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GABA is a flexible, low-molecular-weight mol-
ecule that can achieve a large number of low-
energy conformations [1], that are recognized by 
three major classes of receptors in the mamma-
lian brain: the ionotropic GABAA and r GABAC 
receptors, and the metabotropic GABAB recep-
tors. The GABAergic system is involved in 
a variety of physiological processes, such as 
memory [2,3], cognition [4,5], vision [6–9], pain 
management [10–12], sleep [13–15] and cardiovas-
cular regulation [16,17]. Defects and deficits of 
this system have been implicated in the develop-
ment of neurological and psychiatric conditions 
such as epilepsy [18,19], anxiety [2,20–22], mood 
disorders [23], schizophrenia [5,24,25], Alzheimer’s 
disease [26,27] and Huntington’s chorea [28,29]. 
Thus, agents that can modify the GABAergic 
system have the potential to become important 
therapies. This article concentrates on a subclass 
of ionotropic GABA receptors, the r GABAC 
receptor, a topic of previous reviews [30–34]. 

The r GABAC receptors belong to the nico-
tinicoid superfamily or cys-loop superfamily [35], 
which includes nicotinic acetylcholine receptors, 
GABAA receptors (see review [36]), serotonin 
5-HT3 receptors, strychnine-sensitive glycine 
receptors and invertebrate anionic glutamate 
receptors. These receptors are all structurally 
related [35,37,38] possessing four transmembrane 
domains (TM1–4) connected by variable 
lengths of intracellular and extracellular loops. 
The TM2 domain of each subunit lines the ion 
pore and, in the case of r GABAC receptors, is 
permeable to chloride ions. Each subunit con-
tains a large extracellular N-terminal domain for 
ligand binding, as well as a short extracellular 
C-terminus [39,40]. Another common physical 
feature shared throughout the family members 
is the signature-conserved disulfide-bridged loop 

in the extracellular domain, formed by a pair 
of cysteines at a 15-residue spacing at a fixed 
position [35,41,42].

Subunit composition, distribution 

& function of GABA
C
 receptors

The first indication of a possible new class of 
ionotropic GABA receptors arose from a study 
that evaluated cis- and trans-4-aminocrotonic 
acid (CACA and TACA, respectively; Figure 1) 
on the firing cat spinal interneurons [43]. It was 
found that CACA, a folded analog of GABA, 
depressed the firing of the interneurons and 
this action could not be antagonized by the 
GABA A antagonist bicuculline; while the 
effect of TACA, the extended form of GABA, 
was antagonized by bicuculline [43]. This was 
followed by the discovery that CACA had no 
influence on the binding against radiolabelled 
baclofen in rat cerebellum. Results from these 
studies led to the term ‘GABAC receptors’ for 
a class of ‘bicuculline- and baclofen-insensitive 
receptors’ [44].

It was not until the early 1990s that the so-
called ‘GABAC receptor’ was shown to be func-
tional [45]. Isolated bovine retinal mRNA, when 
expressed in Xenopus oocytes, was found to form 
two receptors: a bicuculline-sensitive GABAA 
receptor and a novel receptor type that was 
both bicuculline and baclofen insensitive [45]. 
Subsequently, Cutting and coworkers [46] cloned 
and sequenced a new subunit, termed ‘rho 1 
(r1) subunit’ from human retinal cDNA. The 
sequence of the r1 subunit displayed approxi-
mately 30–38% amino acid similarity to pre-
viously identified GABAA subunits and when 
expressed in Xenopus oocytes, was able to form 
a homooligomeric receptor, 50-times more sen-
sitive to picrotoxin than GABAA receptors [46]. 
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These results were further supported by stud-
ies carried out by Feigenspan et al. on rat reti-
nal bipolar cells [47], and Qian et al. on rod-
driven horizontal cells isolated from white perch 
retina [48]. 

To date, five different subtypes of the r sub-
unit have been cloned from different species, 
which include human (r1–3), mouse (r1–2), rat 
(r1–3), chicken (r1–2) and white perch (r1A–B, 
r2A–B and r3; see the review by Enz [49]). The 
r subunits share approximately 70% to over 
90% amino acid similarity within the subunit 
family and between different species [50–52]. 

Most r subunits form functional homopenta-
meric chloride channels [46,51,53–57]. This concept 
is supported by various Hill coefficient studies of 
both native and recombinant receptors that show 
Hill coefficients of 3–4, indicating that at least 
three GABA molecules are required to activate 
the receptor [8,50,58]. Studies on recombinant and 
native receptors have also provided evidence that 
GABAC receptors may consist of a combination 
of r1, r2 and/or r3 subunits, forming ‘pseudo-
homomeric’ GABAC receptors [49,59,60]. Although 
some studies have reported the possible coassem-
bly of the r subunits with other GABAA sub-
units, for example the a1 and g2 subunits, this 
remains controversial and it is still unknown if 
these heteromeric receptors exist in vitro [8,61–65]. 

Immunohistochemical and electrophysio-
logical studies have shown that, in most species, 
the r1 subunits are predominately expressed in 
bipolar cells [66–71] and horizontal cells in the 
retina; while the r2 subunits are found not only 
in the retina but also in the spinal cord [72] and 
in several brain regions, such as the hippo-
campus, cortex, pituitary, cerebellum and thala-
mus [49,60]. The r3 subunits are reported to be 
found mainly in the retina and in all regions of 
the brain, except the superior colliculus [59,73]. 
GABAC receptors have also been found outside 
the CNS, such as the GI tract [74,75].

McCall et al. found that the absence of the 
r1 subunit in knock-out mice led to the abol-
ishment of the GABA-evoked response in the 
mouse retina normally mediated by GABAC 
receptors [76], and signaling from rod bipo-
lar cells to third order cells was altered [76,77], 
while Schlicker et al. observed an alteration, 
rather than a complete elimination, in GABAC-
mediated responses in the superior colliculus, 
suggesting that r2 or r3 GABAC receptors are 
functional in this tissue [77]. In addition, Zheng 
and colleagues demonstrated a role for GABAC 
receptors in maintaining both homeostasis and 
balance of retinal neurotransmitter function as 
knockout of the retinal r1 GABAC subunit led to 
changes in vascular permeability similar to the 
pathological changes induced by retinal hypoxic 
conditions [78]. Interestingly, Zheng and cowork-
ers saw a decrease in pain threshold in r1-mutant 
mice [79]. Knock-out studies also showed that r1 

GABAC receptors mediate inhibitory modula-
tion on the olfactory bulb [80]. Knock-out stud-
ies on the GABAC receptors in mice also sug-
gest the involvement of these receptors in pain 
pathways [201]. 

Both r1 and r2 GABAC receptors are found 
in the hippocampus where there is evidence 
for a functional role, as extrasynaptic receptors 
activated via spillover of synaptically released 
GABA [81] and in paired-pulse depression of 
inhibitory postsynaptic currents [82]. GABAC 
receptors may also be involved in the regulation 
of thyrotropin release from the pituitary [83] and 
in synaptic transmission in the spinal cord [72]. 
GABAC receptors have also been described on 
neurons in the gastrointestinal system [75] where 
they may increase the release of nitric oxide 
from nonadrenergic, noncholinergic inhibitory 
neurons [84].

The localization of the various r GABAC 
receptors, knock-out and pharmacological stud-
ies show the receptor’s critical roles in visual pro-
cessing and myopia development [85,86], olfac-
tory senses [80], learning and memory [3,87], sleep 
patterns [87,88], nociception [79] and hormone 
secretion [89]. 

Agonists at r GABA
C
 receptors 

The pharmacology of r GABAC receptors is 
distinctive and seemingly less complex com-
pared with that of GABA A receptors, pos-
sibly due to its simpler subunit composition. 
GABAC receptors are approximately eightfold 
more sensitive to GABA than GABAA recep-
tors [31], and have a smaller chloride conductance 
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Figure 1. GABA, CACA and TACA.
CACA: Cis-aminocrotonic acid; TACA: Trans-4-aminocrotonic acid.
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(8 vs 27 pS); a longer mean channel-opening 
time (150 vs 25 ms); and are not prone to desen-
sitization [33,49,90,91]. Over the last 15 years, con-
formationally restricted analogs of GABA have 
been employed to investigate the preferred con-
formation of GABA at these ‘novel’ receptors, 
thereby assisting with the characterization of the 
binding site. 

The known GABAA agonist muscimol is not 
selective as it is found to be a potent partial ago-
nist at r GABAC receptors [53,92], while isoguva-
cine also acts as weak partial agonist at r GABAC 
receptors, with a higher efficacy at r2 than at r1 
receptors [92]. CACA is a partial agonist at both 
r1 and r2 GABAC receptors with little activity at 
GABAA receptors. However, it acts as a substrate 
for GABA uptake transporters that are sensitive 
to b-alanine and nipecotic acid [93]. CACA acti-
vates GABAC receptors with an efficacy approxi-
mately one-quarter of that of GABA. By con-
trast, CACA only weakly activates homomeric 
r3 receptors [94]. TACA, an isomer of CACA and 
an analog of GABA in the ‘extended’ form, is a 
nonselective agonist at r1 and r2 receptors that 
is almost equipotent to GABA [95]. TACA is the 
most potent GABAC agonist described to date, 
being approximately 120 and 40-times more 
potent than CACA at homomeric r1 and r2, and 
r3 recombinant receptors expressed in Xenopus 
oocytes, respectively [33,94]. However, TACA is 
also a potent GABAA receptor agonist [53,92]. 

Chebib et al. investigated the activities of vari-
ous mono- and di-substituted TACA analogs 
on r1 GABAC receptors [96]. It was found that 
a fluoro substituent at the C2 position (trans-
4-amino-2-f luorobut-2-enoic acid) caused a 
reduction in agonist activity when compared 
with GABA and TACA [96]. A methyl substitu-
ent at the same position (trans-4-amino-2-meth-
ylbut-2-enoic acid [2-MeTACA]) gives rise to a 
competitive antagonist at r1 receptors, while it 
acts as a partial agonist at r2 receptors [92], and 
inactive at r3 receptors [94]. Thus, 2-MeTACA 
can be used to differentiate between r1 and r2 
receptors [92].

The saturated, 2-methyl-substituted analog  
(S)-4-amino-2-methylbutanoic acid ((S)-2-
MeGABA) is a full but moderate agonist at 
r GABAC receptors [97,98]. The hydroxyl-
ated GABA analogs (S)- and (R)-4-amino-3-
hydroxybutanoic acid also act as full agonists 
at r1 GABAC receptors in a stereo selective 
manner [99]. The sulfinic analog of GABA, 
homohypotaurine, is a potent partial agonist at 
r1 receptors [96].

The introduction of a cyclopropane moi-
ety to the GABA backbone gave rise to the 
conformationally restricted analogs (±)-cis-2-
(aminomethyl)cyclopropanecarboxylic acid 
([±]-CAMP), and (±)-trans-2-(aminomethyl)
cyclopropanecarboxylic acid ([±]-TAMP). The 
racemic mixtures were first synthesized and their 
activities studied by Allan et al. [100]. (±)-TAMP, 
corresponding to the ‘extended’ form of GABA, 
was found to be a potent and bi cuculline-sen-
sitive depressant of firing of cat spinal neu-
rons. (±)-CAMP, the ‘folded’ form, was less 
potent than (±)-TAMP [100]. The enantiomers 
were isolated and further studied by Duke 
et al. [101] and Crittenden et al. [97] at r GABAC 
receptors expressed in Xenopus oocytes. It was 
revealed that the full agonist activity exhibited 
by (±)-CAMP at r GABAC receptors resides in 
(+)-CAMP, while (–)-CAMP acts as an antag-
onist at the same receptors (Figure 2). Both 
(+)-TAMP and (–)-TAMP are partial agonists 
at r GABAC receptors with significant agonist 
activities at the GABAA receptors. The superior 
selectivity of (+)-CAMP for r GABAC receptors 
over (+)- and (–)-TAMP further demonstrates 
that the ‘folded’ form of GABA is preferred at 
these receptors.

The effects of a series of racemic cyclopentane 
analogs of GABA were evaluated for their ability 
to inhibit the firing of hippocampal pyramidal 
neurons in rats [102] and motoneurones on iso-
lated frog spinal cord [103]. The (±)-trans-3-ami-
nocyclopentane carboxylic acids ([±]-3-TACP) 
rather than the (±)-cis-isomers ([±]-3-CACP) 
were the most potent depressants of neuronal 
firing and the effects were bicuculline sensitive. 
Syntheses of the pure enantiomers were later 
reported by Allan et al. [104] and these com-
pounds were subsequently investigated for their 
effects on GABAA receptors in guinea pig ileum, 
in binding studies using rat brain membranes, 
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Figure 2. (+)- and (–)-CAMP.
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and in GABA uptake using rat brain cortical 
slices [105]. The activities of the resolved iso-
mers were also studied on recombinant r1 and 
r2 GABAC receptors [97,106] and were found to 
have a range of activities as either agonists or 
antagonists, indicating that the compounds 
were not selective for either GABAA or GABAC 
receptors. Nevertheless, these molecules became 
leads for the development of selective r GABAC 
antagonists [85,107].

A series of cyclopentane carboxylic acid ana-
logs of GABA was also found to be antago-
nists at r GABAC receptors [106]. However, 
increasing the size of the cyclopentane ring to 
a cyclohexane ring or reducing the size to a 
cyclobutane ring led to analogs with markedly 
reduced activity at either the GABAA or GABAC 
receptors [102,103,107,108].

Imidazole-4-acetic acid (I-4AA; Figure 3), a 
naturally occurring bioisostere of GABA, pos-
sesses a mixed pharmacological profile at the 
various r receptors: at r1 receptors, I-4AA is a 
potent antagonist possessing low intrinsic activ-
ity; at r2 receptors, it is a potent partial agonist 
with a 12-fold higher intrinsic activity than at 

r1 receptors; while it was found to be a potent 
antagonist at r3 receptors. Thus, I-4AA can be 
used to distinguish between the r1, r2 and r3 
receptors [34,92,94,109]. More recently, substituted 
analogs of I-4AA analogs have been developed. 
Among the series of analogs synthesized, more 
lipophillic and selective agonists were identified 
for the GABAC receptor (Figure 3). It was found 
that substituents in the 5-position were tolerated 
while the same substituent in the 2-position led 
to inactive molecules [110]. TaBle 1 summarizes 
the activities of selective agonists known for the 
r GABAC receptor.

Antagonists at r GABA
C
 receptors 

There are reports showing that some GABAA 
receptor antagonists are also antagonists at 
r GABAC receptors including GABAzine 
(SR-95531), while other reports show certain 
GABAA receptor agonists act as antagonists at 
GABAC receptors. These include isonipecotic 
acid, 4,5,6,7-tetrahydroisoxazolo[4,5-c]pyri-
din-3-ol (THIP; gaboxadol) and  piperidin-4-
ylsulfonic acid. Picrotoxin is a noncompetitive 
GABAC and GABAA antagonist [33]. 

Krehen et al. evaluated a series of THIP ana-
logs and found that iso-THIP is a more potent 
GABAC antagonist than THIP, while aza-
THIP was found to be a moderate, competitive 
antagonist at human r1 GABAC receptors that is 
virtually inactive at GABAA receptors [111].

The methyl-substituted TACA analog, 
2-MeTACA, is a competitive r1 GABAC antag-
onist. The (R)-isomer of methyl-substituted 
GABA, (R)-2-MeGABA is also a moderate 
antagonist at r1 and r2 GABAC receptors [97]. 
The GABA homolog d-aminovaleric acid, a 
GABAB antagonist, and the isothiouronium 
CACA analog Z-3-([aminoiminomethyl]thio)
prop-2-enoic acid, a GABAA agonist [112], are 
both moderate GABAC antagonists [33,113]. 

A series of cyclopentene analogs of GABA was 
synthesized [114] and their activities at GABA 
receptors studied [105,106]. Double-bond inser-
tion at the C2–3 position gives the cis-pair of 
isomers (+) and (–)-cis-4-aminocyclopent-2-
ene-1-carboxylic acid ((±)-4-CACPCA), and 
the trans-pair of isomers (+) and (–)-trans-
4-aminocyclopent-2-ene-1-carboxylic acid 
((±)-4-TACPCA). The cis isomers were found to 
be weak antagonists at human r1 and r2 GABAC 
receptors expressed in Xenopus oocytes [106]. 
Double-bond insertion specifically at the C1–2 
position restricts the movement of the car-
boxylic acid group and thus gives the isomers  

Table 1. Summary of the activities of GABAC-selective agonists.

Compound GABAA GABAC GABAB Ref.

CACA Inactive <500 µM Partial agonist
r1 EC50 = 74 µM 
r2 EC50 = 70 µM 
r3 EC50 = 139 µM

Inactive [94,96]

(+)-CAMP Weak antagonist Full agonist
r1 EC50 = 40 µM 
r2 EC50 = 17 µM

Inactive [101]

5-Me-I-4AA > 1mM r1 EC50 = 22 µM Not determined [110]

CACA: Cis-aminocrotonic acid; CAMP: Cis-2-(aminomethyl)cyclopropanecarboxylic acid.
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HN N

O

OH

HN N

O

OH

HN N

O

OH

H3C

I-4AA 5-Ph-I-4AA 5-Me-I-4AA

Figure 3. I-4AA, 5-Ph I-4AA and 5-Me I-4AA.
I-4AA: Imidazole-4-acetic acid.
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(+)-4-aminocyclopent-1-enyl carboxylic acid 
([+]-4-ACPCA) and (–)-4-aminocyclopent-
1-enyl carboxylic acid ([–]-4-ACPCA). (+)-4-
ACPCA is a GABAC antagonist; while (–)-4-
ACPCA is largely inactive. This suggests that 
the (S)-configuration at the amino terminal is 
preferred at r GABAC receptors [97,106]. 

During the initial characterization of 
r GABAC receptors, Woodward et al. found that 
certain phosphinic acid analogs of GABA, which 
are potent GABAB receptor agonists, are also 
potent r GABAC receptor antagonists, while the 
phosphonic acid analogs were less potent [113]. 
Consequently, phosphinic acid analogs of GABA, 
CACA and TACA that were originally devel-
oped as potent GABAB receptor ligands [115,116], 
were subsequently studied at r1 GABAC receptors 
expressed in Xenopus oocytes [108]. The bioiso-
steres of GABA,  3-amino propylphosphinic acid 
(3-APPA; Figure 4) and 3-aminopropyl(methyl)
phosphinic acid (3-APMPA; Figure 4) are among 
the most potent competitive antagonists at r1 

GABAC receptors. Introduction of unsatura-
tion between C2 and C3 appear to reduce the 
affinity for GABA receptors, while methyl phos-
phinic acid analogs are more potent and selec-
tive at GABAC over GABAA receptors than the 
H-phosphinic acid counterparts. Nonetheless, 
despite their activity for the GABAC receptor, 
these compounds are also potent GABAB ago-
nists or antagonists. The poor affinity of phos-
phinic acids for GABAA receptors indicates such 
a bioisostere could be used to differentiate the 
GABAC receptors from the GABAA receptors. 

Despite the reduced activity of the phosphonic 
acid analog of GABA, phosphonic diesters were 
recently prepared and alkylphosphonic acid 
2-aminoethyl esters were identified as a novel class 
of potent r GABAC receptor antagonists with no 
activity at recombinant a1b2g2 GABAA recep-
tors [117]. Whether this class of molecules is active 
on GABAB receptors remains to be determined.

The f irst selective GABAC antagonist, 
(1,2,5,6-tetrahydropyridine-4-yl)methylphos-
phinic acid (TPMPA; Figure 5) was devel-
oped by Murata et al. [118], followed by an 
improved synthetic route by Hanrahan et al. 
[119] and Dumond et al. [120]. The structure 
development was based on the observation 
that isoguvacine is an agonist at both GABAA 
and GABAC receptors but virtually inactive at 
GABAB receptors. In stark contrast, 3-APMPA, 
the methyl phosphinic acid analog of GABA 
exhibits agonist effects at GABAB and antago-
nist effects at GABAC receptors but is inactive 

at GABAA receptors. Therefore, it was reasoned 
that the incorporation of a tetrahydropyridine 
ring and the replacement of the carboxylic acid 
moiety with a methyl phosphinic acid moiety 
would yield a compound that is inactive at 
both GABAA and GABAB receptors. TPMPA 
was found to be  a potent antagonist at the r1 
GABAC receptors, demonstrating a more than 
100-fold selectivity for GABAC over GABAA 
receptors, where it is a weak antagonist. It is 
approximately 500-times more selective at 
inhibiting GABAC than activating GABAB 
receptors [118,121]. The saturated piperidine 
analog of TPMPA, (piperidin-4-yl)methylphos-
phinic acid (P4MPA; Figure 5), is also a superior 
antagonist that is more selective for r GABAC 
receptors than both GABAA and GABAB recep-
tors [122]. The selenic acid analog of P4MPA, 
piperidin-4-ylseleninic acid (SEPI, Figure 5) is 
also a potent antagonist at r1 GABAC receptors 
[123]. These results suggest that phosphinic and 
selenic acid analogs of GABA constricted by a 
ring system are likely to be one of the preferred 
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conformations to achieve  selective antagonist 
effects at GABAC receptors.

The investigation of conformationally 
restricted analogs targeting the GABAC receptors 
continued with the study of a series of alkyl-sub-
stituted phosphinic acid cyclopentane analogs. 
Hanrahan et al. reported the syntheses of the 
methyl-substituted (±)-cis/trans-3-aminocyclo-
pentane)methylphosphinic acid, ([±]-cis and 
[±]-trans-3-ACPMPA, respectively; Figure 6), 
and the butyl-substituted (±)-cis- /trans-3-
aminocyclopentane)butylphosphinic acid ([±]-
cis and [±]-trans-3-ACPBuPA, respectively; 
Figure 6) [124]. All of the phosphinic acid analogs 
are potent GABAC receptor antagonists, with the 
general trend of being more potent at human r1 
and r2 receptors and slightly less potent at rat 

r3 receptors expressed in Xenopus oocytes. They 
are also weak-to-moderate GABAA receptor 
antagonists and weak GABAB agonists [122]. It 
was found that (±)-cis-3-ACPMPA were slightly 
more potent and, in general, more selective 
than (±)-trans-3-ACPMPA at GABAC recep-
tors. A larger substituent on the phosphinic acid 
moiety led to an increase in selectivity for the 
GABAC receptor, as activities at both GABAA 
and GABAB receptors were dramatically dimin-
ished, as shown by the N-butyl substituted ana-
logs (Figure 6). However, the larger substituent 
also caused a reduction in antagonist activity at 
the same receptor, as compared with the methyl-
substituted analogs. The abolishment of activi-
ties at both GABAA and GABAB receptors could 
be attributed to the introduction of the cyclo-
pentane ring system and the phosphinic acid 
moiety, a similar rationale behind the synthesis 
of TPMPA. Furthermore, the cis compounds 
were also observed to be more potent than the 
trans compounds [125].  

As seen previously, the introduction of unsat-
uration to the cyclopentane carboxylic acid ana-
logs led to a series of cyclopentene carboxylic 
acid analogs that converted the compounds 
from being agonists to potent antagonists. The 
phosphinic acid moiety, as seen with the straight 
chain analogs of GABA and the cyclopentane 
phosphinic acid analogs, also converts the 
compounds into potent r GABAC antagonists. 
Furthermore, a large alkyl substitution on the 
phosphinic acid moiety appears to increase a 
compound’s selectivity for the GABAC receptors, 
as shown by the cyclopentane butyl phosphinic 
acid compounds. Therefore, a similar approach 
was undertaken with some of the cyclopentene 
analogs, where the carboxylic acid group is 
replaced with an alkyl phosphinic acid moiety, 
and the double bond is fixed at the a position of 
an alkyl phosphinic acid. The syntheses of alkyl-
substituted 4-aminocyclopent-1-enyl phosphinic 
acid analogs (4-ACPXPA, where X indicates the 
alkyl substituent at phosphinic acid; Figure 7) 
as racemic mixtures and resolved enantiomers, 
along with their activities at GABA receptors 
have been reported [107].

In general, all of these analogs are antagonists 
at both a1b2g2L GABAA and r1 GABAC receptors, 
with some showing high selectivity for GABAC 
receptors. These compounds also displayed 
weak agonist effects at GABAB receptors. An 
increase in the length of the alkyl substituent 
led to an increase in selectivity for GABAC recep-
tors, although potencies are reduced. Increasing 

GABAB = weak antagonist

IC50 (ρ1) = 5.06 µM

IC50 (ρ2) = 11.08 µM

GABAA (α1β2γ2L) = weak antagonist

GABAB = weak antagonist

IC50 (ρ1) = 72.58 µM

IC50 (ρ2) = 189.7 µM

GABAA (α1β2γ2L) = weak antagonist

H2N P
O

OH

H2N
P

O

OH

(±)-cis-3-ACPBuPA (±)-trans-3-ACPBuPA

Figure 6. The (±)-cis- and (±)-trans-3-ACPBuPA.
ACPBuPA: (Aminocyclopentane)methylphosphinic acid.

EC50 GABAB = 71.9 µM

KB (ρ1) = 18.9 µM

GABAA (α1β2γ2L) = inactive

GABAB = weak antagonist

KB (ρ1) = 59.3 µM

GABAA (α1β2γ2L) = inactive

EC50 GABAB = 52.2 µM

KB (ρ1) = 0.78 µM

GABAA (α1β2γ2L) = weak antagonist

GABAB = weak antagonist

KB (ρ1) = 4.97 µM

GABAA (α1β2γ2L) = weak antagonist

(S)-4-ACPMPA (S)-4-ACPBuPA

(R)-4-ACPMPA (R)-4-ACPBuPA
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OH
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Figure 7. (S)- and (R)-4-ACPMPA and (S)- and (R)-4-ACPBuPA.
ACPBuPA: (Aminocyclopentane)methylphosphinic acid. 
ACPMPA: (Aminocyclopentane)methylphosphinic acid.
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the bulkiness of the substituent, such as the 
isopropyl- and benzyl-substituted compounds, 
causes a major reduction in activity at GABAC 
receptors. Interestingly, the isopropyl compound 
was found to be more selective and potent at 
the GABAA receptor. It was revealed from the 
resolved isomers that the (S)-enantiomer is more 
potent than the (R)-enantiomer. 

Kumar et al. also synthesized and studied the 
activities of the methyl-substituted cyclobutane 
phosphinic acid analogs cis /trans-3-amino-
cyclobutane)methylphosphinic acid (cis/trans-
3-ACBMPA), and evaluated their effects on 
recombinant GABA receptors. They were found 
to be weak r1 GABAC antagonists and were 
inactive at GABAB receptors [107].

Recently guanidino analogs have been shown 
to be potent r1 GABAC receptor antagonists [126] 
indicating that structural manipulation of the 
amino-terminal region of GABA can be modi-
fied in the search for selective agents. Indeed 
combining the guanidine moiety with a cyclic 
phosphinic acid (3-[guanido]-1-oxo-1-hydroxy-
phospholane; Figure 8) led to a potent and selec-
tive GABAC antagonist as opposed to the amino 
analog, 3-(aminomethyl)-1-oxo-1-hydroxy-
phospholane [127]. Furthermore, ‘muscimol-bio-
tin’ derivatives retain r1 GABAC activity [128]. 
This is the first amide reported to show activity 
at these receptors and it can be tethered directly 
to the receptor, an invaluable tool for visual-
izing the receptor on cell surfaces [129]. TaBle 2 
summarizes the activities selective antagonists 
known for the GABAC receptor.

Modulators of r GABA
C
 

receptor activity 

GABAC receptors are insensitive to many 
GABAA allosteric modulators, such as benzo-
diazepines and barbiturates [31]; however, some 
GABAA modulators also allosterically modu-
late GABAC receptors [34,93]. Zinc (Zn2+) and 
some divalent cations were found to be nega-
tive modulators of GABAC receptors; while lan-
thanides act as positive modulators at r1 GABAC 
receptors expressed in Xenopus oocytes [130,131]. 
Synthetic neuro steriods have been shown to 
exert both positive and negative modulation 
at the r1 GABAC receptors in a stereoselective 
manner [94,132,133]. Recently, loreclezole and (+)-
ROD-188, both positive modulators at GABAA 
receptors, were found to be negative modulators 
at r1 GABAC receptors [93,134]. In addition, a lim-
ited number of flavonoids have also been found 
to be  modulators of GABAC receptors [135].

GABA
C
 agents as future therapies 

(1,2,5,6-tetrahydropyridine-4-yl)methylphos-
phinic acid and related GABAC antagonists have 
been patented for the treatment of myopia [136]. 
TPMPA but not GABAB antagonists inhibited 
the form-deprived myopia by displaying paral-
lel inhibition of retinal elongation in the axial 
and equatorial dimensions. Both TPMPA and 
P4MPA have been used to study the role of 
GABAC receptors in short-term memory forma-
tion in young chicks using a single-trial pas-
sive and discriminated avoidance task. In these 
studies, both TPMPA and P4MPA enhanced 
weakly reinforced memory in a dose- and 
 time-dependent manner [3]. 

GABAB = weak agonist

IC50 (ρ1) = 19.91 µM

IC50 (ρ2) = 57.13 µM

GABAA (α1β2γ2L) = inactive

GABAB = inactive

IC50 (ρ1) = 29.74 µM

IC50 (ρ2) = 51.31 µM

GABAA (α1β2γ2L) = inactive

PH2N
O

OH

H2N

OH
P

N
H O

NH

3-AMOHP 3-GOHP

Figure 8. 3-AMOHP and 3-GOHP.
3-AMOHP: 3-(aminomethyl)-1-oxo-1-hydroxy-
phospholane; 3-GOHP: 3-(guanido)-1-oxo-1-
hydroxy-phospholane.

Table 2. Summary of the activities of selective GABAC antagonists. 

Compound GABAA GABAC GABAB Ref.

TPMPA Weak antagonist
KB = 320 µM

Antagonist
r1 KB = 2.1 µM
r2 KB = 14.9 µM
r3 KB = 4.5 µM

Weak agonist
EC50 ~500 µM

[92,94,121]

P4MPA KB >100 µM r1 KB = 6 µM
r2 KB = 4.2 µM
r3 KB = 10.2 µM

>1 mM [92,94]

SEPI IC50 = 200 µM r1 Ki = 0.95 µM Inactive [123]

(±)-cis-
ACPBuPA 

Inactive <300 µM r1 IC50 = 5 µM Weak antagonist [85]

(±)-trans-
ACPBuPA 

Inactive <300 µM r1 IC50 = 73 µM Weak antagonist [85]

(R)-ACPBuPA Inactive at 
600 µM

r1 KB = 59.3 µM Inactive <300 µM [107]

(S)-ACPBuPA Inactive <600 µM r1 KB = 4.97 µM Inactive <300 µM [107]

3-GOHP Inactive <1 mM r1 IC50 = 30.0 µM Inactive <600 µM [127]

3-GOHP: 3-(guanido)-1-oxo-1-hydroxy-phospholane; ACPBuPA: (Aminocyclopentane)
methylphosphinic acid; KB: Equilibrium dissociation constant for the competitive antagonist; 
Ki: Inhibitory constant of the antagonist; P4MPA: (Piperidin-4-yl)methylphosphinic acid; 
SEPI: Piperidin-4-ylseleninic acid; TPMPA: (1,2,5,6-tetrahydropyridine-4-yl)methylphosphinic acid. 
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(1,2,5,6-tetrahydropyridine-4-yl)methylphos-
phinic acid has also been used to study GABAC 
receptor function in the retina [137], cerebral cor-
tex zone [138], cerebellum [139], hippocampus [82], 
lateral geniculate nucleus [77], superior colliculus 
[140], spinal cord [72], anterior pituitary [141] and 
duodenum [84]. 

(1,2,5,6-tetrahydropyridine-4-yl)methylphos-
phinic acid has been used to study the involve-
ment of r GABAC receptors in sleep–waking 
behavior [142] and in antinociception in the 
periphery [143]. In the study by Arnaud et al., 
vehicle and various amounts of TPMPA were 
randomly infused in the fourth ventricle of the 
rat [142]. TPMPA induced an increase of wak-
ing, which was the consequence of enhancement 
of both active and quiet wakefulness whereas 
total slow wave sleep and paradoxical sleep were 
decreased. It was suggested that r GABAC recep-
tor modulators could be potential medications 
acting at low doses with fewer side effects.

It is not clear whether or not TPMPA crosses 
the blood–brain barrier on systemic adminis-
tration but it can be used to delineate the role 

of r GABAC receptors in the periphery. Few 
researchers focus on GABA receptors outside 
the brain and it is pertinent that research is car-
ried out in these areas to delineate the role they 
play there. However, the development of pro-
drugs for TPMPA along with analogs that either 
are more lipophillic or can ride the transport-
ers will be of significant benefit to study these 
receptors centrally. 

Fina l ly SGS742, (3 -aminopropyl) -
N-butylphosphinic acid (also known as 
CGP36742; Figure 4), is one of a range of 
phosphinic acid analogs of GABA that act as 
GABAC antagonists [108]. It was developed as 
an orally active GABAB receptor antagonist [116] 
and showed therapeutic potential for the treat-
ment of cognitive deficits, petit mal epilepsy 
and depression [136], reaching Phase II trials for 
the treatment of cognitive impairment due to 
Alzheimer’s disease. The discovery that it was 
also a r GABAC receptor antagonist approxi-
mately half as potent as at GABAB receptors [108] 
led to the development of cyclopentane analogs 
in which the conformational flexibility of the 

Executive summary

Subunit composition, distribution & function of GABAC receptors
 � The r GABAC receptor is a homopentameric chloride channel belonging to the cys-loop class of receptors.

 � Three subtypes exist in mammals (r1–3) and predominantly reside in the retina, although there is growing evidence that this subunit exists 
throughout the brain and periphery.

 � Knock-out mice models and pharmacological studies show that the r GABAC receptors play a role in myopia development, visual 
processes, and learning and memory. 

Agonists at r GABAC receptors 
 � The r GABAC receptors have a unique pharmacology. These receptors are not blocked by bicuculline or activated by baclofen.

 � Selective agonists include cis-aminocrotonic acid (CACA), (+)-(aminomethyl)cyclopropanecarboxylic acid ([+]-CAMP) and the 
imidazole-4-acetic acid (I-4AA) derivatives, 5-Ph I-4AA and 5-Me I-4AA.

 � The I-4AA derivatives are more lipophillic than other selective agonists and may be important molecules to ascertain the physiological 
role of r GABAC receptors in vivo.

Antagonists at r GABAC receptors 
 � Selective antagonists for the r GABAC receptor include 1,2,5,6-tetrahydropyridine-4-yl)methylphosphinic acid (TPMPA), and substituted 

4-aminocyclopent-1-enyl and 3-aminocyclopentanyl alkylphosphinic acids.

 � Studies show that the phosphinic bioisostere imparts selectivity to GABAC over GABAA receptors and the conformationally restricted 
rings systems, such as piperidine and cyclopentanes impart selectivity for GABAC over GABAB receptor.

GABAC agents as future therapies
 � SGS742, the butylphosphinic acid analog of GABA, is a potent antagonist at both GABAB and GABAC receptors.

 � SGS742 reached Phase II clinical trials for Alzheimer’s disease. It is not clear whether the enhanced learning and memory exerted by 
SGS742 is via the GABAB or GABAC receptor. 

 � Evidence is growing to suggest that r GABAC-selective antagonists, including TPMPA and (±)-cis-3-(aminocyclopentane)methyl-
phosphinic acid, enhance learning and memory.

 � TPMPA and (±)-cis-3-(aminocyclopentane)methylphosphinic acid also inhibit myopia development.

 � Future studies are required to ascertain the mechanism of action of r GABAC receptors in both myopia development and learning 
and memory.

 � The role of r GABAC receptors in the periphery remains unexplored.
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3-aminopropyl moiety was constrained. These 
cyclopentane analogs were inactive at GABAB 
receptors but retained the GABAC receptor 
antagonist activity of SGS742. Of particu-
lar interest is (±)-cis-3-ACPBuPA, which was 
shown to be a selective GABAC antagonist that 
enhanced learning and memory following intra-
peritoneal injection in rats and inhibited the 
development of myopia on intravitreal injection 
in chicks [85]. (±)-cis-3-ACPBuPA and related 
cyclopentane and cyclopentene analogs have 
been patented for use in enhancing cognitive 
activity [202,203]. Thus, selective GABAC recep-
tor ligands may become important agents for 

therapy not only of myopia and learning, and 
memory-related disorders but also the treatment 
of pain and sleep disorders.
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