Nate McDowell

Nate McDowell
  • Researcher at Pacific Northwest National Laboratory

About

298
Publications
144,986
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
38,408
Citations
Current institution
Pacific Northwest National Laboratory
Current position
  • Researcher

Publications

Publications (298)
Preprint
Full-text available
Rising sea levels and intensifying storms increase flooding pressure on coastal forests, triggering tree mortality, ecosystem transitions, and changes to the coastal carbon cycle. However, the mechanisms that drive coastal forest mortality remain elusive due to the complex interplay between belowground and aboveground processes during flooding dist...
Article
Full-text available
Wildfires impact vegetation mortality and productivity and are increasing in intensity, frequency, and spatial area in the western United States. The rates of vegetation recovery after fires play a major role in the reestab-lishment of biomass and ecosystem functioning (e.g., structure , resilience, and productivity), but such recovery rates are po...
Article
The apparent respiratory quotient (ARQ) of tree stems, defined as the ratio of net stem CO2 efflux (ES_CO2) to net stem O2 influx (ES_O2), offers insights into the balance between local respiratory CO2 production and CO2 transported via the xylem. Traditional static chamber methods for measuring ARQ can introduce artifacts and obscure natural diurn...
Preprint
Full-text available
Coastal upland forests are exposed to intensifying precipitation regimes and sea level rise, increasing tree mortality and transforming these coastal forests into wetland ecosystems. Despite these well-known risks, the differing degrees to which hydrological, biogeochemical, and biological components of upland forests respond to novel salinity expo...
Preprint
Full-text available
Rising sea levels have driven widespread coastal tree die-off, forming large swaths of ghost forests. While reports of coastal forest loss are accumulating, its true severity and factors determining the underlying mortality risks remain poorly understood. Here, we mapped over 10 million individual dead trees across the US Atlantic region – a sea-le...
Article
Full-text available
The radiative effects of wildfires have been traditionally estimated by models using radiative transfer calculations. Assessment of model-predicted radiative effects commonly involves information on observation-based aerosol optical properties. However, lack or incompleteness of this information for dense plumes generated by intense wildfires reduc...
Article
Full-text available
The structure, function, and dynamics of Earth's terrestrial ecosystems are profoundly influenced by how often (frequency) and how long (duration) they are inundated with water. A diverse array of natural and human-engineered systems experience temporally variable inundation whereby they fluctuate between inundated and non-inundated states. Variabl...
Article
Full-text available
Rates of tree mortality are increasing globally, with implications for forests and climate. Yet, how and why these trends vary globally remain unknown. Developing a comprehensive assessment of global tree mortality will require systematically integrating data from ground-based long-term forest monitoring with large-scale remote sensing. We surveyed...
Article
Full-text available
Rates of tree mortality are increasing globally, with implications for forests and climate. Yet, how and why these trends vary globally remain unknown. Developing a comprehensive assessment of global tree mortality will require systematically integrating data from ground-based long-term forest monitoring with large-scale remote sensing. We surveyed...
Article
Full-text available
Droughts of increasing severity and frequency are a primary cause of forest mortality associated with climate change. Yet, fundamental knowledge gaps regarding the complex physiology of trees limit the development of more effective management strategies to mitigate drought effects on forests. Here, we highlight some of the basic research needed to...
Article
Full-text available
Nonstructural carbohydrate (NSC) concentrations might reflect the strategies described in the leaf economic spectrum (LES) due to their dependence on photosynthesis and respiration. We examined if NSC concentrations correlate with leaf structure, chemistry, and physiology traits for 114 species from 19 sites and 5 biomes around the globe. Total lea...
Article
Full-text available
Plant hydraulics substantially affects terrestrial water and carbon cycles by modulating water transport and carbon assimilation. Despite improved drought simulations in certain ecosystems through their integration into land surface models (LSMs), the broader application of plant hydraulics in diverse ecosystems and hydroclimates is still underexpl...
Article
The impact of saltwater intrusion on coastal forests and farmland is typically understood as sea-level-driven inundation of a static terrestrial landscape, where ecosystems neither adapt to nor influence saltwater intrusion. Yet recent observations of tree mortality and reduced crop yields have inspired new process-based research into the hydrologi...
Article
Full-text available
Stomatal closure during drought inhibits carbon uptake and may reduce a tree's defensive capacity. Limited carbon availability during drought may increase a tree's mortality risk, particularly if drought constrains trees' capacity to rapidly produce defenses during biotic attack. We parameterized a new model of conifer defense using physiological d...
Article
Full-text available
Future climate presents conflicting implications for forest biomass. We evaluate how plant hydraulic traits, elevated CO2 levels, warming, and changes in precipitation affect forest primary productivity, evapotranspiration, and the risk of hydraulic failure. We used a dynamic vegetation model with plant hydrodynamics (FATES‐HYDRO) to simulate the s...
Article
Full-text available
Plant water uptake from the soil is a crucial element of the global hydrological cycle and essential for vegetation drought resilience. Yet, knowledge of how the distribution of water uptake depth (WUD) varies across species, climates, and seasons is scarce relative to our knowledge of aboveground plant functions. With a global literature review, w...
Preprint
Full-text available
Plant hydraulics, governing the fundamental processes of water transport and storage in plants, plays a crucial role in shaping terrestrial water and carbon cycles across various climate regimes. While the integration of plant hydraulics into land surface models (LSMs) has shown promising results in improving simulations for specific ecosystems und...
Article
Full-text available
An exponential rise in the atmospheric vapour pressure deficit (VPD) is among the most consequential impacts of climate change in terrestrial ecosystems. Rising VPD has negative and cascading effects on nearly all aspects of plant function including photosynthesis, water status, growth and survival. These responses are exacerbated by land–atmospher...
Poster
Full-text available
Tropical forest dynamics are key to global carbon, water, and energy cycles. Modeling the coexistence of diverse plant functional types (PFTs) in tropical forests presents a significant challenge. This study aims to enhance PFTs coexistence modeling in the Functionally Assembled Terrestrial Ecosystem Simulator (FATES), as implemented in the E3SM la...
Article
Full-text available
Vegetation plays a key role in the global carbon cycle and thus is an important component within Earth system models (ESMs) that project future climate. Many ESMs are adopting methods to resolve plant size and ecosystem disturbance history, using vegetation demographic models. These models make it feasible to conduct more realistic simulation of pr...
Poster
Full-text available
This study aimed to understand how transpiration (J s) and crown conductance (G s) of tropical trees are impacted by environmental and physiological traits across a gradient from seasonally dry, intermediate, and ever-wet tropical forests (Fig. 1), and to quantify how leaf-to-air temperature decoupling impacts G s. Main hypotheses: H1: High vapor...
Article
Full-text available
Frequent observations of higher mortality in larger trees than in smaller ones during droughts have sparked an increasing interest in size‐dependent drought‐induced mortality. However, the underlying physiological mechanisms are not well understood, with height‐associated hydraulic constraints often being implied as the potential mechanism driving...
Article
Full-text available
Tropical forest dynamics play a crucial role in the global carbon, water, and energy cycles. However, realistically simulating the dynamics of competition and coexistence between different plant functional types (PFTs) in tropical forests remains a significant challenge. This study aims to improve the modeling of PFT coexistence in the Functionally...
Article
Full-text available
Shifts in the age or turnover time of non‐structural carbohydrates (NSC) may underlie changes in tree growth under long‐term increases in drought stress associated with climate change. But NSC responses to drought are challenging to quantify, due in part to large NSC stores in trees and subsequently long response times of NSC to climate variation....
Article
Full-text available
Relative sea level rise (SLR) increasingly impacts coastal ecosystems through the formation of ghost forests. To predict the future of coastal ecosystems under SLR and changing climate, it is important to understand the physiological mechanisms underlying coastal tree mortality and to integrate this knowledge into dynamic vegetation models. We inco...
Article
Full-text available
While traditionally considered important mainly in hypoxic roots during flooding, upregulation of fermentation pathways in plants has recently been described as an evolutionarily conserved drought survival strategy, with acetate signaling mediating reprograming of transcription and cellular carbon and energy metabolism from roots to leaves. The amo...
Article
The species-poor woodlands in arid regions are particularly vulnerable to climate change induced plant die-off. Searching for species suitable to replant in these areas is an effective way to prevent further expansion of land desertification. Good knowledge of drought resistance of species is critical for current replanting efforts, however , the r...
Article
Full-text available
Plant survival depends on a balance between carbon supply and demand. When carbon supply becomes limited, plants buffer demand by using stored carbohydrates (sugar and starch). During drought, NSCs (non-structural carbohydrates) may accumulate if growth stops before photosynthesis. This expectation is pervasive, yet few studies have combined simult...
Article
As global climate conditions continue to change, disturbance regimes and environmental drivers will continue to shift, impacting global vegetation dynamics. Following a period of vegetation greening, there has been a progressive increase in remotely sensed vegetation browning globally. Given the many societal benefits that forests provide, it is cr...
Preprint
Full-text available
Vegetation plays a key role in the global carbon cycle and thus is an important component within Earth system models (ESMs) that project future climate. Many ESMs are adopting methods to trace the size and succession-stage-structure of plants within demographic models. These models make it feasible to conduct more realistic simulation of processes...
Article
Full-text available
Coastal upland forests are facing widespread mortality as sea-level rise accelerates and precipitation and storm regimes change. The loss of coastal forests has significant implications for the coastal carbon cycle; yet, predicting mortality likelihood is difficult due to our limited understanding of disturbance impacts on coastal forests. The mani...
Presentation
Full-text available
Here is the paper :D Li, L., Yang, Z., Matheny, A. M., Zheng, H., Swenson, S. C., Lawrence, D. M., Barlage, M., Yan, B., McDowell, N. G., and Leung, L. R.: Representation of Plant Hydraulics in the Noah‐MP Land Surface Model: Model Development and Multiscale Evaluation, J Adv Model Earth Sy, 13, https://doi.org/10.1029/2020ms002214, 2021.
Article
Full-text available
Canada's boreal forests, which occupy approximately 30% of boreal forests worldwide, play an important role in the global carbon budget. However, there is little quantitative information available regarding the spatiotemporal changes in the drought‐induced tree mortality of Canada's boreal forests overall and their associated impacts on biomass car...
Article
Full-text available
The frequency of extreme drought events has been rising worldwide, but due to its unpredictability, how plants will respond remains poorly understood. Here, we aimed to characterize how the hydraulics and photosynthesis of savanna plants respond to extreme drought, and tested whether they can subsequently recover photosynthesis after drought. There...
Article
Full-text available
The representation of stomatal regulation of transpiration and CO2 assimilation is key to forecasting terrestrial ecosystem responses to global change. Given its importance in determining the relationship between forest productivity and climate, accurate and mechanistic model representation of the relationship between stomatal conductance (gs) and...
Article
Full-text available
Tropical forest dynamics play crucial roles in the global carbon, water, and energy cycles. Dynamic global vegetation models are the primary tools to simulate terrestrial ecosystem dynamics and their response to climate change. However, realistically simulating the dynamics of competition and coexistence of differing plant functional traits within...
Article
Full-text available
Subtropical evergreen broadleaf forests (SEBF) are experiencing and expected to suffer more frequent and severe drought events. However, how the hydraulic traits directly link to the mortality and recovery of SEBF trees remains unclear. In this study, we conducted a drought–rewatering experiment on tree seedlings of five dominant species to investi...
Article
Full-text available
Within vascular plants, the partitioning of hydraulic resistance along the soil‐to‐leaf continuum affects transpiration and its response to environmental conditions. In trees, the fractional contribution of leaf hydraulic resistance (Rleaf) to total soil‐to‐leaf hydraulic resistance (Rtotal), or fRleaf (=Rleaf/Rtotal), is thought to be large, but t...
Article
Full-text available
Our understanding of broad-scale forest disturbances under climatic extremes remains incomplete. Drought, as a typical extreme event, is a key driver of forest mortality but there have been no reports on continental-scale quantification of its impact on forest mortality or how it compares to other natural or anthropogenic drivers. Thus, our ability...
Poster
Full-text available
Tree water use is the dominant terrestrial hydrologic flux globally, and has a dominant regulatory influence over the carbon cycle. Sap flow through the tree is also a useful model diagnostic for FATES-Hydro. Our objective is to quantify variation in tree water use at three sites across a rainfall gradient in Panama. Our ultimate goals are to under...
Poster
Full-text available
Forests are an important component for the water balance of terrestrial ecosystems. Knowledge of plant characteristics is of vital importance for improvements in current climate models (Jasechko et al., 2013; Christoffersen et al, 2017). Our objective was to describe and compare maximum sap velocity patterns from June to August 2022 in different wo...
Article
Full-text available
Forest ecosystems depend on their capacity to withstand and recover from natural and anthropogenic perturbations (that is, their resilience)1. Experimental evidence of sudden increases in tree mortality is raising concerns about variation in forest resilience2, yet little is known about how it is evolving in response to climate change. Here we inte...
Article
Full-text available
Increasing seawater exposure is killing coastal trees globally, with expectations of accelerating mortality with rising sea levels. However, the impact of concomitant changes in atmospheric CO2 concentration, temperature, and vapor pressure deficit (VPD) on seawater‐induced tree mortality is uncertain. We examined the mechanisms of seawater‐induced...
Article
Full-text available
Observations of woody plant mortality in coastal ecosystems are globally widespread, but the overarching processes and underlying mechanisms are poorly understood. This knowledge deficiency, combined with rapidly changing water levels, storm surges, atmospheric CO2, and vapor pressure deficit, creates large predictive uncertainty regarding how coas...
Article
Recent observations of elevated tree mortality following climate extremes, like heat and drought, raise concerns about climate change risks to global forest health. We currently lack both sufficient data and understanding to identify whether these observations represent a global trend toward increasing tree mortality. Here, we document events of su...
Article
Full-text available
Sensitivity of forest mortality to drought in carbon‐dense tropical forests remains fraught with uncertainty, while extreme droughts are predicted to be more frequent and intense. Here, the potential of temporal autocorrelation of high‐frequency variability in Landsat Enhanced Vegetation Index (EVI), an indicator of ecosystem resilience, to predict...
Article
Full-text available
This ERL focus collection has published 17 papers that have advanced our understanding of different dimensions of warming-induced tree mortality. Here we summarize these focus collection papers, organized by four topics related to tree mortality: pathogens, droughts/heat waves, fire/bark beetles, and teleconnections/air pollution. This focus collec...
Article
Full-text available
Drought-associated woody-plant mortality has been increasing in most regions with multi-decadal records and is projected to increase in the future, impacting terrestrial climate forcing, biodiversity and resource availability. The mechanisms underlying such mortality, however, are debated, owing to complex interactions between the drivers and the p...
Article
Full-text available
Abstract Management of forest lands under climate warming poses challenges to managers, some of which are difficult to predict. Examining the trade‐offs associated with forest stewardship choices is essential to avoid consequences associated with loss of natural capital. We utilized LANDIS‐II process model simulations for three forested sites locat...
Article
Full-text available
Short‐term plant respiration (R) increases exponentially with rising temperature, but drought could reduce respiration by reducing growth and metabolism. Acclimation may alter these responses. We examined if species with different drought responses would differ in foliar R response to +4.8°C temperature and −45% precipitation in a field experiment...
Article
Full-text available
Increasing severity and frequency of drought is predicted for large portions of the terrestrial biosphere, with major impacts already documented in wet tropical forests. Using a 4‐year rainfall exclusion experiment in the Daintree Rainforest in northeast Australia, we examined canopy tree responses to reduced precipitation and soil water availabili...
Article
Significance Forest decline due to climate change is increasing worldwide. Accurate forecasting of forest dynamics requires a mechanistic understanding of carbon allocation strategies that can link molecular process regulation to whole-tree responses. However, dedicated transdisciplinary investigations spanning these scales are lacking. Here we use...
Article
High temperatures alter the thermal sensitivities of numerous physiological and biochemical processes that impact tree growth and productivity. Foliar and root applications of methanol have been implicated in plant acclimation to high temperature via the C1 pathway. Here, we characterized temperature acclimation at 35 °C of leaf gas exchange, chlor...
Article
Full-text available
Deep‐water access is arguably the most effective, but under‐studied, mechanism that plants employ to survive during drought. Vulnerability to embolism and hydraulic safety margins can predict mortality risk at given levels of dehydration, but deep‐water access may delay plant dehydration. Here, we tested the role of deep‐water access in enabling su...
Article
Sea-level rise is one of the most critical challenges facing coastal ecosystems under climate change. Observations of elevated tree mortality in global coastal forests are increasing, but important knowledge gaps persist concerning the mechanism of salinity stress-induced non-halophytic tree mortality. We monitored progressive mortality and associa...
Article
Increasing seawater exposure is causing mortality of coastal forests, yet the physiological response associated with seawater-induced tree mortality, particularly in non-halophytes, is poorly understood. We investigated the shifts in carbon and nitrogen metabolism of mature Sitka-spruce trees that were dying after an ecosystem-scale manipulation of...
Article
Full-text available
Water deficit in the atmosphere and soil are two key interactive factors that constrain transpiration and vegetation productivity. It is not clear which of these two factors is more important for the water and carbon flux response to drought stress in ecosystems. In this study, field data and numerical modeling were used to isolate their impact on...
Cover Page
Full-text available
Representation of Plant Hydraulics in the Noah‐MP Land Surface Model: Model Development and Multiscale Evaluation. https://doi.org/10.1029/2020MS002214
Article
Full-text available
Plants are expected to face increasing water stress under future climate change. Most land surface models, including Noah‐MP, employ an idealized “big‐leaf” concept to regulate water and carbon fluxes in response to soil moisture stress through empirical soil hydraulics schemes (SHSs). However, such schemes have been shown to cause significant unce...
Article
Full-text available
Methane (CH4) exchange between trees and the atmosphere has recently emerged as an important, but poorly quantified process regulating global climate. The sources (soil and/or tree) and mechanisms driving the increase of CH4 in trees and degassing to the atmosphere are inadequately understood, particularly for coastal forests facing increased expos...
Article
Plant waxes, including n-alkanes, are commonly used for a wide range of paleo-applications. Several common traits of n-alkanes that are used as paleo-proxies include chain length distribution and average chain length (ACL), as well as plant wax carbon and hydrogen isotopic compositions. The effect of climate on plant wax traits has been the subject...
Article
Increasing sea levels associated with climate change threaten the survival of coastal forests, yet the mechanisms by which seawater exposure causes tree death remain poorly understood. Despite the potentially crucial role of nonstructural carbohydrate (NSC) reserves in tree survival, their dynamics in the process of death under seawater exposure ar...
Article
Full-text available
Leaf-level gas exchange data support the mechanistic understanding of plant fluxes of carbon and water. These fluxes inform our understanding of ecosystem function, are an important constraint on parameterization of terrestrial biosphere models, are necessary to understand the response of plants to global environmental change, and are integral to e...
Article
Full-text available
Rising atmospheric CO2 may enhance tree growth and mitigate drought impacts through CO2 fertilization. However, multiple studies globally have found that rising CO2 has not translated into greater tree growth despite increases in intrinsic water use efficiency (iWUE). The underlying mechanism discriminating between these two general responses to CO...
Article
Full-text available
Plants are characterized by the iso/anisohydry continuum depending on how they regulate leaf water potential (ΨL). However, how iso/anisohydry changes over time in response to year‐to‐year variations in environmental dryness and how such responses vary across different regions remains poorly characterized. ●We investigated how dryness, represented...
Article
Full-text available
Atmospheric nitrogen (N) deposition has been observed to impact plant structure and functional traits in terrestrial ecosystems. Although the effect of N deposition on plant water use has been well-evaluated in laboratories and in experimental forests, the linkages between water and carbon relations under N deposition are unclear. Here, we report o...
Article
Full-text available
Conifer mortality rates are increasing in western North America, but the physiological mechanisms underlying this trend are not well understood. We examined tree‐ring‐based radial growth along with stable carbon (C) and oxygen (O) isotope composition (δ¹³C and δ¹⁸O, respectively) of dying and surviving conifers at eight old‐growth forest sites acro...
Article
Coastal shoreline forests are vulnerable to seawater exposure, the impacts of which will increase due to sea-level rise, but the long-term adaptation strategies and vulnerability of coastal forests are not well understood. We used whole-tree transpiration, leaf water potential, tree-ring width, and tree-ring δ 13 C (a proxy for intrinsic water use...
Article
Full-text available
Tropical forests absorb large amounts of atmospheric CO2 through photosynthesis, but high surface temperatures suppress this absorption while promoting isoprene emissions. While mechanistic isoprene emission models predict a tight coupling to photosynthetic electron transport (ETR) as a function of temperature, direct field observations of this phe...
Article
BACKGROUND: Forest dynamics arise from the interplay of chronic drivers and transient disturbances with the demographic processes of recruitment, growth, and mortality. The resulting trajectories of vegetation development drive the biomass and species composition of terrestrial ecosystems. Forest dynamics are changing because of anthropogenic-drive...
Article
Shifting forest dynamics Forest dynamics are the processes of recruitment, growth, death, and turnover of the constituent tree species of the forest community. These processes are driven by disturbances both natural and anthropogenic. McDowell et al. review recent progress in understanding the drivers of forest dynamics and how these are interactin...
Article
Full-text available
The 2015–2016 El Niño event ranks as one of the most severe on record in terms of the magnitude and extent of sea surface temperature (SST) anomalies generated in the tropical Pacific Ocean. Corresponding global impacts on the climate were expected to rival, or even surpass, those of the 1997–1998 severe El Niño event, which had SST anomalies that...
Article
Full-text available
Between the land and ocean, diverse coastal ecosystems transform, store, and transport material. Across these interfaces, the dynamic exchange of energy and matter is driven by hydrological and hydrodynamic processes such as river and groundwater discharge, tides, waves, and storms. These dynamics regulate ecosystem functions and Earth’s climate, y...
Article
Full-text available
Recent decades have been characterized by increasing temperatures worldwide, resulting in an exponential climb in vapor pressure deficit (VPD). VPD has been identified as an increasingly important driver of plant functioning in terrestrial biomes and has been established as a major contributor in recent drought‐induced plant mortality independent o...
Article
Increasing dryness challenges trees' ability to maintain water transport to the leaves. Most plant hydraulics models use a static xylem response to water stress. Yet in reality, lower soil moisture and warmer temperatures during growing seasons feed back onto xylem development. In turn, adjustments to droughts in the newly built xylem influence fut...
Article
Full-text available
Drought and N addition have been shown to affect tree hydraulic traits, but few studies have been made on their interactions across species with different wood types or leaf forms. We examined the responses of hydraulic conductance and xylem anatomical traits of Quercus mongolica (ring-porous with simple-leaves), Fraxinus mandshurica (ring-porous w...
Article
Full-text available
Terrestrial gross primary production (GPP) is the basis of vegetation growth and food production globally1 and plays a critical role in regulating atmospheric CO2 through its impact on ecosystem carbon balance. Even though higher CO2 concentrations in future decades can increase GPP2, low soil water availability, heat stress and disturbances associ...
Article
Full-text available
Aim Increased atmospheric nitrogen deposition may have profound effects on tree carbon allocation dynamics. However, a comprehensive understanding of how nitrogen (N) enrichment influences carbon (C) allocation across plant functional processes and tree organs in individual trees remains elusive. Location Global forest ecosystems. Time period 199...
Article
Full-text available
Climate change is a worldwide threat to biodiversity and ecosystem structure, functioning, and services. To understand the underlying drivers and mechanisms, and to predict the consequences for nature and people, we urgently need better understanding of the direction and magnitude of climate‐change impacts across the soil–plant–atmosphere continuum...
Preprint
Full-text available
The 2015–16 El Niño event ranks as one of the most severe on record in terms of the magnitude and extent of sea surface temperature (SST) anomalies generated in the tropical Pacific Ocean. Corresponding global impacts on the climate were expected to rival, or even surpass, those of the 1997–98 severe El Niño event, which had SST anomalies that were...
Article
Full-text available
Transpiration in humid tropical forests modulates the global water cycle and is a key driver of climate regulation. Yet, our understanding of how tropical trees regulate sap flux in response to climate variability remain elusive. With a progressively warming climate, atmospheric evaporative demand (i.e., vapor pressure deficit, VPD) will be increas...
Article
Full-text available
Vegetation plays an important role in regulating global carbon cycles and is a key component of the Earth system models (ESMs) that aim to project Earth's future climate. In the last decade, the vegetation component within ESMs has witnessed great progress from simple “big-leaf” approaches to demographically structured approaches, which have a bett...
Article
Full-text available
Stomata regulate CO2 uptake for photosynthesis and water loss through transpiration. The approaches used to represent stomatal conductance (gs) in models vary. In particular, current understanding of drivers of the variation in a key parameter in those models, the slope parameter (i.e. a measure of intrinsic plant water‐use‐efficiency), is still li...
Article
Full-text available
The metabolic underpinnings of plant survival under severe drought-induced senescence conditions are poorly understood. In this study, we assessed the morphological, physiological and metabolic responses to sustained water deficit in Brachypodium distachyon, a model organism for research on temperate grasses. Relative to control plants, fresh bioma...
Article
Full-text available
Current climate change scenarios indicate warmer temperatures and the potential for more extreme droughts in the tropics, such that a mechanistic understanding of the water cycle from individual trees to landscapes is needed to adequately predict future changes in forest structure and function. In this study, we contrasted physiological responses o...
Article
Full-text available
Rising sea levels under climate change may have significant impacts on coastal vegetation dynamics, yet the response of coastal forest growth, gas exchange and survival to seawater intrusion remains poorly documented. We conducted a dendroecology study across six sites in western Washington, USA, to examine how tree growth, gas exchange (indexed by...
Article
Full-text available
Plain Language Summary During the past 50 years, the northeastern Qinghai‐Tibetan Plateau region experienced alpine glacial retreat, increased desertification, and a reduction of river and lake levels. Understanding the region's background hydroclimate variation is critically important to assess current and future water‐management policies in this...

Network

Cited By
    • Swiss Federal Institute for Forest, Snow and Landscape Research
    • Swiss Federal Institute for Forest, Snow and Landscape Research
    • French National Institute for Agriculture, Food, and Environment (INRAE)
    • Spanish National Research Council (CSIC)-Centre for Ecological Research and Forestry Applications (CREAF)
    • Lawrence Berkeley National Laboratory