## About

114

Publications

17,905

Reads

**How we measure 'reads'**

A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more

6,766

Citations

## Publications

Publications (114)

The Fermi-Hubbard model (FHM) on a two dimensional square lattice has long been an important testbed and target for simulating fermionic Hamiltonians on quantum hardware. We present an alternative for quantum simulation of FHMs based on an adiabatic protocol that could be an attractive target for next generations of quantum annealers. Our results r...

Simulating general quantum processes that describe realistic interactions of quantum systems following a non-unitary evolution is challenging for conventional quantum computers that directly implement unitary gates. We analyze complexities for promising methods such as the Sz.-Nagy dilation and linear combination of unitaries that can simulate open...

Quantum computing technology has grown rapidly in recent years, with new technologies being explored, error rates being reduced, and quantum processors qubit capacity growing. However, near term quantum algorithms are still unable to be induced without compounding consequential levels of noise, leading to non trivial erroneous results. Quantum Erro...

In this paper we provide a framework for combining multiple quantum simulation methods, such as Trotter-Suzuki formulas and QDrift into a single composite channel that builds upon older coalescing ideas for reducing gate counts. The central idea behind our approach is to use a partitioning scheme that allocates a Hamiltonian term to the Trotter or...

In this work we present the Scaled QUantum IDentifier (SQUID), an open-source framework for exploring hybrid Quantum-Classical algorithms for classification problems. The classical infrastructure is based on PyTorch and we provide a standardized design to implement a variety of quantum models with the capability of back-propagation for efficient tr...

In this work we present a detailed analysis of variational quantum phase estimation (VQPE), a method based on real-time evolution for ground- and excited-state estimation on near-term hardware. We derive the theoretical ground on which the approach stands, and demonstrate that it provides one of the most compact variational expansions to date for s...

Accurate models of real quantum systems are important for investigating their behaviour, yet are difficult to distill empirically. Here, we report an algorithm – the Quantum Model Learning Agent (QMLA) – to reverse engineer Hamiltonian descriptions of a target system. We test the performance of QMLA on a number of simulated experiments, demonstrati...

It is for the first time that Quantum Simulation for High Energy Physics (HEP) is studied in the U.S. decadal particle-physics community planning, and in fact until recently, this was not considered a mainstream topic in the community. This fact speaks of a remarkable rate of growth of this subfield over the past few years, stimulated by the impres...

We prove an entanglement area law for a class of 1D quantum systems involving infinite-dimensional local Hilbert spaces. This class of quantum systems include bosonic models such as the Hubbard-Holstein model, and both U(1) and SU(2) lattice gauge theories in one spatial dimension. Our proof relies on new results concerning the robustness of the gr...

In this work we provide a new approach for approximating an ordered operator exponential using an ordinary operator exponential that acts on the Hilbert space of the simulation as well as a finite-dimensional clock register. This approach allows us to translate results for simulating time-independent systems to the time-dependent case. Our result s...

In recent years simulations of chemistry and condensed materials has emerged as one of the preeminent applications of quantum computing, offering an exponential speedup for the solution of the electronic structure for certain strongly correlated electronic systems. To date, most treatments have ignored the question of whether relativistic effects,...

Accurate models of real quantum systems are important for investigating their behaviour, yet are difficult to distill empirically. Here, we report an algorithm -- the Quantum Model Learning Agent (QMLA) -- to reverse engineer Hamiltonian descriptions of a target system. We test the performance of QMLA on a number of simulated experiments, demonstra...

Quantum simulations of Lattice Gauge Theories (LGTs) are often formulated on an enlarged Hilbert space containing both physical and unphysical sectors in order to retain a local Hamiltonian. We provide simple fault-tolerant procedures that exploit such redundancy by combining a phase flip error correction code with the Gauss' law constraint to corr...

While most work on the quantum simulation of chemistry has focused on computing energy surfaces, a similarly important application requiring subtly different algorithms is the computation of energy derivatives. Almost all molecular properties can be expressed an energy derivative, including molecular forces, which are essential for applications suc...

Many quantum algorithms involve the evaluation of expectation values. Optimal strategies for estimating a single expectation value are known, requiring a number of iterations that scales with the target error $\epsilon$ as $\mathcal{O}(\epsilon^{-1})$. In this paper we address the task of estimating the expectation values of $M$ different observabl...

Quantum simulations of chemistry in first quantization offer some important advantages over approaches in second quantization including faster convergence to the continuum limit and the opportunity for practical simulations outside of the Born-Oppenheimer approximation. However, since all prior work on quantum simulation of chemistry in first quant...

We argue that an excess in entanglement between the visible and hidden units in a quantum neural network can hinder learning. In particular, we show that quantum neural networks that satisfy a volume law in the entanglement entropy will give rise to models that are not suitable for learning with high probability. Using arguments from quantum thermo...

Preconditioning is the most widely used and effective way for treating ill-conditioned linear systems in the context of classical iterative linear system solvers. We introduce a quantum primitive called fast inversion, which can be used as a preconditioner for solving quantum linear systems. The key idea of fast inversion is to directly block encod...

Conventional methods of quantum simulation involve trade-offs that limit their applicability to specific contexts where their use is optimal. In particular, the interaction picture simulation has been found to provide substantial asymptotic advantages for some Hamiltonians, but incurs prohibitive constant factors and is incompatible with methods li...

We describe quantum circuits with only O~(N) Toffoli complexity that block encode the spectra of quantum chemistry Hamiltonians in a basis of N arbitrary (e.g., molecular) orbitals. With O(λ/ϵ) repetitions of these circuits one can use phase estimation to sample in the molecular eigenbasis, where λ is the 1-norm of Hamiltonian coefficients and ϵ is...

As Hamiltonian models underpin the study and analysis of physical and chemical processes, it is crucial that they are faithful to the system they represent. However, formulating and testing candidate Hamiltonians for quantum systems from experimental data is difficult, because one cannot directly observe which interactions are present. Here we prop...

Quantum neural networks (QNNs) are a framework for creating quantum algorithms that promises to combine the speedups of quantum computation with the widespread successes of machine learning. A major challenge in QNN development is a concentration of measure phenomenon known as a barren plateau that leads to exponentially small gradients for a range...

Quantum simulations of chemistry in first quantization offer important advantages over approaches in second quantization including faster convergence to the continuum limit and the opportunity for practical simulations outside the Born-Oppenheimer approximation. However, as all prior work on quantum simulation in first quantization has been limited...

In this work we present a detailed analysis of variational quantum phase estimation (VQPE), a method based on real-time evolution for ground and excited state estimation on near-term hardware. We derive the theoretical ground on which the approach stands, and demonstrate that it provides one of the most compact variational expansions to date for so...

The Lie-Trotter formula, together with its higher-order generalizations, provides a direct approach to decomposing the exponential of a sum of operators. Despite significant effort, the error scaling of such product formulas remains poorly understood. We develop a theory of Trotter error that overcomes the limitations of prior approaches based on t...

Variational algorithms are a promising paradigm for utilizing near-term quantum devices for modeling electronic states of molecular systems. However, previous bounds on the measurement time required have suggested that the application of these techniques to larger molecules might be infeasible. We present a measurement strategy based on a low-rank...

This paper explores the utility of the quantum phase estimation (QPE) algorithm in calculating high-energy excited states characterized by the promotion of electrons occupying core-level shells. These states have been intensively studied over the last few decades, especially in supporting the experimental effort at light sources. Results obtained w...

As increasingly impressive quantum information processors are realized in laboratories around the world, robust and reliable characterization of these devices is now more urgent than ever. These diagnostics can take many forms, but one of the most popular categories is tomography , where an underlying parameterized model is proposed for a device an...

Here we explore which heuristic quantum algorithms for combinatorial optimization might be most practical to try out on a small fault-tolerant quantum computer. We compile circuits for several variants of quantum-accelerated simulated annealing including those using qubitization or Szegedy walks to quantize classical Markov chains and those simulat...

We describe quantum circuits with only $\widetilde{\cal O}(N)$ Toffoli complexity that block encode the spectra of quantum chemistry Hamiltonians in a basis of $N$ molecular orbitals. With ${\cal O}(\lambda / \epsilon)$ repetitions of these circuits one can use phase estimation to sample in the molecular eigenbasis, where $\lambda$ is the 1-norm of...

We argue that an excess in entanglement between the visible and hidden units in a Quantum Neural Network can hinder learning. In particular, we show that quantum neural networks that satisfy a volume-law in the entanglement entropy will give rise to models not suitable for learning with high probability. Using arguments from quantum thermodynamics,...

We introduce a novel Bayesian phase estimation technique based on adaptive grid refinement method. This method automatically chooses the number particles needed for accurate phase estimation using grid refinement and cell merging strategies such that the total number of particles needed at each step is minimal. The proposed method provides a powerf...

Within the last several years quantum machine learning (QML) has begun to mature; however, many open questions remain. Rather than review open questions, in this perspective piece I will discuss my view about how we should approach problems in QML. In particular I will list a series of questions that I think we should ask ourselves when developing...

Preconditioning is the most widely used and effective way for treating ill-conditioned linear systems in the context of classical iterative linear system solvers. We introduce a quantum primitive called fast inversion, which can be used as a preconditioner for solving quantum linear systems. The key idea of fast inversion is to directly block-encod...

The simulation of fermionic systems is among the most anticipated applications of quantum computing. We performed several quantum simulations of chemistry with up to one dozen qubits, including modeling the isomerization mechanism of diazene. We also demonstrated error-mitigation strategies based on N -representability that dramatically improve the...

The Schwinger model (quantum electrodynamics in 1+1 dimensions) is a testbed for the study of quantum gauge field theories. We give scalable, explicit digital quantum algorithms to simulate the lattice Schwinger model in both NISQ and fault-tolerant settings. In particular, we perform a tight analysis of low-order Trotter formula simulations of the...

Recent work has deployed linear combinations of unitaries techniques to reduce the cost of fault-tolerant quantum simulations of correlated electron models. Here, we show that one can sometimes improve upon those results with optimized implementations of Trotter-Suzuki-based product formulas. We show that low-order Trotter methods perform surprisin...

Here we explore which heuristic quantum algorithms for combinatorial optimization might be most practical to try out on a small fault-tolerant quantum computer. We compile circuits for several variants of quantum accelerated simulated annealing including those using qubitization or Szegedy walks to quantize classical Markov chains and those simulat...

As increasingly impressive quantum information processors are realized in laboratories around the world, robust and reliable characterization of these devices is now more urgent than ever. These diagnostics can take many forms, but one of the most popular categories is tomography, where an underlying parameterized model is proposed for a device and...

The difficulty of simulating quantum dynamics depends on the norm of the Hamiltonian. When the Hamiltonian varies with time, the simulation complexity should only depend on this quantity instantaneously. We develop quantum simulation algorithms that exploit this intuition. For sparse Hamiltonian simulation, the gate complexity scales with the L1 no...

As the search continues for useful applications of noisy intermediate scale quantum devices, variational simulations of fermionic systems remain one of the most promising directions. Here, we perform a series of quantum simulations of chemistry which involve twice the number of qubits and more than ten times the number of gates as the largest prior...

The Schwinger model (quantum electrodynamics in 1+1 dimensions) is a testbed for the study of quantum gauge field theories. We give scalable, explicit digital quantum algorithms to simulate the lattice Schwinger model in both NISQ and fault-tolerant settings. In particular, we perform a tight analysis of low-order Trotter formula simulations of the...

An isolated system of interacting quantum particles is described by a Hamiltonian operator. Hamiltonian models underpin the study and analysis of physical and chemical processes throughout science and industry, so it is crucial they are faithful to the system they represent. However, formulating and testing Hamiltonian models of quantum systems fro...

Preparation of Gibbs distributions is an important task for quantum computation. It is a necessary first step in some types of quantum simulations and further is essential for quantum algorithms such as quantum Boltzmann training. Despite this, most methods for preparing thermal states are impractical to implement on near-term quantum computers bec...

We present a fully reconfigurable silicon quantum photonic device capable of performing controlled four-dimensional unitary operations with 0.84 ± 0.02 fidelity. We report its characterisation by process tomography and deploy it to successfully perform a quantum model learning protocol.

The Lie-Trotter formula, together with its higher-order generalizations, provides a direct approach to decomposing the exponential of a sum of operators. Despite significant effort, the error scaling of such product formulas remains poorly understood. We develop a theory of Trotter error that overcomes the limitations of prior approaches based on t...

Variational algorithms, where the role of the quantum computer is the execution of a short depth state preparation circuit followed by measurement, are a promising paradigm for utilizing near-term quantum devices for modeling molecular systems. However, previous bounds on the measurement time required have suggested that the application of these te...

Product formula approximations of the time-evolution operator on quantum computers are of great interest due to their simplicity, and good scaling with system size by exploiting commutativity between Hamiltonian terms. However, product formulas exhibit poor scaling with the time $t$ and error $\epsilon$ of simulation as the gate cost of a single st...

Iterative phase estimation has long been used in quantum computing to estimate Hamiltonian eigenvalues. This is done by applying many repetitions of the same fundamental simulation circuit to an initial state, and using statistical inference to glean estimates of the eigenvalues from the resulting data. Here, we show a generalization of this framew...

In this paper, we discuss the extension of the recently introduced subsystem embedding subalgebra coupled cluster (SES-CC) formalism to unitary CC formalisms. In analogy to the standard single-reference SES-CC formalism, its unitary CC extension allows one to include the dynamical (outside the active space) correlation effects in an SES induced com...

An n-qubit quantum circuit performs a unitary operation on an exponentially large, 2ⁿ-dimensional, Hilbert space, which is a major source of quantum speed-ups. We develop a new “Quantum singular value transformation” algorithm that can directly harness the advantages of exponential dimensionality by applying polynomial transformations to the singul...

The difficulty of simulating quantum dynamics depends on the norm of the Hamiltonian. When the Hamiltonian varies with time, the simulation complexity should only depend on this quantity instantaneously. We develop quantum simulation algorithms that exploit this intuition. For the case of sparse Hamiltonian simulation, the gate complexity scales wi...

In this article we provide a method for fully quantum generative training of quantum Boltzmann machines with both visible and hidden units while using quantum relative entropy as an objective. This is significant because prior methods were not able to do so due to mathematical challenges posed by the gradient evaluation. We present two novel method...

Nitrogen-vacancy (NV) centers in diamond are appealing nanoscale quantum sensors for temperature, strain, electric fields, and, most notably, magnetic fields. However, the cryogenic temperatures required for low-noise single-shot readout that have enabled the most sensitive NV magnetometry reported to date are impractical for key applications, e.g....

Fault-tolerant quantum computation promises to solve outstanding problems in quantum chemistry within the next decade. Realizing this promise requires scalable tools that allow users to translate descriptions of electronic structure problems to optimized quantum gate sequences executed on physical hardware, without requiring specialized quantum com...

Recent work has deployed linear combinations of unitaries techniques to significantly reduce the cost of performing fault-tolerant quantum simulations of correlated electron models. Here, we show that one can sometimes improve over those results with optimized implementations of Trotter-Suzuki-based product formulas. We show that low-order Trotter...

We present a representation for linguistic structure that we call a Fock-space representation, which allows us to embed problems in language processing into small quantum devices. We further develop a formalism for understanding both classical as well as quantum linguistic problems and phrase them both as a Harmony optimization problem that can be...

In this paper we outline the extension of recently introduced the sub-system embedding sub-algebras coupled cluster (SES-CC) formalism to the unitary CC formalism. In analogy to the standard single-reference SES-CC formalism, its unitary CC extension allows one to include the dynamical (outside the active space) correlation effects in an SES induce...

Hamiltonian learning can be used to efficiently characterise quantum systems. Here we apply it to the estimation of magnetic fields with quantum sensors, achieving experimentally, room temperature sensing performance comparable to those of cryogenic set-ups.

Optical readout from nanofabricated single NV centres is enhanced via Bayesian inference techniques, to demonstrate efficient magnetometry at room temperature conditions. We achieve experimentally Heisenberg-limited sensitivities O(100 nT s1/2), thus competing with state-of-art cryogenic set-ups.

Security for machine learning has begun to become a serious issue for present day applications. An important question remaining is whether emerging quantum technologies will help or hinder the security of machine learning. Here we discuss a number of ways that quantum information can be used to help make quantum classifiers more secure or private....

We construct quantum circuits that exactly encode the spectra of correlated electron models up to errors from rotation synthesis. By invoking these circuits as oracles within the recently introduced “qubitization” framework, one can use quantum phase estimation to sample states in the Hamiltonian eigenbasis with optimal query complexity O(λ/ε), whe...

Nitrogen-vacancy (NV) centres in diamond are appealing nano-scale quantum sensors for temperature, strain, electric fields and, most notably, for magnetic fields. However, the cryogenic temperatures required for low-noise single-shot readout that have enabled the most sensitive NV-magnetometry reported to date, are impractical for key applications,...

We present a synthesis framework to map logic networks into quantum circuits for quantum computing. The synthesis framework is based on LUT networks (lookup-table networks), which play a key role in conventional logic synthesis. Establishing a connection between LUTs in a LUT network and reversible single-target gates in a reversible network allows...

Quantum computing is powerful because unitary operators describing the time-evolution of a quantum system have exponential size in terms of the number of qubits present in the system. We develop a new "Singular value transformation" algorithm capable of harnessing this exponential advantage, that can apply polynomial transformations to the singular...