is farthest away from the male’s
territory centroid by a closer female. This is done to prevent male
territories from overlapping substantially.

2.3.9. Calculate-male-centroid
Calculates the centroids of male territories.

2.3.10. Parenting (female only)

Updates the time since a female gave birth; this determines
when the female becomes fertile again and her cubs have to leave
her.

2.3.11. Gestation (female only)
Updates gestation time and initiates reproduction (give-birth)
when gestation time of a female is over.

2.3.12. Prob-mating
Determines whether fertile females mate with males and begins
gestation period.

2.3.13. Plotting
Model output is plotted or written to files.

2.3.14. Calc-homerange
100% minimum convex polygon is drawn around each territory.

2.4. Design concepts

2.4.1. Basic principles

Acquisition and maintenance of territories reflect fundamental
ecological relationships between organisms and their environ-
ment. How male and female territorial animals, like tigers,
establish, defend, and modify territories, can be related to basic
principles such as resource requirements and dominance relation-
ships (Adams, 2001; Brown and Orians, 1970; Burt, 1943; Jacobs
etal.,2008; Moorcroftetal.,2006). Having our model based on basic
principles related to territory establishment allows application to
other regions than Chitwan National Park. Furthermore, the model
can be adapted and re-used for other organisms and contexts.

2.4.2. Emergence

Tiger population size and age distribution over time emerge
from demographic processes and territory dynamics. Female ter-
ritory dynamics emerge from prey biomass distribution and
competition with other females. Male territory dynamics emerge
from female territory locations and competition with other males.

2.4.3. Adaptation

Female tigers adapt their territories to changes in prey biomass
and the presence of adjacent female territories, while males adapt
their territories to the number and location of nearby female terri-
tories and the presence of adjacent male territories.

2.4.4. Fitness
Individual tiger fitness is indirectly modeled as access to prey
and mates through the formation and adaptation of territories.

2.4.5. Interaction

Competition for habitat cells is a direct interaction for both
females and males. Males also interact directly as they can expel
other males from their territory to gain access to females. In such
cases, to trigger estrous in females, infanticide can occur.

2.4.6. Sensing

Females can sense total prey available to them within their
territory and the prey abundance of cells neighboring their territo-
ries. Males know the number of females within their territory and
nearby as well as the location of the corresponding female territo-
ries. Females sense whether or not a habitat cell adjacent to their
territory is owned by another female, and males sense whether or
not other males are nearby.

2.4.7. Stochasticity

Stochasticity was incorporated into many processes to account
for natural variation. The initial locations and ages of tigers, mor-
tality, challenges between males, females taking habitat cells from
adjacent females, male selection of females to move toward, litter
size, gender of cubs, and mating all include elements of stochastic-
ity. See Section 2.7 for details.

2.4.8. Observation

Individual and population-level processes were observed. These
included reproduction (i.e., litter size and lifetime reproductive suc-
cess for females), mortality (i.e., infanticide and mortality rates
for different age classes), dispersal (i.e., distance from natal range
to post-natal territory), resource selection (i.e., prey biomass for
females and females for males), male and female land tenure (i.e.,
time that breeding animal held onto territory before dying or dis-
persing), territory size and spatial distribution, and tiger population
size and age structure.

2.5. Initialization

Prey biomass production rates (kg/month/cell) used in the mod-
els were calculated by combining empirical rates of average daily
prey consumption by female tigers and information on female ter-
ritory sizes in Chitwan. Specifically, using daily consumption rates
of 5.5kg/day (Sunquist, 1981), we estimated that female tigers
consume 167.3 kg/month. Assuming tigers consume 10% of the
standing prey biomass (Karanth et al., 2004 ), then 1673 kg/month is
onaverage available to a female tiger within her territory. The upper
and lower limits of prey biomass production per cell were then cal-
culated by scaling the average monthly prey biomass available to a
female in her territory (1673 kg) to the largest (51 km? or 816 cells)
and smallest (10km? or 160 cells) observed female territory sizes
reported in Smith (1987). Thus, the lower limit for prey biomass
production was 2.05 kg/month/cell (i.e., 1673/816) and the upper
limit was 10.46 kg/month/cell (i.e., 1673/160). These prey biomass
production values were used for various simulation experiments
(see Section 2.8 below).

2.6. Input data

The current model version does not include any input of data
describing dynamics in drivers, environmental conditions, or dis-
turbances. Future model versions, however, will include seasonal
variations in prey biomass production rate and human distur-
bances.

2.7. Submodels

All model parameters are listed in Table 2. For some of
the complex submodels, we used tags, e.g., “R1”, that link the
description of this model rule to the corresponding NetLogo
code in the program. This applies to “female-select-location”,

“male-select-location”, “update-female-territory”, and “establish-
or-update-male-territory” processes.
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Summary of parameter information used in agent-based model of tiger territory and population dynamics in Chitwan National Park, Nepal.

Parameters

Values

Reference

Notes

Age-classes

Breeding
Transient
Juvenile
Cub

Litter size distribution?

VA WN =

Maximum number of cells female can add to territory per time
step?

Annual survival®

Breeding male
Breeding female
Dispersal male
Transient male
Transient female
Juvenile

Cub

Annual fecundity?

Probability that 3-year old resident female breeds if fertile
Probability that 4+ year old resident female breeds if fertile

Maximum possible dispersal distance from natal range?

Transient male
Transient female

Prey thresholds?®
Minimum within territory

Maximum within territory

Probability that dominant female will take territory cell from
subordinate female if cell has highest prey?

Proportion of prey within territory utilized by female tiger®

Radius in which breeding males will search for nearby
breeding females®

Max number of female territories a male can overlap?

Litter sex ratio at birth

Gestation period

Search criteria for dispersing females to determine location of
territory origin®
Ideal area in which no other female territory occurs

Less-optimal area in which no other female territory occurs

Probability that the dispersing male dies after losing challenge?

Probability that the resident male dies after losing challenge?®

Probability offspring die due to infanticide following successful
challenge?®

Juvenile
Cub

3+ years old

2-3 years old
1-2 years old
0-1 years old

0

0.23
0.58
0.17
0.02

48 (3km?)

66 km
33km

76 kg/month

167.3/month

0.25

0.1

3km

6

50:50

3 or 4 months

with equal
probability

12.57 km?

(2 km radius)
3.14km? (1km
radius)

0.25

0.6

0.24
0.79

Karanth and Stith (1999)
(Page 103)

Kenney et al. (2014)
(Appendix A)

Sunquist (1981) (derived
from Table 15 on page 37)

Karanth and Stith (1999)
(Page 103)

Kenney et al. (2014)
(Appendix A)

Smith (1993) (Table 1 on
page 173)

Miller et al. (2014) (Page
127)

Sunquist (1981) (Page 91)

This study

Karanth et al. (2004) (Page
4854)

Ahearn et al. (2001)

(Table 1 on page 90)
Kenney et al. (2014)
(Appendix A)

Karanth and Stith (1999)
(Page 103)

Sunquist et al. (1999) (Page
7)

This study

This study

Kenney et al. (2014)
(Appendix A)
Kenney et al. (2014)
(Appendix A)

Pusey and Packer (1994)
(derived from Fig. 1 on
page 279)

Based on long-term field data of tigers across
sites.

Based on long-term field data of tigers in
Chitwan.

This value represents an approximation of the
average area added to female’s territory per
month from observed data.

Survival rates were parameterized from field
data on tigers, leopards, and cougars.

Based on long-term field data of tigers in
Chitwan.

Based on long-term field data of tigers in
Chitwan.

Model estimates 2.5 kg/day to maintain basal
metabolic rate of female Bengal tiger in
Bangladesh. This converts to:

(2.5kg/day x 365 days)/12 months

From empirical data, estimates female tiger in
Chitwan consumes 5-6 kg/day. This converts
to: (5.5 kg/day x 365 days)/12 months

Based on expert opinion.

Based on field data of large carnivore guilds
across different sites in Asia and Africa.

Based on long-term field data of tigers in
Chitwan.

Based on long-term field data of tigers in
Chitwan.

Based on long-term field data of tigers across
sites.

Gestation is 103 days, which is between 3 and
4 months. Model randomly selects either 3 or
4 months.

Based on expert opinion.

Based on long-term field data of tigers in
Chitwan.
Based on long-term field data of tigers in
Chitwan.

Based on long-term field data on African lions
in Tanzania’'s Serengeti National Park.

@ Parameters that were included in sensitivity analysis.
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2.7.1. Mortality

Observed age-specific annual survival rates were used to derive
monthly background mortality rates. The observed survival rates
are identical to those used in Karanth and Stith (1999). When a
female with dependent offspring (i.e., cubs and juveniles) dies, then
her offspring die as well. Tigers die when they reach 15 years old,
considered their maximum age in the wild (Smith and McDougal,
1991).

2.7.2. Update-age-stage-class

The age of each tiger increases by 1 month at each time step.
Age-classes were based on those used in Karanth and Stith (1999).
Tigers are considered “cubs” from birth to 12 months old, “juve-
niles” from 12 to 24 months old, “transient females” or “transient
males” from 24 to 36 months, and “breeding males” or “breed-
ing females” after 36 months of age. Male breeders who have lost
their territory become “floater” males with a mortality rate equal
to transient males. Females become fertile at 36 months.

2.7.3. Female-select-location

When females reach 3 years they move to a location where they
establish the origin point of their territory. The following describes
the steps involved in selecting that location.

1. The female identifies all cells within 33 km of her natal origin
(R1). We chose 33 km as the search radius because this is the
maximum observed distance females traveled from their natal
range to establish their home range in Chitwan (Smith, 1993).

2. Of those cells, she identifies cells that have no other female ter-
ritory within 2 km and have no other transient female present
(R2).

3. Of those cells meeting that criteria, she selects and moves to the
cell that has the highest mean prey within 2 km (R3).

4. Ifno cells meet that criteria, then she identifies cells within 33 km
of her natal range that have no other female territory within 1 km
and that have no other transient female present (R4).

5. Of those cells meeting that criteria, she selects and moves to the
cell that has the highest mean prey within 1 km (R5).

6. If no cells meet the abovementioned criteria, then she dies (R6).
This is analogous to her dying from no food because she is unable
to establish a territory in any suitable areas.

2.74. Male-select-location

When males reach 3 years old they move to a location from
which they will try and establish a territory. The following describes
the steps involved in selecting that location.

1. The male identifies the centroids of all female territories that
“belong” to a male and those that do not belong to a male (R1).

2. If the male has previously lost a challenge to a resident male,
then he distinguishes those females belonging to unchallenged
and challenged males (R2).

3. The first choice for the male is to move to the closest cell within
66 km of his natal range that is the territory centroid of a female
not belonging to a male (R3). The male cannot move to that loca-
tion if another dispersing male has already moved to it. This
ensures that young males from the same cohort do not all clump
on the same female. The natal range is defined as the centroid of
the dispersing male’s mother’s territory at birth. We chose 66 km
as the search radius because this is the maximum observed dis-
tance males traveled from their natal range to establish their
home range in Chitwan (Smith, 1993).

4. If no “unoccupied” female exists within 66 km, then the male
will select a female closest to his natal range and that belongs to
an unchallenged male (R4). This ensures that the male will not
continually challenge the same resident male, and instead keeps

looking for females across the landscape. Also, no other dispers-
ing male must be present at that centroid. If a male without a
territory moves to a female’s centroid that is occupied by a resi-
dent male, it might challenge that resident male in the next time
step (see Section 2.7.8).

2.7.5. Update-female-territory

Adult breeding females update the size and shape of their terri-
tories based on the location of prey resources and adjacent female
territories. The following steps are involved in updating territories
for female tigers (Fig. 3).

1. Cells neighboring an existing female territory are categorized as
being vacant (i.e., not belonging to another female’s territory) or
owned by another female (R1). Neighbors are defined as the four
cells sharing a border (not a vertex) with the territory cells. This
allowed territories to be more concentrated in space.

2. If the cell is owned, then the female determines if the owner
female is “subordinate” to her (R2). This is based on age, with
middle-aged females being the most dominant, young adult
females moderately dominant, and older females the least dom-
inant; the dominance relationships are listed in Table S1, which
is implemented in the NetLogo procedure subord?.

3. If there are neighboring cells not owned by other females, then
she will add a vacant neighboring cell with the highest prey
biomass production (R3).

4. If there are both vacant and subordinate cells and if a vacant
neighboring cell has an equal or higher prey biomass production
than a neighboring cell owned by a subordinate female, then she
adds the vacant cell to her territory (R4).

5. If, instead, the highest prey biomass production of a neighbor
cell belonging to a subordinate female is greater than the highest
prey biomass production of a vacant neighboring cell, then she
has a 25% probability of adding the cell from the subordinate
female to her own territory (R5). Otherwise, she adds the vacant
cell even though it has a lower prey biomass production than the
cell from the subordinate female (R6).

6. If there are no vacant neighbor cells, then she adds the cell
belonging to a subordinate female with the highest prey biomass
production (R7). Although females are highly territorial and
sometimes demonstrate aggression toward each other along the
edges of their respective territories, doing so incurs a cost (Smith
etal., 1987). In other words, a female does not attempt to co-opt
a portion of another female’s territory unless it is necessary and
beneficial to her.

7. Addition of new cells to her territory ceases when 10% of all
available prey biomass production (i.e., prey biomass cropped
by tigers, Karanth et al., 2004) in her territory within one time
steps equals 167.3 kg/month (Table 2) (R8).

8. Females can also shift their territories in space if nearby prey
resources are higher than those currently obtained within the
female’s territory. A female achieves basal metabolic energy
demands when she has access to 76 kg/month of prey within
her territory (Table 2). This number is based on estimates of
energetic requirements (2.5 kg/day) applied to female tigers in
Bangladesh (Miller et al., 2014). A female will replace a cell from
the edge of her territory with the lowest prey biomass produc-
tion with a neighboring cell of higher prey biomass production
once she has met her energetic minimum of 76 kg/month within
her territory (R9). The edge of her territory consists of all the
cells in her territory that share exactly one border with another
territory cell.

9. The territory must be contiguous, with all cells sharing at least
one border with each other. If gaps occur between cells, then
the female moves to the largest group of cells, and all smaller,
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Fig. 3. Structure of female tiger territory submodel.

isolated groups of cells (or single cells) are removed from the
territory (R10; procedures find-clusters, remove clusters).

2.7.6. Female-starvation

Females die if the total prey within their territory is
<76 kg/month (i.e., basal metabolic requirement) and the food
available to them within their territory did not increase from the
previous time step. Non-increasing access to food in her territory
indicates that she is hemmed in by other dominant females and is
unlikely to ascertain more food. If the starving female has offspring,
then they die as well.

2.7.7. Calculate-fem-centroid

The centroids of all female territories are determined and
assigned to their respective female. The centroid is determined
by the arithmetic means of the X and Y coordinates of all cells
belonging to the female’s territory. The state variable “owner-fem-
centroid” of the cell at the centroid’s location is assigned to the
female territory holder.

2.7.8. Establish-or-update-male-territory

Adult males establish or update the size and shape of their terri-
tories based on the location of nearby adult females and other adult
males. Essentially, a male territory represents all the territories of
females that he has exclusive access to. Male territories contract
or expand when they lose or gain access to female territories. A
male territory can overlap a maximum of six female territories
(Sunquist, 1981). The “establish-or-update-male-territory” sub-
model requires information about the territory centroids of females
and males. Territory centroids are calculated in the “calculate-fem-
centroid” and “calculate-male-centroid” processes. The following
describes the steps involved in establishing and updating a male’s
territory (Fig. 4).

1. If male already has a territory comprising one or more female
territories (i.e., he is a resident male), then his territory size and

shape is updated based on changes in territories of the females
he already overlaps (R1).

. If a male does not have access to any females (i.e., dispersing

male), then he identifies all of the females that have territory
centroids within 3 km of himself (Table 2, R2).

. If a male is a resident breeder (i.e., already overlaps female

territories), then he identifies all females that have territory
centroids within 3 km of the territory centroids of the females
he overlaps (R3). This allows the male to expand his territory
based on the location of female territories already within his
territory.

. In some cases, a female territory centroid is beyond 3 km but

her territory shares a border with the resident male’s territory
(i.e., the combined territories of the females he overlaps). We
assume that a male would be aware of this neighboring female
based on territorial markings (Smith et al., 1987). Thus, the
resident male also identifies those neighboring females (R4).

. Of the nearby females (i.e., within 3 km or sharing a territorial

border), the male identifies which of them do not “belong” to
another male. He then adds the territories of the closest avail-
able females to his own (R5). If the male already has access
to six females, then he cannot add any more even if they are
available.

. However, if the centroid of an available female’s territory is

closer than the farthest territory centroid of a female belonging
to a male with six females, then he will replace the farthest
female with the closer female’s territory (R6). This reflects the
idea that it is energetically more efficient to defend a territory
with females that are closer to each other.

. If no available females are nearby, a dispersing male identifies

all nearby females belonging to other males (R7). The following
behaviors (8-10) do not apply to “floater” males, as they pre-
viously lost their territory and do not initiate challenges with
resident males any longer.

. The dispersing male (excluding floaters) randomly chooses one

of the males overlapping those nearby female territories to
challenge for access to his female(s) (R8). The dispersing male
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cannot challenge a resident male that he has lost to in the past.
The probability of various outcomes of the challenge is listed in
Table 3 (NetLogo procedure prob-winning).

9. If the dispersing male wins the challenge, he adds the territory
of the female(s) previously belonging to the resident male to
his own territory (R9). If the females had offspring, then there
is a certain probability that they die due to infanticide (R10),
a commonly observed phenomenon in the wild among terri-
torial animals. Probabilities that a cub and juvenile die due to
infanticide are in Table 2. These probabilities are based on the
empirical data from African lions (Pusey and Packer, 1994).

10. If the dispersing male loses the challenge, but survives, then he
continues dispersing. He remembers the male he lost to (R11)
and cannot challenge him again in the future.

2.7.9. Calculate-male-centroid
See calculate-female-centroid.

Table 3
Probability that dispersing male tiger successfully challenges resident male tiger for
territory as a function of age. Based on Kenney et al. (2014).

Age of resident male Age of dispersing male

3 4 5
3 1 1 1
4 0.5 0.55 0.65
5 0.45 0.5 0.55
6 0.4 0.45 0.5
7 0.35 0.4 0.45
8 0.4 0.45 0.5
9 0.45 0.5 0.55
10 0.5 0.55 0.6
11 0.7 0.75 0.8
12 1 1 1
13 1 1 1
14 1 1 1
15 1 1 1

2.7.10. Parenting

After giving birth to a litter, a female’s offspring are dependent
on her for 2 years. During that time she is not fertile and hence inca-
pable of giving birth to another litter. In this submodel, parenting
time starts at zero when litter is born and parenting time increases
by one each time step. If parenting time is 24 (i.e., 2 years), unless
induced by infanticide, the female becomes “fertile” again and is
capable of giving birth to another litter if she is within an adult
male’s territory. At that time, the cubs turn 2 years and become
transients.

2.7.11. Gestation and give-birth

Once pregnant the female gestates for 3 or 4 months. She is no
longer fertile during that period. Since gestation is about 103 days
in the wild, the model randomly selects 3 or 4 months as the ges-
tation period so that the average gestation period for all females
is approximately 3.5 months. In this submodel, gestation time is
reduced by one each time step. If gestation time is zero, the female
proceeds to reproduce (see NetLogo procedure give-birth).She gives
birth to a litter of size and male:female ratio according to proba-
bilities in Table 2. Each offspring stays within the territory of its
mother until it becomes a transient adult.

2.7.12. Prob-mating

Once females reach the age of 36 months or 3 years, they become
fertile and are capable of giving birth to litters. They have a 90%
annual probability of successfully mating within their first repro-
ductive year. That probability increases to 100% after they turn 4
years of age.

2.7.13. Plotting
Plots of total population size, age structure, and territory sizes
of males and females are updated each time step.

2.7.14. Calc-homerange

Using the package *“adehabitat” in the R software (R
Development Core Team, 2009), the 100% minimum convex poly-
gon (MCP) surrounding each female and male territory is drawn.
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The MCP is used to visualize each territory and compare to empiri-
cal results from the field. NetLogo and R were linked by using the R
extension for NetLogo (Thiele and Grimm, 2010). For runtime rea-
sons, this procedure was not used when numerical output of the
model was produced.

2.8. Simulation experiments

We conducted various simulation experiments on different
landscapes to illustrate and assess model behavior. First, the model
was simulated on a 40 x 40 landscape with four different prey
biomass patterns: homogenous (prey biomass production of 5kg),
random (prey biomass production between 2.05 and 10.46 kg),
smoothed random (a moving window passed over each cell to
create slight gradient), and left-right gradient going from lowest
(2.05 kg) to highest (10.46) prey biomass production. We used these
different patterns to visualize configurations of 1-4 female terri-
tories. No other outputs were evaluated. These simulations were
run for 12 time steps (1 year) with reproduction and mortality
processes turned off.

The model was then simulated on 125 x 128 landscape to exam-
ine how a single female territory size varies with respect to habitat
quality, i.e., cell-based prey biomass. We first created a “reference”
landscape, in which the prey biomass production at each cell was
drawn from a uniform distribution with the bounds set to the lower
(2.05 kg/cell/month) and upper (10.46 kg/cell/month) limits of prey
biomass production derived from Chitwan data. Next, we created
landscapes where the prey biomass production values varied from
10% to 200% of those selected from the uniform distribution used
in the reference landscape. The simulation was run for 12 time
steps and replicated 100 times for each parameterization with a
random seed to assess variation. Reproduction and mortality pro-
cesses were turned off. Aside from female territory size, no other
model outputs were evaluated.

We also assessed how mortality processes, such as female star-
vation, male challenges, and infanticide, are density dependent in
the model. We created a 125 x 128 landscape with prey biomass
production per cell set to the midpoint (6.255) of the lower (2.05 kg)
and upper limit (10.46 kg) in Chitwan. The model was initialized
with 50 adult females and 20 adult males. The distributions were
random while making sure that initial positions of females were not
closer than 12 cells (3 km) and males were not closer than 20 cells
(5km). The ages of the adult tigers were randomly selected from
a range of adult breeding ages (>3 and <11 years old). Mortality
was deactivated over the first 4 years to get territories established
and reach quasi-stationary (i.e., stable population size over time)
population dynamics more rapidly. Once the population reached a
quasi-stationary point after 200 time steps, 50% of the adult females
and males were removed from the model, and then various mor-
tality processes and total tiger population size were evaluated for
the next 20 years. Simulations were replicated 5-50 times with
a random seed to assess variation. The standard deviation in sev-
eral model outputs appeared to stabilize after 30 replications, so
we therefore assessed model outputs for all subsequent analyses
using 32 replicates (4 nodes with 8 processors; see Supplementary
Materials and Table S2).

The model was then simulated on the Chitwan National
Park, 157 x 345. We rescaled the minimum and maximum prey
abundances per cell across Chitwan estimated using Geographic
Information Systems (see Supplementary Material) to the lower
and upper limits of prey biomass production. Initially 28 adult
female tigers were released within the park based on observed indi-
viduals in Karki et al. (2013). Because tiger density is higher in the
lowland portion of the park, we distributed 4/5 of females in the
lowlands and 1/5 in the Churia hills (Karki et al., 2013). The dis-
tributions were random while making sure that initial positions of

females were not closer than 12 cells (3 km). Female territories ini-
tially consisted only of the cell of their origin location. Similarly, 14
adult males (equal to observed males in Karki et al., 2013) were dis-
tributed randomly in the landscape (4/5 in lowlands, 1/5 in Churia
hills) with a minimum distance of 20 cells (5 km), but they did not
initially have a territory. The ages of the adult tigers were randomly
selected from a range of adult breeding ages (>3 and <11 years old).
Mortality was deactivated over the first 4 years to get territories
established and reach quasi-stationary population dynamics more
rapidly.

The Chitwan simulation was allowed to reach a quasi-stationary
point after 200 time steps, and then model output was evaluated
for the next 20 years. Simulations were replicated 32 times with
a random seed to assess variation. All processes were turned on
for these simulations. All model outputs were evaluated, includ-
ing those related to reproduction, mortality, dispersal, resource
selection, male and female land tenure, territory size and spatial
distribution, and tiger population size and age structure.

A local sensitivity analysis of the Chitwan model was per-
formed by varying key input parameters from their reference
value and comparing outputs. Specifically, sensitivity was calcu-
lated as the ratio of the relative change of the parameter ((reference
value — new value)/reference value) and the relative change of the
output quantity. Outputs were tiger population size, total breed-
ing animals, and female territory size over time. Most parameters
were varied by +5% from their reference value. For integers, we
selected the next value below and above. For distance parameters,
such as maximum dispersal distances, we selected values 0.5 km
below and above the reference value. If a parameter was set to a
maximum, i.e., 100%, then we only selected a lower value. For litter
size, defined by a probability distribution, we tried two alternative
distributions, one that was steeper and one that was flatter than the
reference. We simulated each parameterization for 120 months (10
years) after discarding the first 200 runs, and replicated 32 times
with a random seed to assess variation.

3. Results

Females establish territories that overlap areas with highest
prey biomass available to them (i.e., not already taken by a neigh-
boring female), with the territory shape and size corresponding to
the spatial distribution of prey (Fig. 5). When simulated on a larger
landscape, average female territory size has a power law relation-
ship with the landscape-level average prey biomass (Fig. 6). Further,
as population size increased following removal of 50% of adults,
rates of infanticide, male deaths from challenges, and adult female
deaths more than doubled (Fig. 7 and Table 4). These rates eventu-
ally leveled off and the tiger population stabilized after 20 years on
this artificial landscape.

3.1. Model testing

We compared a number of model outputs across a 20-year time
frame to empirical data on tiger behavior and ecology in Chitwan.
By comparing model output to several patterns observed in the
field we can increase our confidence that the model performed well
(Grimm et al., 2005).

3.1.1. Reproduction

Average litter size in the model was 2.98 cubs (SD=0.69 cubs),
which not surprisingly corresponds exactly to observed litter sizes
in Chitwan, as litter sizes were directly imposed in the model.
Females gave birth to an average of 12.46 cubs (SD=7.85) during
their lifetime, suggesting that females gave birth to an average of 4
litters. Similarly, long-term field data from Chitwan indicated that
females had 4-5 litters over their lifetime (Smith and McDougal,
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1991). The average lifetime reproductive success (i.e., cubs reach-
ing dispersal age) of females was 3.64 (SD =3.19). Field-based data
indicates that female average lifetime reproductive success is 4.5
(SD=3.4) (Smith and McDougal, 1991).

3.1.2. Mortality

The mean number of cubs and juveniles that died from infan-
ticide per month in the model was 1.47 (SD=3.58). Observed
infanticide rates can be high in Chitwan, with 12 cubs from a portion
of the park believed to have died due to infanticide in the span of
1 year (Barlow et al., 2009). Although not directly comparable to
model output, the observed rates indicate that an average of >1
infanticide per month across the park is within reason. An average
of 0.54 females (SD=0.78) died per month in the model, and an
average of 0.3 males (SD =0.6) died per month from challenges.

Table 4

3.1.3. Dispersal

On average females in the model dispersed 18.02km
(SD=8.8 km) from their natal range and males dispersed 29.62 km
(SD=17.44 km) from their natal ranges. Observed average dis-
persal distances for females was 9.7 km (range =0.2-33 km) and
33 km (range =9.5-65.7 km) for males in Chitwan (Smith, 1993).

3.1.4. Resource selection

The average prey biomass cropped by an adult female per
month was 157.62 kg (SD =26.73 kg). Males overlapped an average
of 2.64 (SD=1.89) females. Males in Chitwan have been observed
to overlap up to 6 females, however, most males appear to overlap
between 2 and 3 females (see Fig. 27 in Sunquist, 1981).

Rates (mean and standard deviation) of different mortality processes in 2-year intervals evaluated for 20 years following a 50% reduction of adult tigers from an artificial

population.

Years after shock Number of offspring killed

Males that died per Adult females that died

per month from infanticide month from challenges per month
Mean SD Mean SD Mean SD
0-2 0.9128 2.7120 0.1992 0.4851 0.3438 0.5925
2-4 0.9310 2.6889 0.2201 0.5129 0.4961 0.7149
4-6 1.2357 3.4623 0.2383 0.5493 0.3372 0.5496
6-8 1.1628 3.0302 0.2604 0.5569 0.4701 0.6825
8-10 1.4622 3.5121 0.2826 0.5751 0.5234 0.7290
10-12 1.7526 4.1649 0.2956 0.6498 0.5443 0.7849
12-14 1.6654 3.9045 0.3607 0.6649 0.6953 0.8952
14-16 1.8125 3.8827 0.3529 0.6289 0.6393 0.9028
16-18 1.6641 3.6369 0.3503 0.6626 0.6510 0.8206
18-20 2.1068 41725 0.4036 0.6764 0.6953 0.9239
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Fig. 6. Territory sizes for a single female tiger with respect to prey biomass. ‘1’ repre-
sents mean prey biomass production from Nepal’s Chitwan National Park. Values left
and right of ‘1’ are proportional to the mean value. Boxplots represent the 25th and
75th percentiles of female tiger territory size across 100 model replicates. Whiskers
represent the 95% conference limits, black lines with boxes represent medians, and
circles outside whiskers represent outlier values.

3.1.5. Land tenure

Female land tenure was 6.74 years (SD=4.27 years) and male
land tenure was 2.02 years (SD=1.87 years) in the model. Female
and male land tenure is 6.1 and 2.8 years, respectively, from

A) Total tiger population size

359

field data collected in Chitwan (Kenney et al., 1995; Smith and
McDougal, 1991).

3.1.6. Territory size and spatial distribution

Average female territory size was 21.09km? (SD=7.46) and
was 56.07 km? (SD=44.01) for males in the model. Mean territory
sizes observed in Chitwan were 20.7 km? (SD=9.2) and 54.4 km?
(SD =35.8) for females and males, respectively (Smith et al., 1987).
A snapshot of the model running in Chitwan illustrates the spatial
distribution of female and male territories (Fig. 8).

3.1.7. Tiger population size and age structure

Average tiger population size was 158.5 (SD=19.55), with
106.48 (67.18%) of them greater than 1 yr old. The tiger population
was stable across the 20-year period, which is expected since the
landscape did not change nor was human-induced mortality (e.g.,
poaching) included. Age structure of the modeled population was
37.87% breeding adults, 12.26% transients, 17.05% juveniles, and
32.82% cubs (Fig. 9). Long-term field data in Chitwan found the tiger
population was 45% breeding adults, 7% transients, 18% juveniles,
and 30% cubs (Barlow et al., 2009). Further, variation in breeding
adults in the model was lower than other age classes, corresponding
to field-based data (Barlow et al., 2009). Average number of breed-
ing females and breeding males in the model across the 20-year
period was 43.35 and 16.67, respectively. Previous studies in Chit-
wan indicated a breeding population of 45 females and 20 males
(Smith and McDougal, 1991). Kenney et al. (2014) suggest that
the total tiger population estimated from camera traps is approx-
imately 2.9 times greater than the number of breeding females in
a population. If so, our model results would equate to a total tiger

B) Number of cubs and juveniles that die from infanticide
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Fig. 7. Mortality processes were evaluated over 20-year time period with respect to total tiger population size following a removal of 50% of adults from the landscape. (A)
Total tiger population size, (B) number of cubs and juveniles killed from infanticide, (C) number of males that died from challenges, and (D) number of females that died.

Black lines show mean value, with confidence limits (95%) for the mean in gray.
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Fig. 8. Snapshot of spatially explicit agent-based model of tiger population and territory dynamics for Chitwan National Park, Nepal. Territories are outlined with 100%
minimum convex polygons. Territories of females are orange and blue for males. (For interpretation of the references to color in this figure legend, the reader is referred to

the web version of this article.)

population of 125.72, which matches recent camera trap data from
Chitwan (125 individuals, Karki et al., 2013).

3.2. Sensitivity analysis

Chitwan model outputs were most sensitive to changes in the
survivorship parameters (Table S3), which is to be expected. In par-
ticular, lowering the breeding female annual survival 5% decreased
total tiger population size and total number of breeding animals
by approximately 25%. Female territory size was most sensitive
to amount of prey cropped from total prey biomass and maxi-
mum prey resources needed for stable territory. However, those
parameters did not disproportionately impact female territories.
Changing litter sizes so that there an equal probability of having
1-5 cubs/litter lowered tiger population size by 6% compared to
the reference tiger population size (Table S3). Having most breeding
females have 3 cubs/litter (i.e., litter size peak distribution) changed
model outputs by <1% from the reference. For all of the other param-
eters, the changes in model outputs were proportionally similar to
or less than (i.e., >—1 and <1) the changes to parameter values.

GOWMWM
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Fig. 9. Tiger population size and structure in Chitwan National Park, Nepal, simu-
lated for 20 years and replicated 32 times. Colored lines show mean size of different
age classes, with confidence limits (95%) in gray. (For interpretation of the refer-
ences to color in this figure legend, the reader is referred to the web version of this
article.)

4. Discussion

To the best of our knowledge, this is the first ABM to simulate
both female acquisition of spatially heterogeneous food resources
and male acquisition of females through agonistic interactions. In
the model, females search for the best prey resources near them
and add those resources to their territories, which are exclusive
of other females. Female territories are constantly being modified
due to the presence of neighboring females that are competing
for the best prey resources. Males seek exclusive access to as
many females as possible to increase their reproductive poten-
tial. To claim females, males establish territories that encompass
the territories of those females he can successfully defend from
other males. We also demonstrate how these distinct territorial
behaviors, interwoven with reproduction, dispersal, and mortality
processes, regulate population structure on a landscape represent-
ing Chitwan National Park, Nepal.

Inter- and intra-sexual dynamics mediated by habitat qual-
ity across the model landscapes reproduced several patterns we
expect from theories about resource use and conspecific inter-
actions. For example, territory size reflected food productivity,
with average territory size decreasing predictably with increas-
ing landscape-level prey resources. In addition, individuals in the
model demonstrate habitat preference, with territories being opti-
mized to overlap areas with the highest prey biomass. Territorial
dynamics also regulate populations. For example, adult male deaths
due to challenges for females increase as the population of males
increases. This additional mortality depresses the overall size of
the tiger population not only by removing breeding males but also
through infanticide, which increases with greater number of chal-
lenges. Likewise, as the population of breeding females increases,
dispersing females are more likely to die from starvation as they are
unable to establish a resident territory large enough to provide suf-
ficient food. Further, female tigers can only disperse and reside in
areas that are not occupied by resident females. The spatial distri-
bution of territories thus dictates where the population can expand.

Previous ABMs of territorial dynamics typically represent terri-
tories as static in size or with simple shapes, such as circles (Ahearn
et al.,, 2001; Grimm et al., 2003; Kostova et al., 2004; Letcher et al.,
1998; Wiegand et al., 2004). In contrast, territories in our model are
more flexible and realistic, and they constantly optimize size and
shape by overlapping highest prey resources while recognizing the
boundaries of nearby territories. Furthermore, our model improves
on previous models of tiger space use in Chitwan (Ahearn et al.,
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2001; Kenney et al., 2014, 1995). These previous models did not
include dynamic territories, were based on hypothetical densities
of prey, and simulated movements and behaviors for which empir-
ical data are scarce and difficult to collect throughout most of the
tiger’s geographic range. Our model utilized empirically derived
and easily replicable estimates of prey biomass across the land-
scape and simulated biologically relevant interactions at scales that
are relatively easier to parameterize. The prey resources in our
model were static over time, however, because large-scale seasonal
shifts in prey biomass do not appear to occur in Chitwan. Fine-scale
prey biomass fluctuations due to predator presence, and broader
changes in prey due to climate change, represent important future
research activities.

Our model matched closely with observed patterns of the real
tiger population in Chitwan National Park. Some of this realism
was imposed by using observed litter size, and age-specific sur-
vival rates, or by calculating prey production rates from observed
home range sizes. However, it should be noted that none of the
model parameters were determined by fitting the full model to
data, i.e., by calibration. Most of the parameters used in the model
were measured directly from the field. Several parameters were
best-estimates derived from the literature (e.g., the area a breed-
ing female can potentially add to her territory in 1 month). These
parameters fortunately had little effect on model outcomes accord-
ing to the sensitivity analysis.

It thus seems that many of the realistic key patterns of terri-
tory dynamics emerged from model behaviors. Spatial structure
and distribution of territories related to the spatial distribution of
prey resources and presence of conspecifics. For example, the river-
ine/grassland areas near the northern edge of the park had a higher
tiger density and smaller territory sizes (Fig. 8), indicating higher
preference for those areas by tigers than the Churia hills where prey
biomass is lower. Also, dispersal allows for the tigers in the model
to avoid conflict with each other and take advantage of as much
of the Chitwan landscape as possible. Territory dynamics and asso-
ciated mortality processes regulated population size and structure
on the Chitwan landscape.

Detailed energy considerations regarding the fitness of an indi-
vidual were not used in the present model. For example, energy
intake by females could be used to determine litter size and sur-
vivorship. The probability of a male winning a challenge could be
related to how much recent energy he consumed from prey. Such
considerations would be useful in exploring subtle issues of how
differences in competitive ability may arise through genetic-based
or chance differences in the foraging histories of individuals, or
what determines the number of survivors in a litter. Also, although
some aspects of learning behavior are included (memory of defeats
and victories in challenges), others, such as a tiger’s gradual learn-
ing about the environment, were not considered in this model.
Field data to parameterize such relationships do not currently exist.
Instead we used rules of thumb on behavior and minimum energy
requirements of a territory for survival to simplify the model and
encourage its use as a management tool.

The close correspondence of model outputs to observed pat-
terns suggests the model can be a very useful tool for wildlife
researchers and conservation planners. In Chitwan, for example,
the current model can serve as a baseline for future studies aiming
to evaluate the potential effects of different human resource use
patterns (e.g., forest degradation and fragmentation), conservation
policies (e.g., forest reforestation), tiger poaching and prey hunting
rates, and various land uses (e.g., roads) on the tiger population.
Our model builds off previous ABMs of territorial behaviors and
incorporates basic principles of resource requirements and con-
specific relationships. When adapted somewhat to other contexts,
the model can test different anthropogenic and natural impacts
on tiger populations elsewhere across their range. For example,

habitat-specific data on prey densities and empirical estimates of
territory sizes would theoretically allow application of the model
to other sites, such as those in India and Russia. In addition, by
making simple adjustments to territory behaviors (e.g., allowing
for greater overlap or less site fidelity), the overall model structure
is useful and easily adaptable for understanding population and
territory dynamics of many other territorial wildlife species, such
as cougars (Puma concolor) and jaguars (Panthera onca).
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