Natia Kopaliani

Natia Kopaliani
Ilia State University | ISU · Institute of Ecology

Dr

About

45
Publications
6,237
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
212
Citations
Citations since 2016
7 Research Items
188 Citations
20162017201820192020202120220102030
20162017201820192020202120220102030
20162017201820192020202120220102030
20162017201820192020202120220102030

Publications

Publications (45)
Article
Full-text available
Introgressive hybridisation between domestic animals and their wild relatives is an indirect form of human-induced evolution, altering gene pools and phenotypic traits of wild and domestic populations. Although this process is well documented in many taxa, its evolutionary consequences are poorly understood. In this study, we assess introgression p...
Article
Full-text available
Grey wolf and golden jackal are both common in Georgia, although they have different habitat preferences. The wolf is more common in mountain areas of the country, and jackals are more common in the lowland part of Georgia, with its milder and warmer climate. In recent decades, the abundance of both species increased. Simultaneously, the jackals ar...
Preprint
Full-text available
Three species of cetaceans, Phocoena phocoena, Delphinus delphis and Tursiops truncatus ponticus are found in the Black Sea. The Black Sea populations of all three species show morpho-ecological peculiarities that leaded to their subspecific status: P. p. relicta (PPR), D. d. ponticus (DDP), and T. t. ponticus (TTP). It is not clear how long-lastin...
Poster
Full-text available
Natural elements of anomalous white hair or skin coloration are observed in many animals. These elements can be either small patches lacking pigmentation (piebaldism) or fully depigmented body surface. Such cases are relatively rare among cetaceans. Here we present the first report on one fully white and several piebald bottlenose dolphins Tursiops...
Article
Full-text available
The evolutionary relationships between extinct and extant lineages provide important insight into species’ response to environmental change. The grey wolf is among the few Holarctic large carnivores that survived the Late Pleistocene megafaunal extinctions, responding to that period’s profound environmental changes with loss of distinct lineages an...
Article
Full-text available
In Georgian territorial waters of the Black Sea, three leucistic harbour porpoises and one piebald short beaked common dolphin were spotted during the years 2012-2016. All images of the specimens with atypical pigmentation were collected while conducting cetacean counts near the Georgian Black Sea coast. Repeated sightings of the atypical pigmentat...
Article
Full-text available
In the first continent-wide study of the golden jackal (Canis aureus), we characterised its population genetic structure and attempted to identify the origin of European populations. This provided a unique insight into genetic characteristics of a native carnivore population with rapid large-scale expansion. We analysed 15 microsatellite markers an...
Article
Full-text available
Despite continuous historical distribution of the grey wolf (Canis lupus) throughout Eurasia, the species displays considerable morphological differentiation that resulted in delimitation of a number of subspecies. However, these morphological discontinuities are not always consistent with patterns of genetic differentiation. Here we assess genetic...
Article
Full-text available
We studied the distribution of the mitochondrial DNA haplotypes and microsatellite genotypes at 8 loci in 102 gray wolves, 57 livestock guarding dogs, and 9 mongrel dogs from Georgia (Caucasus). Most of the studied dogs had mitochondrial haplotypes clustered with presumably East Asian dog lineages, and most of the studied wolves had the haplotypes...
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Article
Full-text available
It has recently been suggested that goitered gazelles (Gazella subgutturosa and Gazella marica) have paraphyletic maternal origin, and that the mitochondrial cytochrome b gene fragment can be used for species identification prior to reintroduction of the gazelles. Although there is a large geographic area where the gazelles have intermediate morpho...

Network

Cited By

Projects

Project (1)
Project
Support the preservation of viable populations of bottlenose dolphins (Tursiops truncatus), short-beaked common dolphins (Delphinus delphis) and the Black sea harbour porpoise(Phocoena phocoena) in the territorial waters of Georgia