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Low maternal education is consistently associated with increased risk of preterm delivery (PTD). The interpreg-

nancy interval (IPI), defined as the time between the date of a previous birth and the conception date of the index

pregnancy, may mediate this relationship. We estimated controlled direct effects to assess whether hypothetical

interventions designed to increase IPIs would reduce the educational disparity in PTD. We introduce a technique

for estimating controlled direct effects under interventions that set only some persons in the population to a specific

mediator value. We used data from 847,618 singleton livebirths occurring in Quebec, Canada, between 1989 and

2010. Compared with mothers with some university education (≥14 years), mothers with less than high school (<11

years), high school (11 years), and some college (12–13 years) had excess PTD risks of 2.6% (95% confidence

interval (CI): 2.4, 2.8), 1.5% (95% CI: 1.4, 1.7), and 1.0% (95% CI: 0.9, 1.1), respectively. Risk differences under an

intervention corresponding to the Healthy People 2020 objective of reducing the number of mothers with IPIs less

than 18 months by 3% were no different from those for the total relationship. Our results suggest that interventions

designed to increase the length of short IPIs will yield no important change in the PTD disparity by maternal edu-

cational level.

controlled direct effect; interpregnancy interval; maternal education; mediation analysis; perinatal epidemiology;

pregnancy; preterm delivery; social epidemiology

Abbreviations: CDE, controlled direct effect; CI, confidence interval; IPI, interpregnancy interval; ME, maternal education; PTD,

preterm delivery.

Preterm delivery (PTD) is a leading cause of infant mortal-
ity (1) and morbidity (2), and its prevalence is increasing in
many countries (3). The relationship between socioeconomic
factors and PTD is well established (4–10). Lower maternal
education (ME) is consistently associated with an elevated
risk of PTD across time (11), racial/ethnic subgroups (12),
and geographic regions (6, 7, 13). ME is more strongly re-
lated to PTD than are other measures of socioeconomic sta-
tus, such as occupation or income (7, 8, 11).
While research findings in social epidemiology are often

used to reason about effects of interventions designed to
mitigate social disparities in health, the usefulness of this
approach has been debated extensively (14–20). A central
feature of this debate is the nature of social class variables
(21). It is doubtful that the estimated associations between

ME and PTD directly equate with the impact of policies de-
signed to increase education in a population (22). That is, the
difference in PTD risk between mothers with a university ed-
ucation and mothers with less than a high school education is
not likely to reflect the effect of, say, a scholarship or condi-
tional cash-transfer program encouraging high school drop-
outs to obtain university degrees. As a proxy for a complex
set of social conditions that act as fundamental causes (23,
24), however, ME is probably related to downstream risk fac-
tors or mediators that are themselves associated with PTD
and that may be more suitable targets for intervention (25).
The interpregnancy interval (IPI), or the elapsed duration

between the birth date of the previous pregnancy and the con-
ception date of the current (index) pregnancy, may be one
such mediator (26). IPI is associated with PTD (27), and
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low levels of ME are associated with shorter IPIs (28–30). IPI
is a modifiable risk factor (28), and the optimal timing of con-
ception following a previous delivery falls between 18 and 60
months (27).

Information on whether increasing the length of short IPIs
will yield reductions in the educational disparity in PTD
would be useful in prioritizing risk factors to mitigate socio-
economic disparities in adverse birth outcomes (31, 32). In
this paper, we illustrate the use of a mediation analysis tech-
nique (33, 34) to assess whether interventions to prevent
short IPIs will also reduce educational disparities in PTD
and, if so, by how much. The technique employs standard re-
gression models, and like Robins’ G-methods (35), it can be
used to assess unmediated effects when confounders of the
mediator-outcome relationship are affected by the exposure
(36, 37) and when exposure-mediator interactions are pres-
ent. Furthermore, unlike standard controlled direct effects
(CDEs), which force the mediator to take on the same value
for all subjects in a population (37), we introduce a method to
estimate stochastic mediation contrasts, corresponding to ef-
fects that would be observed under (possibly hypothetical)
mediator interventions in which only a portion of the popu-
lation’s mediator value is altered. We estimated associations
between ME and PTD under hypothetical interventions that
changed the distribution of IPIs in Quebec, Canada.

METHODS

Quebec Birth File data

We used data from the Quebec Birth File to assess the me-
diating role of IPI in the relationship between ME and PTD.
We extracted data on 1,879,986 singleton livebirths occur-
ring between 1989 and 2010 (11). We restricted analyses to
mothers with ≥1 previous birth, leaving 847,618 livebirths.
IPI was defined as the number of months between the birth
date of the previous pregnancy and the conception date of
the current (index) pregnancy.

ME, in integer years attained, was used to create a categor-
ical variable following the Quebec educational system (6):
“less than high school” (<11 years, or not graduating from
high school); “high school” (11 years, or attainment of a
high school diploma); “some college” (12–13 years, repre-
senting pre-university studies); and “some university” (≥14
years, representing at least some university studies). The ref-
erent category was “some university.” IPI was categorized as
short (<18 months), optimal short (18–<24 months), moder-
ate (24–<60 months), or long (≥60 months) (27, 29). The ref-
erent category for IPI was “optimal short.” We used postal
codes to assign area-level measures of social and material dep-
rivation coded according to census dissemination area (38).
We used gestational age at birth obtained from first- or
second-trimester ultrasonography to create an indicator of
PTD, defined as delivery at <37 completed weeks’ gestation.

Causal pathways

Figure 1 depicts the scenario under study. In this figure, C
denotes exposure-outcome confounders, including maternal
year of birth, maternal and paternal age, country of birth,

native language, and 2 area-level measures of material and
social deprivation. Similarly, L denotes mediator-outcome
confounders, including infant year of birth, maternal marital
status, and parity. We distinguish between C and L because,
by definition, infant yearof birth cannot confound the relation-
ship between ME and PTD, and ME may be causally related
to parity and other (possibly unmeasured) mediator-outcome
confounders. This latter point is the reason why Figure 1 in-
cludes an arrow fromME to L. The figure shows that the total
relationship between ME and PTD is divided into at least 4
different paths:

Path 1. The direct path from ME to PTD.
Path 2. The indirect path from ME to IPI to PTD.
Path 3. The indirect path from ME to L to IPI to PTD.
Path 4. The indirect path from ME to L to PTD.

Furthermore, for clarity we divide path 2 into subpaths:

Path 2a. The portion of path 2 from ME to IPI.
Path 2b. The portion of path 2 from IPI to PTD.

As with each of the 3 G-methods, the approach employed
here requires no uncontrolled exposure-outcome confound-
ing (path 1) and no uncontrolled mediator-outcome con-
founding ( path 2b). To estimate stochastic mediation
contrasts, we additionally require no uncontrolled exposure-
mediator confounding. Under additional assumptions
required for causal inference, including counterfactual consist-
ency, positivity, and no interference, this approach provides an
estimate of the CDE.

Standard regression models

In the main text, we use simplified equations for a binary
outcome, mediator, and exposure. In the accompanying Ap-
pendix, we present statistical software code for this simplified
scenario. In Web Appendix 1 (available at http://aje.oxford
journals.org/), we provide more explicit equations for situa-
tions where the exposure and mediator have multiple catego-
ries. We first assessed the total relationship between ME and

IPIME PTDC

L U

1

2a 2b

3
4

Figure 1. Assumed relationships betweenmaternal education (ME),
interpregnancy interval (IPI), and preterm delivery (PTD), including
confounders of the exposure-outcome relationship (C), the media-
tor-outcome relationship (L), and an unmeasured confounder of the
relationship between variables in L and PTD (U ).
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PTD (through paths 1–4). To obtain risk differences, we fitted
a binomial regression model with an identity link function,
defined as

EðPTDjME;CÞ ¼ α0 þ α1MEþ α0C: ðModel 1aÞ

To assess the relationship between IPI and PTD (path 2b),
we added IPI (in categories) to model 1a and included the ad-
ditional confounder vector L. This yielded a binomial regres-
sion model with an identity link function for the relationship
between IPI and PTD, adjusted for C, L, and ME, defined as

EðPTDjME; IPI;L;CÞ
¼ θ0 þ θ1IPIþ θ2MEþ θ0lLþ θ 0

cC:
ðModel 1b)

We also fitted a binomial model with an identity link function
regressing PTD against categorical ME, categorical IPI, the
interaction between them, and the confounding vectors
C and L (model 1c; see Web Appendix 1) to estimate depar-
tures from additivity on the risk difference scale. Thus, mod-
els 1a–1c provided estimates of the risk difference for the
total relationship between ME and PTD (paths 1–4), the
total relationship between IPI and risk of PTD (path 2b),
and an assessment of departures from risk difference additiv-
ity, respectively. To assess corresponding risk ratios, we fitted
models 1a–1c using a log link function.

Controlled direct effect

Our interest lies in the relationship between ME and PTD
under hypothetical interventions that change the distribu-
tion of IPI to the value “ipi.” For example, if IPI is a random
categorical variable with the categories defined above,
“ipi” might correspond to the value of IPI under a hypothet-
ical intervention that shifts all persons with intervals of <18
months or ≥24 months to intervals of 18–<24 months. Esti-
mating the relationship between ME and PTD under a hypo-
thetical intervention setting the mediator to a single specified
value yields the CDE (37, 39). We used a regression-based
approach (33, 34) to estimate the CDE on the risk difference
(RD) scale, defined as

CDERD¼ EfPTDðme, ipiÞ¼1g�EfPTDðme�; ipiÞ¼1g;

or on the risk ratio (RR) scale, defined as

CDERR¼ EfPTDðme, ipiÞ¼1g
EfPTDðme�, ipiÞ¼1g;

where PTD(me, ipi) is the outcome that would be observed
under ME = me and IPI = ipi. These equations describe
contrasts (on the difference and ratio scales) between the pro-
portions of PTDs in our sample among mothers with educa-
tional levels “me” and “me*” that would be observed under
an intervention that set the value of IPI for both ME groups to
18–<24 months. In our analyses, “me*” was the referent ed-
ucational level (some university); thus, “me” could be “less
than high school,” “high school,” or “some college.”

To estimate CDERD, we first fit a binomial regression model
with an identity link function for the outcome defined as

EðPTDjME; IPI;C;LÞ
¼ β0 þ βmeMEþ βipiIPIþ βme×ipiME × IPI

þ β0cCþ β0lL ðModel 2)

with estimates obtained using maximum likelihood. The pur-
pose of fitting model 2 is not to interpret parameter estimates
(since an estimate of βmewould be subject to collider-stratification
bias (40)) but to obtain estimates to create a transformed out-
come needed to estimate CDERD or CDERR. Conceptually, the
average of this transformed outcome can be thought of as the
average outcomewith the effect of the mediator removed (34).
Using the parameter estimates from model 2, we create the
transformed outcome, denoted gPTD, as

gPTD ¼ PTD� β̂ipiIPI� β̂me×ipiME × IPI;

and fit a second regression model using the transformed out-
come, defined as

Eð gPTD jME;CÞ ¼ γ0 þ γmeMEþ γ0cC: ðModel 3)

Because the transformed outcome is no longer binary, we
use ordinary least squares to obtain parameter estimates for
model 3. The sandwich variance estimator (41, 42) or the
nonparametric percentile bootstrap (43) with 1,000 resamples
can be used to obtain 95% confidence intervals. An estimate
of CDERR can be obtained by replacing the identity link func-
tion in model 2 with a log link, computing

gPTD ¼ PTD expð�β̂ipiIPI� β̂me×ipiME × IPIÞ;

and fitting model 3 with a log link and normal distribution
generalized linear model (34). Sandwich or bootstrap vari-
ance estimators must again be used for standard errors.
Because the referent category for IPI was 18–<24 months,

the estimate of γme can be interpreted as the magnitude of the
relationship betweenME and PTD under a hypothetical inter-
vention that would set everyone’s interval (including mothers
with IPIs of ≥24 months) to 18–<24 months’ duration. This
value corresponds to paths 1 and 3 in Figure 1 and represents
the relationship between ME and PTD that would remain if
the intervention aimed at setting every mother’s IPI to 18–
<24 months was 100% effective.

Stochastic mediator interventions

Given the complex nature of pregnancy spacing (28), inter-
ventions that result in all IPIs falling exactly between 18 and
24 months are unrealistic. We therefore modified the above
approach to estimate the relationship between ME and PTD
that would be observed under a more realistic intervention
that increased only a fraction the population’s intervals to
18 months or more. We denote the contrast a stochastic
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mediation contrast. This contrast is similar to those based on
“representative regimes,” previously implemented via the
parametric G-formula (44), in which persons who fall
below a prespecified exposure (or mediator) cutpoint are re-
distributed to somewhere above the cutpoint based on the ex-
posure’s (or mediator’s) conditional distribution. Stochastic
intervention (or mediator) contrasts go a step further by redis-
tributing only a portion of the persons who fall below a pre-
selected cutpoint.

To implement the approach, we add back to the trans-
formed outcome a portion of the mediator’s effect by defin-
ing a new IPI variable, IPI*, that represents the hypothetical
distribution of intervals under a stochastic intervention. The
redefined transformed outcome when all variables are binary
indicators is

gPTD ¼ PTD� β̂ipiðIPI� IPI�Þ
� β̂me×ipiðME × IPI�ME × IPI�Þ

for CDERD and

gPTD ¼ PTD exp½�β̂ipiðIPI� IPI�Þ
� β̂me×ipiðME × IPI�ME × IPI�Þ�

for CDERR.Wemight be interested in what would happen if 3%
of the 282,066 mothers with intervals of <18 months (to the left
of the dashed line in Figure 2) were shifted (e.g., through family
planning initiatives) to intervals of 18 months or more. Such a
shift is equivalent to the Healthy People 2020 objective of de-
creasing the proportion of US pregnancies conceived within 18
months of a previous birth from 33% to 30% (45).

To estimate the effect of such a shift, we first select a
conditional 3% of mothers with IPIs of <18 months to be

redistributed, with the probability of being selected de-
fined by

PðR ¼ 1jME; LÞ
¼ f1þ exp[�ðδ0 þ δ1ME� þ δ2Age

�Þ�g�1;

where δ0 is chosen such that the marginal probability of R is
approximately 0.03 among mothers with intervals of <18
months. We set δ1 = log(1.5) with ME* = 1 if ME is less than
high school (0 otherwise), and δ2 = log(1.25) with Age* = 1 if
maternal age is less than 20 (0 otherwise). For all other moth-
ers, R is set equal to 0. Using this model implies that interven-
tion efforts will prioritize young mothers with less than a high
school education, but alternative choices are possible.

Next, we redistribute selected mothers. For each selected
mother (i.e., with R = 1), we draw a realization from a log-
normal distribution based on the following model estimated
from the data:

IPI� ∼ fLNðIPIjME;L;C; IPI � 18;R ¼ 1; ζÞ;

where fLN(·) represents the log-normal distribution with ho-
moscedastic variance. For all other mothers, we let IPI* = IPI.
Additional details, including an assessment of the adequacy
of this model (Web Figure 1), are provided in Web Appendix
2. We explored scenarios in which 3%, 10%, 20%, and 100%
of the persons with IPIs of <18 months were redistributed to
IPIs of ≥18 months.

An intervention in which 100% of mothers with short in-
tervals are redistributed differs from the fully effective inter-
vention in that mothers to the left of the dashed line in
Figure 2 are redistributed to anywhere above the dashed
line (as determined by the model for IPI*). In the fully effec-
tive intervention initially described (the standard CDE), all
mothers with IPIs of <18 months and ≥24 months are set
to have IPIs of 18–<24 months.

Quantitative bias analysis

We lacked information on prior pregnancy outcome, which
may confound the relationship between IPI and preterm birth
(46). To assess the sensitivity of our results to missing L infor-
mation (Figure 1), we performed a quantitative bias analysis
(47) by bootstrap resampling our data 10,000 times, simulating
an unmeasured binary confounder representing prior preg-
nancy outcome for each bootstrap resample, and estimating
CDERD while adjusting for the simulated confounder. Details
are provided in Web Appendix 3.

Analyses were carried out with SAS, version 9.3 (SAS
Institute, Inc., Cary, North Carolina). We present risk differ-
ences and risk ratios as measures of association and 95% con-
fidence intervals as measures of precision. In the main text,
we present 95% sandwich variance confidence intervals,
and we report 95% bootstrap confidence intervals inWebAp-
pendix 4. For all models, categorical confounders were en-
tered as indicator variables, and continuous confounders
were entered using restricted quadratic splines with knots at
the 5th, 23rd, 41st, 59th, 77th, and 95th percentiles. Example
SAS code is provided in the Appendix.

Interpregnancy Interval, months

0

50,000

100,000

150,000

200,000

250,000

N
o.

 o
f B

irt
hs

0 50 100 150 200 250 300

Figure 2. Distribution of interpregnancy intervals among 847,618
singleton livebirths in Quebec, Canada, 1989–2010. The dashed ver-
tical line at 18 months shows the 33rd percentile.
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RESULTS

Tables 1 and 2 provide descriptive information on our co-
hort stratified by PTD status. Overall, 5.1% of mothers with
parity ≥1 (n = 43,231) had fewer than 37 completed weeks of
gestation. Of these, 17.7% (n = 7,641) had less than a high
school education, and 32.6% (n = 14,101) had IPIs of <18
months. In comparison, 11.8% (n = 94,729) of mothers
with ≥37 weeks of gestation had less than a high school ed-
ucation, and 33.3% (n = 267,965) had IPIs of <18 months.
Table 3 presents risk differences, risk ratios, and 95% con-

fidence intervals for the total relationship between ME and
PTD and the total relationship between IPI and PTD. Com-
pared with mothers with some university education, mothers
with less than high school, high school, and some college had
excess PTD risks of 2.6% (95% confidence interval (CI): 2.4,
2.8), 1.5% (95% CI: 1.4, 1.7), and 1.0% (95% CI: 0.9, 1.1),
respectively. Compared with mothers with IPIs of 18–<24
months, mothers with intervals of <18 months, 24–<60
months, and ≥60 months had excess PTD risks of 0.4%
(95% CI: 0.3, 0.5), 0.5% (95% CI: 0.4, 0.7), and 2.0%
(95% CI: 1.8, 2.2), respectively. Patterns were similar on
the risk ratio scale for both ME and IPI (Table 3).
Figure 3 displays total and CDE estimates for the relation-

ship between ME and PTD on the risk difference (part A) and
risk ratio (part B) scales. Web Table 1 presents these results
including bootstrap and sandwich variance confidence inter-
vals. As demonstrated in Figure 3, under a perfect interven-
tion in which all mothers with IPIs of <18 months or ≥24
months were set to IPIs of 18–<24 months, mothers with
less than high school, high school, and some college educa-
tion had excess PTD risks of 2.4% (95% CI: 2.2, 2.6), 1.4%
(95%CI: 1.2, 1.5), and 0.9% (95% CI: 0.8, 1.0), respectively,
on the risk difference scale. This perfect intervention corre-
sponds to the CDE. Stochastic mediation contrasts in which
3%, 10%, 20%, and 100% of mothers with intervals of <18
months were redistributed to intervals of ≥18 months yielded
an excess risk of PTD that was no different from the total re-
lationship presented in Table 3 (Figure 3, Web Table 2).

Restricting analyses to mothers with intervals less than 84
months (n = 776,440) yielded negligible changes, as did re-
stricting analyses to mothers who gave birth at 30 years of
age (n = 82,574) or mothers with a parity of 2 who gave
birth at 30 years of age (n = 20,085). Similar patterns were
observed on the risk ratio scale.
Table 4 shows the distribution (median value and 2.5th and

97.5th percentiles) of 10,000 CDERD estimates for the 3%
and 100% stochastic mediation contrasts obtained from our
Monte Carlo sensitivity analysis. This table shows that ac-
counting for possible confounding due to unmeasured prior
pregnancy outcome yields negligible changes in the stochas-
tic mediation contrast estimates.

DISCUSSION

We estimated the magnitude of the relationship between
ME and PTD that would remain under hypothetical interven-
tions designed to increase IPIs in Quebec. We found that for
every 1,000 livebirths, mothers with less than a high school
education had 26 more preterm births than did mothers with a
university education. Under an unrealistic intervention in
which all mothers were set to IPIs of 18–<24 months, moth-
ers with less than high school would have 24 more preterm
births than mothers with a university education. Under a

Table 1. Characteristics (Median and Interquartile Rangea) of

847,618 Livebirths in the Quebec Birth File According to Preterm

Delivery Status,b Quebec, Canada, 1989–2010

Characteristic
Preterm Delivery

(n = 43,231)
Term Delivery
(n = 804,387)

Maternal age, years 30 (26–33) 30 (27–33)

Paternal age, years 32 (28–36) 32 (29–36)

Maternal education,
completed years

12 (11–15) 14 (11–16)

Interpregnancy
interval, months

27.0 (14.7–51.0) 24.9 (14.9–43.1)

Gestational age at
birth, completed
weeks

35 (34–36) 39 (38–40)

Year of birth 2000 (1994–2006) 1999 (1994–2006)

a 25th–75th percentiles.
b Preterm delivery was defined as delivery at <37 completed

weeks’ gestation.

Table 2. Distribution of Pregnancy-Related Characteristics

According to Decade of Birth Among 847,618 Livebirths in theQuebec

Birth File, Quebec, Canada, 1989–2010

Characteristic

Decade of Birth

1989–2000
(n = 456,954)

2001–2010
(n = 390,664)

No. % No. %

Maternal educational levela

Less than high school 66,864 14.6 36,197 9.3

High school 56,136 12.3 70,269 18.0

Some college 137,113 30.0 47,691 12.2

Some university 196,841 43.1 236,507 60.5

Interpregnancy interval,
months

<18 156,115 34.2 128,460 32.9

18–<24 62,967 13.8 58,272 14.9

24–<60 172,932 37.8 142,663 36.5

≥60 64,940 14.2 61,269 15.7

Gestational age, completed
weeks

<25 389 0.1 539 0.1

25–<32 2,084 0.5 1,721 0.4

32–<34 2,096 0.5 1,765 0.5

34–<37 18,287 4.0 16,350 4.2

≥37 434,098 95.0 370,289 94.8

a Less than high school, <11 years (no graduation); high school,

11 years (high school diploma); some college, 12–13 years (pre-

university studies); some university, ≥14 years (at least some

university studies).
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more realistic intervention in which 3%, 10%, 20%, or 100%
of short IPIs were set to IPIs of ≥18 months, mothers with
less than a high school education would still have 26 more
preterm births than mothers with a university degree. Our re-
sults suggest that interventions designed to increase short
IPIs will have a negligible impact on the educational disparity
in PTD. It is possible that IPI is too far downstream to be of
any consequence in mitigating educational disparity (23, 24)
or that IPIs of <18 months confer a low overall risk of PTD in
Western societies, where standards of living are high. Our re-
sults should be considered in light of certain limitations, in-
cluding an inability to differentiate spontaneous PTD from
induced PTD and to account for clustering of birth outcomes.

We combined a simple approach to estimate CDEs in the
presence of exposure effects that confound the mediator-
outcome relationship (33) with a simulation-based approach
to assess “representative regimes” (44) to obtain stochastic
mediation contrasts. The approach can be used to estimate
risk differences or risk ratios, but estimating odds ratios is not
straightforward (34). To implement the approach, we had to
select a subset of mothers with IPIs of <18 months to redistrib-
ute. Our selection was based on a model for the relationships
between age, ME, and the probability of being redistributed
under a hypothetical intervention. This approach requires the
analyst to consider the specific mechanisms by which inter-
ventions may impact the population, and a range of scenarios
can be explored. In this analysis, the results did not differ re-
gardless of whether we chose a random subset of mothers
with IPIs less than 18 months or a conditional subset.
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Figure 3. Associations betweenmaternal education and preterm de-
livery (PTD) under hypothetical interventions that change the distri-
bution of interpregnancy intervals (IPIs) among 847,618 singleton
livebirths in Quebec, Canada, 1989–2010. All associations were ad-
justed for maternal year of birth, maternal and paternal age, maternal
and paternal country of birth, maternal and paternal native language,
and area-level measures of material and social deprivation. Circles,
less than high school (<11 years); triangles, high school (11 years);
squares, some college (12–13 years). The referent category for all
comparisons was some university education (≥14 years). Percent-
ages on the x-axes refer to the relationship between maternal educa-
tion and PTD under interventions in which 0%, 3%, 10%, 20%, and
100% of mothers with short IPIs, respectively, are redistributed to
have IPIs of ≥18 months. A 0% intervention on IPI corresponds to
the total relationship between maternal education and PTD. “Perfect”
represents the relationship between maternal education and PTD
under an intervention in which all mothers have IPIs of 18–<24months
(i.e., standard controlled direct effect). Vertical lines, 95% confidence
intervals.

Table 3. Associations of Maternal Education and Interpregnancy

Interval With Preterm Delivery Among 847,618 Livebirths in the

Quebec Birth File, Quebec, Canada, 1989–2010

Characteristic
Risk

Differencea
95% CI

Risk
Ratioa 95% CI

Maternal
educational
levelb

Less than high
school

0.026 0.024, 0.028 1.61 1.57, 1.66

High school 0.015 0.014, 0.017 1.37 1.34, 1.41

Some college 0.010 0.009, 0.011 1.26 1.23, 1.29

Some university 0 Referent 1 Referent

Interpregnancy
interval,
months

<18 0.004 0.003, 0.005 1.11 1.08, 1.15

18–<24 0 Referent 1 Referent

24–<60 0.005 0.004, 0.007 1.13 1.09, 1.16

≥60 0.020 0.018, 0.022 1.45 1.40, 1.50

Abbreviation: CI, confidence interval.
a Adjusted for maternal year of birth, maternal and paternal age,

maternal and paternal country of birth, maternal and paternal native

language, and area-level measures of material and social deprivation.
b Less than high school, <11 years (no graduation); high school,

11 years (high school diploma); some college, 12–13 years (pre-

university studies); some university, ≥14 years (at least some university

studies).
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Other methods for estimating CDEs in situations where
exposure effects confound the mediator-outcome relation-
ship include inverse probability-weighted marginal structural
models (48), targeted maximum likelihood estimation (49),
G-estimation of a structural nestedmodel (33), and the paramet-
ric G-formula (50). Inverse probability-weighted marginal
structural models are easy to implement, but they have not,
to our knowledge, been used to estimate realistic (or stochas-
tic) intervention effects. Targeted maximum likelihood esti-
mation can be used to calculate stochastic intervention effects
(51) but has not been used to do so in a mediation framework.
The G-formula can be used to estimate the CDE in the pres-
ence of exposure effects that confound the mediator-outcome
relationship, and it easily accommodates estimation of sto-
chastic or “representative” regimes (44, 52). However, in typ-
ical epidemiologic data, the parametric G-formula requires
strong modeling assumptions (53). Our results depend on
correct specification of the model for the mean of PTD as a
function of ME, IPI, and relevant confounders (model 2), as
well as correct specification of the model for the transformed
outcome as a function of ME and relevant confounders
(model 3). This is fewer than what would have been required
for the G-formula.
Throughout the main text, we presented 95% confidence

intervals obtained using the sandwich variance estimator
(41, 42). While robust to model misspecification, these vari-
ance estimators do not account for the additional variation in-
duced by the models to generate our transformed outcome
and to create an IPI variable that would have been observed
under a hypothetical distribution (IPI*). We used the non-
parametric bootstrap to account for this additional variation,
but found no difference in our confidence interval estimates
(Web Table 2). This was undoubtedly the result of our large

sample size. In future research, investigators using stochastic
mediation contrasts in smaller samples should consider theuse
ofbootstrapconfidence interval estimators tobettercapture the
variability introduced by each step of the estimation process.
Epidemiologists have done much to establish that adverse

birth outcomes are differentially distributed across social cat-
egories (31), often defined using attributes such as education,
occupation, race/ethnicity, and sex (54). Such attributes are
critical to understanding how adverse birth outcomes are dis-
tributed socially. However, their causal effects are difficult to
formalize using potential outcomes, largely because they
cannot be construed as characteristics that correspond towell-
defined interventions (21, 55). Thus, the conditions necessary
for causal inference (e.g., exposure variation irrelevance (56))
are violated, and our use of potential outcomes to define
CDERD and CDERR represents a slight abuse of notation. Be-
cause university attendance is the result of a complex sequence
of experiences and decisions made in a wide range of social
contexts during critical periods of life (54), it is difficult to con-
ceive of education-related interventions that would yield com-
parable effects on birth outcomes. Even if CDE estimates in
this study cannot be interpreted as causal effects defined
using potential outcomes, under the assumptions necessary
for causal inference for the relationship between IPI and
PTD, our estimates can be interpreted as the magnitude of
the relationship between ME and PTD that would remain
under the specified interventions to increase IPIs.
A central objective of epidemiologic research is to yield

scientifically informed improvements in population health
(57). Stochastic mediation contrasts provide a useful means
of estimating the effects of realistic interventions geared to-
wards this end.
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APPENDIX

Example of SAS Code for Estimating the Controlled Direct Effect

*Step 1: Fit a model for the outcome conditional on the exposure, mediator, exposure-
mediator interaction, and confounders of the exposure-outcome and mediator-outcome
relationship;
proc genmod data=ipi desc;
model ptd_ind = ipi me ipi*me c l / link=identity dist=bin;
ods output ParameterEstimates=parms0(keep= parameter level1 level2 estimate);
run;

*Step 2: Keep parameter estimates for the mediator (ipi) and exposure-mediator
interactions (ipi*me);
data parms;
set parms0;
if parameter = “ipi” | parameter = “me*ipi”;
name = cats(”p_”,parameter);
drop parameter;
run;
proc transpose data=parms out=parms2;id name;
data parms2;set parms2;merg=1;drop _name_;
run;

*Step 3: Fit a model for continuous IPI to generate a distribution of IPI*;
proc lifereg data=ipi outest=parms(drop = _model_ _name_ _type_ _dist_ _status_
_lnlike_ ipimo);
model ipimo*merg(0) = me c l / dist=lnormal;
*nb: merg = 1 for all individuals;
run;quit;run;
proc transpose data=parms out=parms2;run;quit;run;
proc transpose data=parms2 out=parms prefix=pp_;id _name_;run;
data parms;set parms; merg=1;drop _name_;run;
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*Step 4: generate necessary variables;
data ipi;
merge parms parms2 ipi;
by merg;
call streaminit(6435);
*perfect mediator intervention;
ytilde = ptd_ind - ipi*p_ipi - me*ipi*p_me_ipi;

*stochastic mediator intervention;
r=0;
if ipimo < 18 then do;
r = rand(”bernoulli”,1/(1+exp(-(-log(1/0.03 - 1) - log(1.5)*.12 - log(1.25)*.12 +
log(1.5)*(meduc<11) + log(1.25)*(mage<20)))));
*ipimo is continuous IPI, meduc is integer maternal education, and mage is continuous
maternal age;
*.12 = proportion of mothers with meduc<11 and proportion of mothers with mage<20;
*-log(1/.03 - 1) sets marginal proportion of r;
end;

*generate ipistar variable;
ipistar0 = ipimo;
if r = 1 then do;

do until (ipistar0 ge 18 and ipistar0 < 300);
ipistar0 = exp(pp_intercept + pp_me*me + pp_c*c + pp_l*l +
rand(”normal”,0,pp__scale_));

end;
end;

ipistar = (ipistar0<18);

ytilde1 = ptd_ind - (ipi - ipistar)*p_ipi - me*(ipi - ipistar)*p_me_ipi;

*Step 5: Fit Model for Controlled Direct Effect;

proc genmod data=ipi;

class id;

model ytilde = me c / link=identity dist=normal;

*replace ytilde with ytilde1 for stochastic mediation;

repeated subject = id / type = ind;

*use above to obtain sandwich variance CIs;

run;quit;run;

Stochastic Mediation Contrasts in Epidemiologic Research 445

Am J Epidemiol. 2014;180(4):436–445

 by guest on N
ovem

ber 5, 2015
http://aje.oxfordjournals.org/

D
ow

nloaded from
 

http://aje.oxfordjournals.org/


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.5
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 175
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50286
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG2000
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 20
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 175
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50286
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG2000
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 20
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages true
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 175
  /MonoImageDepth 4
  /MonoImageDownsampleThreshold 1.50286
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


