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Outlier detection has recently become an important problem in many industrial and 
financial applications. Often, outliers have to be detected from data streams that 
continuously arrive from data sources. Incremental outlier detection algorithms, 
aimed at detecting outliers as soon as they appear in a database, have recently 
become emerging research field. In this paper, we develop an incremental version of 
connectivity-based outlier factor (COF) algorithm and discuss its computational 
complexity. The proposed incremental COF algorithm has equivalent detection 
performance as the iterated static COF algorithm (applied after insertion of each 
data record), with significant reduction in computational time. The paper provides 
theoretical and experimental evidence that the number of updates per such 
insertion/deletion does not depend on the total number of points in the data set, 
which makes algorithm viable for very large dynamic datasets. Finally, we also 
illustrate an application of the proposed algorithm on motion detection in video 
surveillance applications.  

Keywords Data mining, Data streams, Outlier detection, Incremental algorithm 

1. INTRODUCTION 

Despite the enormous amount of data being collected in many scientific and commercial 
applications, particular events of interests are still quite rare. These rare events, very often 
called outliers or anomalies, are defined as events that occur very infrequently (their frequency 
ranges from 5% to less than 0.01% depending on the application). Detection of outliers (rare 
events) has recently gained a lot of attention in many domains, ranging from video surveillance 
and intrusion detection to fraudulent transactions and direct marketing. For example, in video 
surveillance applications, video trajectories that represent suspicious and/or unlawful activities 
(e.g. identification of traffic violators on the road, detection of suspicious activities in the vicinity 
of objects) represent only a small portion of all video trajectories. Similarly, in the network 
intrusion detection domain, the number of cyber attacks on the network is typically a very small 
fraction of the total network traffic. Although outliers (rare events) are by definition infrequent, in 
each of these examples, their importance is quite high compared to other events, making their 
detection extremely important. 

Data mining techniques developed for this problem are based on both supervised and 
unsupervised learning. Supervised learning methods typically build a prediction model for rare 
events based on labeled data (the training set), and use it to classify each event [1]. The major 
drawbacks of supervised data mining techniques include: (1) necessity to have labeled data, 
which can be extremely time consuming for real life applications, and (2) inability to detect new 
types of rare events. In contrast, unsupervised learning methods typically do not require labeled 
data and detect outliers as data points that are very different from the normal (majority) data 
based on some measure [2]. These methods are typically called outlier/anomaly detection 
techniques, and their success depends on the choice of similarity measures, feature selection 
and weighting, etc. They have the advantage of detecting new types of rare events as 
deviations from normal behavior, but on the other hand they suffer from a possible high rate of 
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false positives, primarily since previously unseen (yet normal) data can be also recognized as 
outliers/anomalies.  

Very often, data in many rare events applications (e.g. network traffic monitoring, video 
surveillance, flight record data) arrives continuously at an enormous pace thus posing a 
significant challenge to analyze it. In such cases, it is important to make decisions quickly and 
accurately. If there is a sudden or unexpected change in the existing behavior, it is essential to 
detect this change as soon as possible. Assume, for example, there is a computer in the local 
area network that uses only limited number of services (e.g., Web traffic, telnet, ftp) through 
corresponding ports. All these services correspond to certain types of behavior in network traffic 
data. If the computer suddenly starts to utilize a new service (e.g., ssh), this will certainly look 
like a new type of behavior in network traffic data. Hence, it will be desirable to detect such 
behavior as soon as it appears especially since it may very often correspond to illegal or 
intrusive events. Even in the case when this specific change in behavior is not necessary 
intrusive or suspicious, it is very important for a security analyst to understand the network traffic 
and to update the notion of the normal behavior. Further, on-line detection of unusual behavior 
and events also plays a significant role in video and image analysis [3-5]. Automated 
identification of suspicious behavior and objects (e.g., people crossing the perimeter around 
protected areas, leaving unattended luggage at the airport, cars driving unusually slow or 
unusually fast or with unusual trajectories) based on information extracted from video streams is 
currently very active research area. In addition, there are many aviation systems that have 
incorporated Health and Usage Management systems as standard equipment on the aircraft to 
collect data during the flight. Other potential applications include traffic control and surveillance 
of commercial and residential buildings. These tasks are characterized by the need for real-time 
processing (such that any suspicious activity can be identified prior to making harm to people, 
facilities and installations) and by dynamic, non-stationary and often noisy environment. Hence, 
there is necessity for incremental outlier detection that can adapt to novel behavior and provide 
timely identification of unusual events. 

Recently, there have been several density-based anomaly detection algorithms (LOF-Local 
Outlier Factor) algorithm [6], COF (Connectivity Outlier Factor) [7], LOCI (Local Correlation 
Integral) [8] that have been successfully applied in many domains for outlier detection in a batch 
mode. In this paper, we propose a novel incremental COF algorithm that is appropriate for 
detecting anomalies from data streams. There has only been a limited research in incremental 
(on-line) anomaly detection algorithms, and to the best of our knowledge, there is only 
incremental LOF algorithm [15] proposed so far. The proposed incremental COF algorithm 
provides equivalent detection performance as the static COF algorithm. The paper proves that 
insertion of new data points as well as deletion of obsolete points influence only limited number 
of their nearest neighbors and thus insertion/deletion time complexity per data point does not 
depend on the total number of points N. Our experiments performed on both simulated and real 
life data sets have demonstrated that the proposed incremental COF algorithm can be very 
successful in detecting anomalies in various data streaming applications. 

2. BACKGROUND 

Outlier detection techniques [9] can be categorized into several groups: statistical, distance 
based, profiling and model-based approaches. In statistical techniques [e.g., 2], the data points 
are typically modelled by means of a stochastic distribution, and points are subsequently 
labelled as outliers with regards to their relationship with the model. Distance based approaches 
[e.g., 6, 8] detect outliers by using computed distances among points. Clustering-based 
techniques have been used to detect outliers either as side products of the clustering algorithms 
(e.g., points that do not belong to clusters or clusters that are significantly smaller than others) 
[e.g., 10]. In profiling methods, profiles of normal behaviour are built using different data mining 
techniques or heuristic-based approaches, and deviations from them are considered as outliers 
(approach used, e.g., in network intrusions). Model-based approaches first characterize the 
normal behaviour using some predictive models [e.g., 11], and then detect outliers as deviations 
from the learned model. 
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Initially proposed outlier detection algorithms determine outliers once all the data records 
(samples) are present in the dataset. We refer to these algorithms as static outlier detection 
algorithms. In contrast, incremental outlier detection techniques [12, 13, 14] identify outliers as 
soon as new data record appears in the dataset. Incremental outlier detection was also used 
within more general framework of activity monitoring [12]. In addition, Domingos and Hulten [13] 
proposed broad requirements that incremental algorithms need to meet, while Yamanishi and 
Takeuchi [14] used on-line discounting distributional learning of Gaussian mixture model and 
scoring based on the estimated probability density function. Pokrajac et al [15] proposed an 
incremental variant of local outlier factor algorithm, with asymptotic time complexity equal to the 
time complexity of static LOF algorithm. 

In this study, we propose an incremental connectivity outlier factor (COF). The main idea of the 
static COF algorithm [7, 9] is to assign to each data record a degree of being outlier. This 
degree is called the connectivity-based outlier factor (COF) of a data record. Data records 
(points) with a high COF have average local connectivity smaller than their neighbourhood and 
typically represent strong outliers, unlike data records belonging to uniform clusters that usually 
tend to have lower COF values. The algorithm for computing the COFs for all data records has 
the following steps: 

1. For each data record p find set Nk (p) of its k nearest neighbours (k-NN); 

2. Find set based nearest (SBN) path s and corresponding set based nearest trail (SBN trail) 
e={e1,… ek} from p on Nk(p)∪{p}. Here, the set based nearest (SBN) path from data record p1 
on set Nk(p) is a sequence of records s={p1,p2,…,pr} such that for all 1 1i r≤ ≤ − , pi+1 is the 
nearest neighbour of set {p1,…,pi} in {pi+1,…,pr} [7]. SBN trail is the sequence of edges e = {e1,… 
ek}, where each edge connects two consecutive nearest neighbours from the SBN path. 

3. Compute the average chaining distance from p1 to Nk - {p1}, denoted by ac-distNk(p)∪p(p1) and 
defined as:   
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where dist(ei) denotes distance between nodes comprising an edge. The average chaining 
distance from p1 to Nk-{p1} is the weighted sum of the cost description of the SBN trail for some 
SBN path from p1, and can also be viewed as the average of the weighted distances in the cost 
description of the SBN-trail. Larger weights are assigned to the earlier terms [7]. 

4. Compute connectivity-based outlier factor (COF) at data record p with respect to its k-
neighbourhood using the following formula: 
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COF is computed as ratio of the average chaining distance from data record p to Nk(p) and the 
averaged average chaining distances at the record’s neighbourhood. 

In order to fully realize the need for incremental outlier detection techniques, it is important to 
understand that applying static COF outlier detection algorithms to data streams would be 
extremely computationally inefficient. Namely, static COF algorithm may be applied to data 
streams in the following “iterated” fashion: re-apply the static COF algorithm every time a new 
data record pc is inserted into the data set. However, since every time a new record is inserted, 
the algorithm recomputes COF values for all the data records from the data set. With time 
complexity of COF algorithm of O(n·log n) (for moderate dimension of the data records) [7], 
where n is the current number of data records in the data set, total time complexity for this 
“iterated” approach, after insertion of N records, is: 
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An alternative approach would be to perform static COF periodically after inserting particular 
data blocks. However, such “periodic” scheme cannot identify exact time when an outlier 
appears in the database and cannot detect outliers that would later be classified as normal 
records, due to non-stationarity in the dataset [15].  

Our proposed incremental COF algorithm is designed to provably provide the same results in 
detecting outliers as the “iterated” COF. It is achieved by consistently maintaining for all existing 
records in the database the same COF values as the “iterated” COF algorithm. The incremental 
COF algorithm that we propose has time complexity O(N⋅logN) thus clearly outperforming the 
static “iterated” COF approach. After all N data records are inserted into the data set, the final 
result of the incremental COF algorithm on N data records is independent of the order of 
insertion and equivalent to the static COF executed after all the data records are inserted.  

3. METHODOLOGY 

When designing incremental COF algorithm, we have been motivated by two aims. First, the 
result of the incremental algorithm must be equivalent to the result of the “iterated” static 
algorithm every time when a new record is inserted into a data set. Also, there should not be a 
difference between applying incremental COF and the static COF when all data records up to a 
considered time instant are available. Second, asymptotic time complexity of incremental COF 
algorithm has to be comparable to the static COF algorithm. In order to have feasible 
incremental algorithm, it is essential that, at any time moment, insertion/deletion of the data 
record results in small (preferably limited) number of updates of algorithm parameters. 
Specifically, the number of updates per insertion/deletion must be independent of the current 
number of records in the dataset. Otherwise, the time complexity of the incremental COF 
algorithm would be Ω(N2) (N is the size of the final dataset). In this section, we provide efficient 
schemes for insertion and deletion of records for the incremental COF algorithm and discuss 
their time complexities. 

3.1 Incremental COF algorithm 

The proposed incremental COF algorithm computes COF value for each data record inserted 
into the data set and instantly determines whether inserted data record is an outlier. In addition, 
COF values for existing data records are updated if needed. 

3.1.1. Insertion  

In the insertion part of the incremental COF (incCOF) algorithm, the following two tasks are 
performed: a) insertion of new record in the database and computation of ac-dist and COF for 
the new record; b) maintenance, when ac-dist and COF values need to be updated for the 
records already existing in the database. 

Consider an insertion of new record p into a database of two-dimensional records, see Fig. 1. 
According to Eq. (1), ac-dist may change for a certain record q if the set of its k-nearest 
neighbours Nk(q) changes due to insertion of p.   In other words, ac-dist(q) may change if a data 
record q is among reverse k-nearest neighbours of p. Since p is among k-nearest neighbours of 
q (see. Fig. 1a), ac-dist(q) should be updated. Set of records where ac-dist needs to be updated 
after insertion of p is denoted by Supdate_ac_dist(p) in the remaining part of the paper. Denote the 
set of records where COF should be updated as Supdate_COF(p). According to Eq. (2), COF(o) for 
an existing record o needs to be updated if: a) ac-dist(o) is updated; b) the insertion of p 
changes the neighbourhood of o (in other words p is among k-nearest neighbours of o); c) ac-
dist is updated for some of k-nearest neighbours of o. 
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Since ac-dist(o) is updated only if o is among reverse nearest neighbours of p, conditions a) and 
b) above would imply that Supdate_ac_dist(p) ⊂ Supdate_COF(p). Condition c) indicates that COF also 
needs to be updated for all reverse nearest neighbours of points from the set Supdate_ac_dist(p). 
For example, in Fig. 1a, COF will be updated on data record r, since its k-nearest 
neighbourhood contains a record from Supdate_ac_dist(p). The general framework for the insertion 
of new data record for the COF algorithm is given in Fig. 2a. 

Similarly to the LOF approach [6], we define k-th nearest neighbour of a record p as a record q 
from the dataset S such that for at least k records o’∈S - {p}, it holds that d(p,o’) ≤ d(p,q), and 
for at most k-1 records o’∈S - {p}, it holds that d(p,o’) < d(p,q). Here, d(p,q) denotes Euclidean 
distance between data records p and q. k nearest neighbours (Nk(p))  include all data records  
r∈S - {p}  such that d(p,r) ≤ d(p,q). We also define k reverse nearest neighbours of p (referred to 
as kRNN (p)) as all data records q for which p is among their k nearest neighbours. For a given 
data record p, Nk(p) and kRNN(p) can be respectively retrieved by executing nearest-neighbour 
and reverse (a.k.a. inverse) nearest neighbour queries [16, 19] on a dataset S. 

3.1.2. Deletion  

In data stream applications, very often it may be necessary to delete irrelevant data records, 
due to their obsoleteness or change of regime. The general framework for deleting the block of 
data records Sd from the dataset S is given in Fig. 2b, and it is very similar to the insertion 
scheme. At the beginning, the record that needs to be deleted from the set is marked for 
deletion. Naturally, this removal of a record p may affect the kRNN of the other records.  In 
addition, as in the insertion procedure, ac-dist of the kRNN of p is updated using Eq. (1). Due to 
update of ac-dist, the update of COF value also needs to be performed. This update, in addition 
to data records where ac-dist values change, also includes their reverse nearest neighbours. At 
the end, the data record can be deleted from the database.  

We would like to discuss several technical aspects of the algorithm here. In the algorithms 
above, Supdate_ac_dist (p) is the set where ac-dist should be recomputed, not where the ac-dist 
would actually change. However, our experimental evidence suggests that ac-dist would always 
change for all points from Supdate_ac_dist (p). The second technical aspect is related to the question 
whether the reverse k-nn of points from Supdate_ac_dist should be computed with or without 
considering record p that is deleted. Here, we justify that during the deletion the data record p 
can be deleted from a database before Supdate_COF is computed. Let r be an existing data record 
such that r∉ Supdate_ac_dist(p). Then, p ∉Nk(r).  Assume that r∈ Supdate_COF(p). Then, there exists 
o∈Supdate_ac_dist(p) such that o∈ Nk(r). Since p ∉Nk(r), the deletion of p would not affect the 
neighbourhood of r and hence Supdate_COF can safely be determined after p is deleted. 

FIGURE 1: a) Illustration of updates for COF insertion; b) Degenerate case of incremental COF algorithm 
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FIGURE 2: The pseudo code for a) insertion and b) deletion of incremental COF algorithm 

 

 (a)                                                                                                  (b) 

 

The static COF algorithm [7,9] did not discuss a degenerate case when denominator in Eq. (2) 
is equal to zero. Such a scenario is possible since a database of dynamic data may contain 
identical records (corresponding to different time instants). Consider k identical records p1,…,pk 
and record q such that  records p1,…, pk+1 are k nearest neighbours of q and that q is among k 
nearest neighbours of each of records p1,…,pk+1 (see Fig. 1b). In this case, it is easy to see that 

( ) ( ) 1,...,1,0 +==− ∪ kipdistac ippN iik
 and that ( ) ( ) .0>− ∪ qdistac qqNk

 Hence, COF(pi) will 
involve division by 0, and therefore will be undefined. Recall, however, that COF is defined as 
the ratio of ac-dist at the data record and the average ac-dist at its neighbourhood. Hence, if the 
ac-dist at the record is equal to the average ac-dist, COF should be equal to 1. Therefore, for 
data records where both numerator and denominator of Eq. (2) are zeros, such as data records 
pi, we define COF(pi)≡1. In contrast, when only denominator of Eq. (2) is equal to zero, such as 
for record q, the neighbourhood of the record will have infinitely larger density than the record 
itself. Hence, for such data records, we define COF(q) ≡ ∞ (in practice, we assign COF(q) a very 
large number). 

3.2 Computational efficiency of the incremental COF algorithm 

In this section we provide a semi-formal overview of the computational complexity of the 
proposed algorithm. To efficiently implement incremental COF algorithm (incCOF), similarly as 
in static COF algorithm [7], we may use an intermediate database M in which for every data 
record there is a list of its k-nearest neighbours along with their distances to that record, SBN 
trail and its cost description.  

During the insertion step of incCOF, after a new record pc is inserted into a database, its ac-dist 
needs to be computed. This requires execution of nearest neighbour (k-nn) query and insertion 
of a new record into the intermediate database M. Afterwards, we execute kRNN query and 
update |Supdate_ac_dist| data records in database M corresponding to reverse nearest neighbours pj 
of record pc (during this step, we can “on-fly” compute updated values of ac-dist). Then, for each 
record pj we need to execute another kRNN query to determine Supdate_COF, which includes 
|Supdate_COF| updates of the intermediate database. Finally, we compute COF for all records in 
Supdate_COF and for the inserted record pc. Hence, when inserting a new record, there is a need to 
perform one kNN query, 1+|Supdate_ac_dist| kRNN queries, O(|Supdate_COF|+ |Supdate_ac_dist|) updates of 
the database M (including computation of ac-dist), and 1+Supdate_COF computations of COF. The 
computational complexity for deletion is similar to complexity of insertion procedure. When 
deleting a data record, kRNN query needs to be executed to determine records for which ac-dist 
will be updated. For each such record, another kRNN is executed to determine set of records 

IncCOF_insertion(Dataset S) 
Given: Set S {p1, … ,pN}pi∈R

D to be inserted 
into the database 
For ∀pc∈S 

insert(pc); 
compute Nk(pc)=kNN(pc) 
compute ac-distNk(pc)∪pc(pc) using Eq. 

(1)  
Supdate_ac_dist =reverse k-NN(pc);  
//candidates for update of ac_dist; 
(∀pj ∈ Supdate_ac_dist)  

  update ac-distNk(pi)∪pi (pj); 
//Eq. (1)  

Supdate_COF = Supdate_ac_dist;  
(∀pm ∈ Supdate_ac-dist) 

  Supdate_COF = Supdate_COF∪reverse k-
NN(pm); 
       (∀pl ∈ Supdate_COF) 
  update COF(pl) using Eq. 

IncCOF_deletion(Database S, Dataset SD) 
Given: Set SD={p1,…,pN} pi∈RD to be 
deleted from the Database S 
For ∀pc∈SD 

compute reverse-kNN(pc); 
compute ac-distNk(pc)∪pc (pc) using 

Eq.(1);  
Supdate_ac_dist =reverse k-NN(pc);  
(∀pj ∈ Supdate_ac_dist) 
update ac-distNk(pj)∪pj (pj); 
Supdate_COF = Supdate_ac_dist; 
(∀pm ∈ Supdate_ac-dist)  

Supdate_COF = Supdate_COF ∪ reverse k-
NN(pm); 

(∀pl ∈ Supdate_COF)  
update COF(pl) Eq.(2);  

delete (pc);  
End //for

 Incremental Connectivity-Based Outlier Factor Algorithm 

  BCS International Academic Conference 2008 – Visions of Computer Science216



where COF need be recomputed. During each calculation of kRNN, data records in database M 
corresponding to discovered reverse nearest neighbours pj need to be updated. Hence, for 
deletion phase of incCOF, there is a need to perform 1+|Supdate_ac_dist| kRNN queries, 
O(|Supdate_COF|+ |Supdate_ac_dist|) updates of the database M (including computation of ac-dist), and 
Supdate_COF computations of COF.   

When efficient algorithms for kNN [e.g. 20], kRNN [e.g., 16-18], as well as efficient indexing 
structures for inserting / deleting data records [21,22] are employed, the time complexity of kNN 
and kRNN search algorithms is logarithmic in the current size N of the database. Time needed 
to perform operations involving a record of intermediate database M does not depend on the 
total number of records N [7].  Hence, to determine asymptotic time complexity and feasibility of 
the proposed incremental COF algorithm, it is essential to demonstrate that the number of 
affected data records (updates of ac-dist and COF values) does not depend on the current 
number N of records in the dataset.  

Let f(pc) be the number of reverse nearest neighbours pj of the record pc. Then, the number of 
ac-dist updates is equal to |Supdate_ac_dist|= f(pc) while the total number of COF updates is equal to 

|Supdate_COF|= ( ) ( )
( )

∑
∈

+
cj pkRNNp

jc pfpf . It has been shown [23] that ( ) ( )DkFf D2.sup Θ=≡  

where D is the dimensionality of the dataset. In addition it is explicitly demonstrated that F does 
not asymptotically change with respect to the number of records currently in the database. 
Therefore, |Supdate_ac_dist| = ( )DkO D2 , |Supdate_COF|= ( )DDkO 22 2 . As a consequence, the 
computational complexity of one insertion/deletion step of the proposed algorithm is 

( )( )NDkDkO DD log2222 + . For a sequence of N insertions/deletions on an empty 

database, the computational complexity then becomes ( )( )NNO log .  

Aforementioned discussion considers worst-case theoretical performance of the algorithm. 
Practical computational time per insertion/deletion depends on the position of the 
inserted/deleted record with respect to other records in the database (here referred to as 
“boundary effect”) as well as on the actual number of records (for small enough N).  

FIGURE 3: a) Insertion of a point on the boundary of the cluster: 1 ac-dist updated, 2 COF values updated 
(k=3); b) Insertion of a point inside the cluster: 3 ac-dist updated, 10 COF values updated (k=3) 
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(a)                                                           (b) 

Fig. 3 illustrates previously mentioned “boundary effect”. The experiments from Fig. 3 are 
performed on data uniformly distributed within a unit circle.  During the COF insertion (or 
deletion), the number of updates may depend on the position of the inserted/deleted data record 
with respect to to the existing data clusters. If a record is on the boundary of a cluster, or far 
from any cluster, it is possible that the record will not have any reverse nearest neighbours. In 
that case, the number of records where ac-dist (and hence COF) is updated will be zero. Fig. 3a 
shows a case of incCOF insertion (k=3), where a data record that will be inserted lies on the 
boundary of a cluster. The record has only one reverse k-nearest neighbour, so ac-dist will be 
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updated for only one data record. Consequently, COF is updated at only two records. In 
contrast, when a record is inserted inside the existing cluster, the number of reverse neighbours 
increases. Fig. 3b contains an example where ac-dist and COF are updated at 3 and 10 points, 
respectively. 

Fig. 4 further illustrates the boundary effect and the influence of the number of records N in the 
database on the number of updates for N that is not sufficiently large. When the database 
contains N=200 records, insertion of the new record causes the updates that for k=20 occur 
approximately within a circle with a radius of 0.6. This circle cannot spread across the boundary 
of the cluster, which ultimately limits the number of data records where COF is updated. 
Scenario when N=5000 is much different. The updated records are confined in much smaller 
area which is far from the boundary of the cluster. Hence, when N is large enough, the 
boundary effect will have less influence on the selection of records where the updates occur, 
and the number of COF and ac-dist updates would stabilize. For deletion of the data record, the 
results would be the same (e.g., if we decide the record denoted by a pentagram on Fig. 4, the 
same records would be affected as when we inserted the record). 

FIGURE 4:  Points where COF is updated when a point is inserted into a cluster with N points  ((a) N=200, 
b) N=5000) uniformly distributed within a random circle, for different values of k 
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(a)                                                                                                                     (b) 

4. EXPERIMENTAL RESULTS 

4.1 Time complexity analysis 

Our time complexity analysis was performed on synthetic data sets, since we could better 
control the total number of data records N in the data set as well as the number of dimensions 
D. Reported experimental results provide evidence about: (i) relation between the number of 
updates for COF values and the total number of data points N; (ii) the dependence of the 
number of updates for COF and ac-dist values on COF parameter k; and (iii) the dependence of 
the number of updates for COF values on the dimension D. The synthetic data sets had 
different number of data records (N∈{100,200,…,5000}), as well as different number of 
dimensions (D∈{2,3,4,5,6,7,8,9,10}). For each pair (D, N), we have created 10 data sets with N 
random records generated from D-variate distribution. We experimented with uniform and 
standard (zero mean, unit covariance matrix) Gaussian distribution, and with distribution uniform 
within a unit hypersphere. For each of 10 data sets generated for the pair (D, N), we varied the 
values of the parameter k (5, 10, 15, 20) of the algorithm and then measured the number of 
updates for ac-dist, COF values in the incremental COF algorithm for insertion of a new data 
record into the dataset. In this study we report results when the database consisted of records 
uniformly distributed with a unit hypersphere, where new data record is inserted randomly (with 
a uniform distribution) within a hypersphere with center at origin and radius 0.5. This way, we 
tried to reduce boundary effect discussed in the previous session. Results obtained for the data 
sets generated using other considered distributions are analogue and not reported here due to 
lack of space.  
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First, we wanted to demonstrate theoretical result that asymptotically the number of COF 
updates does not depend on the number of points in the database. We performed three-way 
ANOVA analysis (factors N,D and k), and then followed-up with Tukey multiple comparison. The 
following Fig. 5 shows estimated means and confidence intervals for the number of COF 
updates, for each pair of N and k. Analyzing this figure, it can be clearly observed that for 
sufficiently large N, the number of updates ceases to be significantly dependent on k. The 
explanation is easy: for sufficiently large N, the boundary effect becomes negligible (see Fig. 
4b) and hence the number of updates stabilizes. From this figure, it is also clear that N for which 
the number of updates stabilizes increases with larger k. 

FIGURE 5: Multiple comparison analysis for the number of COF insertions into simulated dataset 
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FIGURE 6: a) Average number of COF updates for different dimensionalities D, as a function of k2; b) 
Average number of ac-dist updates for different dimensionalities D, as a function of k; c) Dependence of 
average number of COF updates on dimensionality 
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In section 3, we have shown that theoretically the number of COF and ac-dist updates grows 
proportionally to k2 and to k, respectively. To check this, we plotted average number of COF and 
ac-dist updates for various values of dimensionality D, and for N=5000 (where the number of 
updates stabilize). Fig. 6a shows number of COF updates as function of k2. We can see that in 
fact, the number of updates grows slightly less than k2. This could be partly attributed to the 
boundary effect. Fig. 6b shows number of ac-dist updates as function of k. This figure agrees 
with a theoretical postulate that the worst-case number of ac-dist updates is proportional to k.  

Fig. 6c shows the dependency of the average number of COF updates on data dimension, for 
three practically relevant values of k. Since the figure is semilog, it verifies theoretical finding 
that the number of COF updates is exponentially dependent on dimension. Observe that there 
is some “saturation” for larger dimensionalities and k=20, that can be attributed to boundary 
effect that is more prevalent for large dimensionality, and larger k. Similar behaviour can be 
observed for ac-dist (figures omitted due to space limitations). 

4.2 Experiments on real life data sets  

To demonstrate effectiveness of the proposed incremental COF algorithm on a real-life dataset, 
we employed incCOF for motion detection in surveillance videos. Here we present results on a 
video sequence from the Performance Evaluation of Tracking and Surveillance (PETS) 
repository1. To construct features for outlier detection, we split each frame from a video 
sequence into disjoint blocks containing 8×8 pixels and obtained spatiotemporal (3D) blocks by 
combining spatial blocks from the three consecutive frames at the same video plane location. 
The dimensionality of obtained 3D blocks (which are initially represented as 192 dimensional 
vectors of gray level pixel values) is reduced into three using linear principal component 
analysis (PCA). The resulting dataset contained 36×48×2482 three-dimensional vectors, each 
representing one spatial-temporal block at one of 2482 time instants. More details about data 
preprocessing can be found in [24]. 

We used vectors from each of 36×48 block locations as input of incCOF algorithm. Similar as in 
[18], we define a motion orbit as path traversed in time by the vector of the PCA components 
representing a block at a specific location. As demonstrated in [18], vectors corresponding to 
background frames at the observed block location tend to group in dense clusters. In contrast, 
vectors corresponding to motion correspond to the elongated 1-dimensional orbits. IncCOF 
algorithm is demonstrated useful in performing motion detection in this setting. Fig. 7a shows 
motion orbit corresponding to block location (24,28). In the first 490 frames, there was no 
motion at the block location, corresponding to the “black” cluster in the Fig. 7a. Significant 
motion occurs, e.g., between frames 820 and 870, which corresponds to red-labeled elongated 
orbit. Fig. 7b shows results of applying incCOF on the vectors corresponding to the same block. 
We varied parameter k of the algorithm. For each vector, we plot the value of COF computed 
after the insertion of the vector into the database. Regions of low COF factor correspond to 
frames where there was no motion at the observed spatial block (e.g., frames 1-490). In regions 
where there is motion at the observed block, COF had high values (e.g., frames 820-870, see 
inset of Fig. 7b). The crisp identification of motion regions can be obtained by thresholding of 
computed COF, and is subject of a forthcoming manuscript. The best results were obtained 
using k=20. For small values of k, computed COF factor tends to fluctuate, and has steep and 
narrow peeks. Hence, the motion identified by using low k would typically be shaky and zig-zag. 
The results of motion detection by thresholding the COF factor can be seen at 
http://tesla.cis.desu.edu/COF (the choice of threshold is out of scope of this paper). 

 

                                                            

1 ftp://pets.rdg.ac.uk/PETS2001/DATASET1/TESTING/CAMERA1_JPEGS/ 
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FIGURE 7:  a) “Motion orbit“ of vectors representing spatial-temporal blocks at location (24,28); b) 
Instantaneous values of COF computed for block (24,28) for three different values of k (5,10,20) 

a)                                                                                                        b) 

 

5. CONCLUSIONS AND FUTURE WORK 

A framework for incremental outlier detection scheme is presented. The proposed algorithm has 
the same detection performance as the static “iterated” COF algorithm that is applied after 
insertion of each data record, but it is significantly more computationally efficient. Experimental 
results on synthetic and real life data sets from video surveillance domain indicate that the 
proposed incremental COF algorithm can provide additional functionality that is difficult to 
achieve using static variants of COF algorithm, including detection of new behaviour.  

The fact that the number of updates in the incremental COF algorithm per insertion/deletion of a 
single data record ultimately does not depend on the total number of data records is rather 
appealing for its use in real-time data stream applications. However, the performance of the 
proposed algorithm vitally depends on efficient indexing structures to support k-nearest 
neighbour and reverse k-nearest neighbour queries. Due to limitations of existing indexing 
structures with high data dimensionality, the proposed incremental COF (similar as static COF) 
is not efficient when the data have large number of dimensions. The approximate k-NN and 
reverse k-NN algorithms might improve the applicability of incremental COF on multidimensional 
data. 

Future work on deleting data records from database is needed. E.g., it would be interesting to 
design an algorithm with exponential decay of weights, where the most recent data records will 
have the highest influence on the local density estimation. Additional real-life data sets will be 
used to evaluate the proposed algorithm and ROC curves [12] will be applied to quantify the 
algorithm performance. Specifically, we plan to apply incremental COF algorithm in network 
intrusion detection, detection of anomalous trajectories in video surveillance, etc. Performance 
comparison of incremental COF and LOF is also needed. Also, we currently work on 
development of parallel/distributed version of the incremental COF algorithm. 
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