Neil Crickmore

Neil Crickmore
  • PhD University of Warwick
  • PI at University of Sussex

About

183
Publications
36,341
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
12,174
Citations
Current institution
University of Sussex
Current position
  • PI
Additional affiliations
March 1995 - present
University of Sussex
January 1988 - February 1995
University of Cambridge
October 1984 - December 1987
University of Warwick
Education
October 1984 - December 1987
University of Warwick
Field of study
  • Molecular Microbiology
October 1981 - July 1984
University of Cambridge
Field of study
  • Biochemistry

Publications

Publications (183)
Article
Full-text available
Mounting evidence suggests that insect hormones associated with growth and development also participate in pathogen defense. We have discovered a previously undescribed midgut transcriptional control pathway that modulates the availability of 20-hydroxyecdysone (20E) in a worldwide insect pest (Plutella xylostella), allowing it to defeat the major...
Article
Full-text available
Cry toxins, produced by the bacterium Bacillus thuringiensis, are of significant agronomic value worldwide due to their potent and highly specific activity against various insect orders. However, some of these pore-forming toxins display specific activity against a range of human cancer cells whilst possessing no known insecticidal activity; Cry41A...
Article
Full-text available
BACKGROUND Bacillus thuringiensis (Bt) is a Gram‐positive bacterium that produces various insecticidal proteins used to control insect pests. Spodoptera frugiperda is a global insect pest which causes serious damage to crops, but bio‐insecticides currently available to control this pest have limited activity and so new ones are always being sought....
Preprint
Full-text available
Cry toxins produced by the bacterium Bacillus thuringiensis are of significant agronomic value worldwide due to their potent and highly specific activity against various insect orders. However, some of these pore-forming toxins display specific activity against a range of human cancer cells whilst possessing no known insecticidal activity, Cry41Aa...
Article
A scarabid-specific isolate (Bt 62) of Bacillus thuringiensis Berliner was bioassayed against different instars of the white grub Holotrichia serrata F. (Coleoptera: Scarabaeidae). Carrot disc contamination method was followed since preliminary tests established carrot as a suitable food material vis-à-vis potato, sugarcane root and farmyard manure...
Article
Full-text available
Bioinsecticides and transgenic crops based on the bacterial pathogen Bacillus thuringiensis (Bt) can effectively control diverse agricultural insect pests, nevertheless, the evolution of resistance without obvious fitness costs has seriously eroded the sustainable use of these Bt products. Recently, it has been discovered that an increased titer of...
Article
The Lysinibacillus sphaericus proteins Tpp49Aa1 and Cry48Aa1 can together act as a toxin toward the mosquito Culex quinquefasciatus and have potential use in biocontrol. Given that proteins with sequence homology to the individual proteins can have activity alone against other insect species, the structure of Tpp49Aa1 was solved in order to underst...
Article
Full-text available
Cell wall hydrolases are ubiquitous among spore-form bacteria and essential for mother cell lysis. In this study, a novel cell wall hydrolase gene cwlE involved in mother cell lysis was characterized from Bacillus thuringiensis subsp. israelensis (Bti) strain Bt-59. cwlE was specifically expressed in Bti and located in the large plasmid carrying th...
Article
The rapid evolution of pest resistance threatens the sustainable utilization of bioinsecticides such as abamectin, and so deciphering the molecular mechanisms affecting toxicity and resistance is essential for their long-term application. Historical studies of abamectin resistance in arthropods have mainly focused on mechanisms involving the glutam...
Article
Full-text available
The pesticidal toxins of Bacillus thuringiensis (Bt) supply the active proteins for genetically modified insect-resistant crops. There is therefore keen interest in finding new toxins, or improving known toxins, in order to increase the mortality of various targets. The production and screening of large libraries of mutagenized toxins are among the...
Article
Full-text available
An automated method was developed for differentiating closely related B. cereus sensu lato (s.l.) species, especially biopesticide Bacillus thuringiensis, from other human pathogens, B. anthracis and B. cereus sensu stricto (s.s.). In the current research, four typing methods were initially compared, including multi-locus sequence typing (MLST), si...
Article
Full-text available
The identification of functional midgut receptors for pesticidal proteins produced by Bacillus thuringiensis (Bt) is critical for deciphering the molecular mechanism of Bt resistance in insects. Reduced expression of the PxABCB1 gene was previously found to be associated with Cry1Ac resistance in the diamondback moth, Plutella xylostella (L.). To d...
Article
Full-text available
Ongoing host-pathogen interactions can trigger a coevolutionary arms race, while genetic diversity within the host can facilitate its adaptation to pathogens. Here, we used the diamondback moth (Plutella xylostella) and its pathogen Bacillus thuringiensis (Bt) as a model for exploring an adaptive evolutionary mechanism. We found that insect host ad...
Article
Full-text available
Passage experiments that sequentially infect hosts with parasites have long been used to manipulate virulence. However, for many invertebrate pathogens, passage has been applied naively without a full theoretical understanding of how best to select for increased virulence and this has led to very mixed results. Understanding the evolution of virule...
Article
Cotton bollworm (Helicoverpa armigera) is an economically important pest, which is difficult to manage due to its biological and ecological traits, and resistance to most insecticides. Alternative compounds for the sustainable management of H. armigera are needed. As a fungal metabolite, Cyclosporin A (CsA) has not been applied in agriculture pests...
Article
Full-text available
Maintaining fitness during pathogen infection is vital for host survival as an excessive response can be as detrimental as the infection itself. Fitness costs are frequently associated with insect hosts countering the toxic effect of the entomopathogenic bacterium Bacillus thuringiensis (Bt), which delay the evolution of resistance to this pathogen...
Article
Rapid evolution of resistance in crop pests to Bacillus thuringiensis (Bt) products threatens their widespread use, especially as pests appear to develop resistance through a range of different physiological adaptations. With such a diverse range of mechanisms reported, researchers have resorted to multi-omic approaches to understand the molecular...
Preprint
Full-text available
Passage experiments that sequentially infect hosts with parasites have long been used to manipulate virulence. However, in many invertebrate pathogens passage has been applied naively without a full theoretical understanding of how best to select for increased virulence. This has led to very mixed results. Understanding the evolution of virulence i...
Article
Full-text available
Cry41Aa, also called parasporin-3, belongs to a group of toxins from the entomopathogenic bacterium Bacillus thuringiensis that show activity against human cancer cells. Cry41Aa exhibits preferential cytocidal activity towards HL-60 (human promyelocytic leukaemia cells) and HepG2 (human liver cancer cells) cell lines after being proteolytically act...
Article
Full-text available
Pesticidal proteins derived from the bacterium Bacillus thuringiensis, have provided the bases for a diverse array of pest management tools ranging from natural products used in organic agriculture, to modern biotechnological approaches. With advances in genome sequencing technologies and protein structure determination, an increasing number of pes...
Article
Full-text available
Background Biopesticides and transgenic crops based on Bacillus thuringiensis (Bt) toxins are extensively used to control insect pests, but the rapid evolution of insect resistance seriously threatens their effectiveness. Bt resistance is often polygenic and complex. Mutations that confer resistance occur in midgut proteins that act as cell surface...
Article
Full-text available
The benefits of biopesticides and transgenic crops based on the insecticidal Cry-toxins from Bacillus thuringiensis (Bt) are considerably threatened by insect resistance evolution, thus, deciphering the molecular mechanisms underlying insect resistance to Bt products is of great significance to their sustainable utilization. Previously, we have dem...
Article
Deciphering the molecular mechanisms of insect resistance to Bacillus thuringiensis (Bt) based biotechnology products including Bt sprays and Bt crops is critical for the long-term application of Bt technology. Previously, we established that down-regulation of the ABC transporter gene PxABCG1, trans-regulated by the MAPK signaling pathway, contrib...
Preprint
Full-text available
Tpp49Aa1 from Lysinibacillus sphaericus is a Toxin_10 family protein that must interact with Cry48Aa1, a 3-domain crystal protein, to produce potent mosquitocidal activity, specifically against Culex quinquefasciatus mosquitoes. We use Culex cell lines to demonstrate for the first time transient detrimental effects of individual toxin components an...
Article
Full-text available
Bacillus thuringiensis subsp. israelensis (Bti) has been proven to efficiently control mosquitoes, of which many species are important vectors of human disease. The larvicidal action is attributed to the parasporal crystals formed in the sporulating cells, and released upon cell autolysis. In this study, a sporulation-specific cwlC gene that encode...
Article
Full-text available
In this study, we report the whole genome assembly of Bt 62, a novel isolate harbouring cry8 holotype gene identified by us earlier. Sequencing was carried out using a combination of Illumina NextSeq 500 and Oxford Nanopore sequencing Technologies (ONT). The final assembled genome was 6.13 Mb comprising a circular chromosome and four plasmids. The...
Article
Bacillus thuringiensis subsp. israelensis (Bti) has been proven to efficiently control mosquitoes, of which many species are important vectors of human disease. The larvicidal action is attributed to the parasporal crystals formed in the sporulating cells, and released upon cell autolysis. In this study, a sporulation‐specific cwlC gene that encode...
Article
Full-text available
Host-pathogen interactions are central components of ecological networks where the MAPK signaling pathways act as central hubs of these complex interactions. We have previously shown that an insect hormone modulated MAPK signaling cascade participates as a general switch to trans-regulate differential expression of diverse midgut genes in the diamo...
Poster
Full-text available
The Cry2Aa insecticidal protein is produced by the bacterium Bacillus thuringiensis. It has dual-activity on some dipteran and lepidopteran insects. Previously, it was believed that Cry2Aa specificity to Aedes aegypti mosquitoes, species responsible for transmitting Yellow fever and Zika diseases, was associated with a binding motif within domain I...
Article
Full-text available
Deciphering the molecular mechanisms underlying insect resistance to Cry toxins produced by Bacillus thuringiensis (Bt) is pivotal for the sustainable utilization of Bt biopesticides and transgenic Bt crops. Previously, we identified that MAPK-mediated reduced expression of the PxABCB1 gene is associated with Bt Cry1Ac resistance in the diamondback...
Article
Full-text available
The molecular mechanisms of insect resistance to Cry toxins generated from the bacterium Bacillus thuringiensis (Bt) urgently need to be elucidated to enable the improvement and sustainability of Bt-based products. Although downregulation of the expression of midgut receptor genes is a pivotal mechanism of insect resistance to Bt Cry toxins, the un...
Article
Bacteria in the Bacillus cereus group encompasses diverse niches and include causative agents of anthrax and food poisoning, specialized invertebrate pathogens and psychrotolerant species. Understanding whether natural selection has led to divergence between phylogenetic clades can help understanding the processes shaping speciation, and has import...
Article
Full-text available
In 1998 a nomenclature for the growing list of pesticidal proteins from Bacillus thuringiensis (Bt) was derived based solely on protein sequence comparisons. This nomenclature was widely adopted and provided a robust framework for the naming and classification of the proteins. The success of these proteins in integrated pest management schemes prom...
Article
Full-text available
The arms race between entomopathogenic bacteria and their insect hosts is an excellent model for decoding the intricate coevolutionary processes of host-pathogen interaction. Here, we demonstrate that the MAPK signaling pathway is a general switch to trans-regulate differential expression of aminopeptidase N and other midgut genes in an insect host...
Article
One advantage of using the Cry proteins of Bacillus thuringiensis as pesticides is their relatively narrow spectrum of activity, thus reducing the risk of non-target effects. Understanding the molecular basis of specificity has the potential to help us design improved products against emerging pests, or against pests that have developed resistance...
Article
Full-text available
Biomphalaria glabrata is a freshwater Planorbidae snail. In its environment, this mollusk faces numerous microorganisms or pathogens, and has developed sophisticated innate immune mechanisms to survive. The mechanisms of recognition are quite well understood in Biomphalaria glabrata, but immune effectors have been seldom described. In this study, w...
Article
Bacillus thuringiensis (Bt) is a gram positive spore forming bacterium which produces intracellular protein crystals toxic to a wide variety of insect larvae and is the most commonly used biological pesticide worldwide. More recently, Bt crystal proteins known as parasporins have been discovered, that have no known insecticidal activity but target...
Article
Bacillus thuringiensis crystal (Cry) proteins, used for decades as insecticidal toxins, are well known to be toxic to certain insects, but not to mammals. A novel group of Cry toxins called parasporins possess a strong cytocidal activity against some human cancer cells. Cry41Aa, or parasporin3, closely resembles commercially used insecticidal toxin...
Article
: A new series of cationic gold(I) pyrazole complexes were prepared in excellent yields as their perchlorate salts. Results of cell viability assays show that these novel complexes have good cytotoxic properties against the human HepG2 cancer cell line. These complexes showed promising anti-cancer activities and to our knowledge, pyrazoles have nev...
Article
Transgenic plants expressing insecticidal proteins originating from Bacillus thuringiensis (Bt) have successfully been used to control lepidopteran and coleopteran pests with chewing mouthparts. However, only a handful of Bt proteins have been identified that have bioactivity against sap sucking pests (Hemiptera), including aphids, whiteflies, plan...
Article
A PCR-RFLP method was used to identify cry2A toxin genes in a collection of 300 strains of Bacillus thuringiensis. From 81 genes identified, the vast majority appeared to be cry2Aa or cry2Ab, however three showed a different pattern and were subsequently cloned and sequenced. The gene cloned from strain HD395 was named cry2Ba2. Since the proteins e...
Article
Habrobracon hebetor (Say) is a parasitoid of various Lepidoptera including Helicoverpa armigera (Hübner), a key pest of different crops and vegetables. The development of both H. armigera and H. hebetor were simultaneously evaluated against a wide range of constant temperatures (10, 15, 17.5, 20, 25, 27.5, 30, 35, 37.5 and 40 °C). Helicoverpa armig...
Article
Full-text available
Because correct identification of insects is crucial for pest management involving chemical or biological control agents, we have used a molecular approach to identify and characterize specimens of the cotton pest Phenacoccus solenopsis Tinsley (Sternorrhyncha: Pseudococcidae) present in different regions of Pakistan. The specimens were analyzed th...
Chapter
Since the first insecticidal crystal toxin genes from Bacillus thuringiensis (Bt) were cloned and sequenced in the late 1980s, there have been various attempts to classify these proteins in ways that would be useful for scientists working with them. Such methods have generally involved grouping them by either sequence similarity or by toxicity spec...
Book
This volume presents a comprehensive perspective of the biopesticides Bacillus thuringiensis and Lysinibacillus sphaericus, from their basic biology to agriculture, forestry and public-health applications. It covers their ecology, virulence factors, and genetic characterization. The topics related to agriculture and forestry include mode of action,...
Article
Understanding how certain protein toxins from the normally insecticidal bacterium Bacillus thuringiensis target human cell lines has implications for both the risk assessment of products containing these toxins and potentially for cancer therapy. This understanding requires knowledge of whether the human cell active toxins work by the same mechanis...
Article
Full-text available
Bacillus thuringiensis (Bt) is the most successful, environmentally-friendly, and intensively studied microbial insecticide. The major characteristic of Bt is the production of proteinaceous crystals containing toxins with specific activity against many pests including dipteran, lepidopteran, and coleopteran insects, as well as nematodes, protozoa,...
Article
In Pakistan, the cotton mealybug, Phenacoccus solenopsis Tinsley (Sternorrhyncha (Homoptera): Pseudococcidae), is a serious pest of many cultivated plants. A parasitoid, Aenasius bambawalei Hayat (Hymenoptera: Encyrtidae), is associated with P. solenopsis. In order to mass rear A. bambawalei for a biological control program, it is important to inve...
Article
The increasing rate of discovery of new toxins with potential for the control of invertebrate pests through next generation sequencing, presents challenges for the identification of the best candidates for further development. A consideration of structural similarities between the different toxins suggest that they may be functionally less diverse...
Article
Insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) are used as active components of biopesticides and as plant incorporated protectants in transgenic crops. One of the most relevant attributes of these Bt protein-based insecticidal technologies is their high specificity, which assures lack of detrimental effects on non-target inse...
Article
Full-text available
Importance: Protein toxins from the bacteriumBacillus thuringiensisare being increasingly used as biopesticides against a wide range of insect pests, yet the search for new or improved toxins is becoming more difficult as traditional methods for gene discovery routinely isolate previously identified clones. This paper describes an approach that we...
Article
Full text download link: http://authors.elsevier.com/a/1SxgF7tYJFNshP Plutella xylostella was the first insect for which resistance to Bacillus thuringiensis was reported in the field, yet despite many studies on the nature of this resistance phenotype its genetic and molecular basis remains elusive. Many different factors have been proposed as c...
Article
Full-text available
During evolution the creation of single crossover chimeras between duplicated paralogous genes is a known process for increasing diversity. Comparing the properties of homologously recombined chimeras with one or two crossovers is also an efficient strategy for analyzing relationships between sequence variation and function. However, no well-develo...
Article
Full-text available
Chickpea has to face stern post-harvest losses in storage due to heavy bruchid infestation. Pulse beetle, Callosobruchus chinensis L. is the major insect pest attacking its grains in storage. Powder of black pepper fruit, extract of neem seed and oil of castor seed were selected to compare their insecticidal potency with standard grain protectant (...
Article
It is gratifying to know that our opinion article [1] on the role of nematodes in the ecology of Bacillus thuringiensis (Bt) has stimulated debate on this topic. Loguercio and Argolo-Filho [2] believe that there is sufficient evidence to consider Bt as a bacterium that can survive and proliferate in a wide range of environmental niches and hosts. F...
Article
The widespread and sustainable exploitation of the entomopathogen Bacillus thuringiensis (Bt) in pest control is threatened by the evolution of resistance. Although resistance is often associated with loss of binding of the Bt toxins to the insect midgut cells, other factors have been implicated. Here we used suppressive subtractive hybridization a...
Conference Paper
Full-text available
The sublethal effects of Cry1Ac Bacillus thuringiensis protein were investigated on life table parameters of the Plutella xylostella (L.) Brazilian population. After dip-leaf bioassay with kale leaves, the sublethal concentrations 0.5, 0.25, and 0.1 µg/mL were determined. The control group was water and Tween 0.05%. Third instar P. xylostella larva...
Article
Bacillus thuringiensis, which is well known as an entomopathogen, has been accepted by the public as a safe bioinsecticide. The natural ecology of this bacterium has never been particularly clear, with views ranging from it being an obligate pathogen to an opportunist pathogen that can otherwise exist as a soil saprophyte or a plant endophyte. This...
Article
House flies (Musca domestica L.) are key pests of poultry and are managed worldwide with a variety of insecticides. However, extensive and injudicious use of insecticides has led to the development of resistance in many insect pests. Insecticide mixtures can increase the efficacy of the product and/or delay the development of resistance, thus makin...
Article
Transgenic crop pyramids producing two or more Bacillus thuringiensis (Bt) toxins that kill the same insect pest have been widely used to delay evolution of pest resistance. To assess the potential of pyramids to achieve this goal, we analyze data from 38 studies that report effects of ten Bt toxins used in transgenic crops against 15 insect pests....
Article
Full-text available
This study investigated the toxicity of neem treatments in comparison with Confidor 20% SL against cotton mealybug Phenacoccus solenopsis Tinsley. The experiments were laid out under completely randomized design (CRD) with six main treatments including untreated check under laboratory conditions at Agricultural research Institute Tarnab, Peshawar-P...
Article
The Bacillus thuringiensis strain S2160-1 has previously been identified as being highly toxic to mosquito larvae and a viable alternative to strains currently used commercially to control these insects. A PCR approach had identified the presence of four putative insecticidal toxin genes (cry30Ea, cry30 Ga, cry50Ba and cry54Ba) in this strain, but...
Article
There has been considerable effort made in recent years for research groups and other organizations to build up large collections of strains of Bacillus thuringiensis in the search for genes encoding novel insecticidal toxins, or encoding novel metabolic pathways. Whilst next generation sequencing allows the detailed genetic characterization of a b...
Article
Full-text available
The Bacillus thuringiensis strain HBF-18 (CGMCC 2070), which has previously been shown to encode the cry8Ga toxin gene, is active against both Holotrichia oblita and Holotrichia parallela. Recombinant Cry8Ga however is only weakly toxic to these insect pests suggesting the involvement of additional toxins in the native strain. We report that throug...
Chapter
Parasporal crystals produced by Bacillus thuringiensis (Bt) bacteria are the main virulence factors underlying Bt toxicity to insects. Parasporal crystals are composed primarily of Cry and Cyt proteins that act on the midgut of susceptible insects. Cry proteins are an important component of Bt biopesticides and are vital tools for insect control vi...
Article
Full-text available
The entomopathogen Bacillus thuringiensis is used to control various pest species of scarab beetle but is not particularly effective. Gut bacteria have diverse ecological and evolutionary effects on their hosts, but whether gut bacteria can protect scarabs from B. thuringiensis infection remains poorly understood. To investigate this, we isolated 3...
Article
Full-text available
Pesticide mixtures can reduce the rate at which insects evolve pesticide resistance. However, with live biopesticides such as the naturally abundant pathogen Bacillus thuringiensis (Bt), a range of additional biological considerations might affect the evolution of resistance. These can include ecological interactions in mixed infections, the differ...
Article
A pooled clone method was developed to screen for cry2A genes. This metagenomic method avoids the need to analyse isolated Bacillus thuringiensis strains by performing gene specific PCR on plasmid-enriched DNA prepared from a pooled soil sample. Using this approach the novel holotype gene cry2Ah1 was cloned and characterized. The toxin gene was ove...
Article
Full-text available
In the present study, we report the occurrence of cry8 positive isolates of Bacillus thuringiensis (Bt) in selected white grub, Holotrichia serrata F. (Coleoptera: Scarabaeidae), endemic soils of sugarcane ecosystem and other places in Tamil Nadu. Out of the 66 soil samples collected and screened for white grub specific Bt, 74 isolates of the bacte...
Article
Full-text available
Cancer is widely accepted as one of the major health issues. Diet composition and exposure to environmental genotoxic and carcinogenic agents such as polycyclic aromatic hydrocarbons (PAHs) are among the causative factors for various types of cancers, including breast cancer. Low penetrance genes including glutathione S transferases (GST) in associ...
Article
Full-text available
Previous studies reported “mode 1” Bacillus thuringiensis resistance in a colony of diamondback moths (NO-QA), and recently, this resistance has been mapped to an ABC transporter (ABCC2) locus. We report the lack of binding of Cry1Fa to insects derived from this colony and compare our data with those from other insects with ABCC2-associated resista...

Network

Cited By