Natalie CappaertUniversity of Amsterdam | UVA · Cellular and Computational Neuroscience
Natalie Cappaert
PhD
About
54
Publications
12,313
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,612
Citations
Introduction
Publications
Publications (54)
Deep convolutional neural networks (DCNNs) are able to partially predict brain activity during object categorization tasks, but factors contributing to this predictive power are not fully understood. Our study aimed to investigate the factors contributing to the predictive power of DCNNs in object categorization tasks. We compared the activity of f...
Deep convolutional neural networks (DCNNs) are able to predict brain activity during object categorization tasks, but factors contributing to this predictive power are not fully understood. Our study aimed to investigate the factors contributing to the predictive power of DCNNs in object categorization tasks. We compared the activity of four DCNN a...
Recurrent processing is a crucial feature in human visual processing supporting perceptual grouping, figure-ground segmentation, and recognition under challenging conditions. There is a clear need to incorporate recurrent processing in deep convolutional neural networks, but the computations underlying recurrent processing remain unclear. In this a...
Astrocytes are critical for healthy brain function. In Alzheimer’s disease, astrocytes become reactive, which affects their signaling properties. Here, we measured spontaneous calcium transients ex vivo in hippocampal astrocytes in brain slices containing the dentate gyrus of 6‐ (6M) and 9‐month‐old (9M) APPswe/PSEN1dE9 (APP/PS1) mice. We investiga...
Recurrent processing is a crucial feature in human visual processing supporting perceptual grouping, figure-ground segmentation, and recognition under challenging conditions. There is a clear need to incorporate recurrent processing in deep convolutional neural networks (DCNNs) but the computations underlying recurrent processing remain unclear. In...
The perirhinal (PER) and lateral entorhinal (LEC) cortex function as a gateway for information transmission between (sub)cortical areas and the hippocampus. It is hypothesized that the amygdala, a key structure in emotion processing, can modulate PER-LEC neuronal activity before information enters the hippocampal memory pathway. This study determin...
The perirhinal (PER) - lateral entorhinal (LEC) network plays a pivotal role in the information transfer between the neocortex and the hippocampus. Anatomical studies have shown that the connectivity is organized bi-directionally: the superficial layers consist of projections running from the neocortex via the PER-LEC network to the hippocampus whi...
Supporting Information Figure 1
The perirhinal (PER) and lateral entorhinal (LEC) cortex form an anatomical link between the neocortex and the hippocampus. However, neocortical activity is transmitted through the PER and LEC to the hippocampus with a low probability, suggesting the involvement of the inhibitory network. This study explored the role of interneuron mediated inhibit...
The perirhinal (PER) and entorhinal cortex (EC) receive input from the agranular insular cortex (AiP) and the subcortical lateral amygdala (LA) and the main output area is the hippocampus. Information transfer through the PER/EC network however, is not always guaranteed. It is hypothesized that this network actively regulates the (sub)cortical acti...
Example of DiI (red) injected slices. (A) DiI injection in the AiP in a 400 μm slice resulted in localized staining around the injection side (A’). The inset shows the schematic overview of the injection side. (B) DiI injection in the LA resulted in complete staining of the LA. Furthermore, DiI staining was found in the deep layers of the PER (B’)....
Example of evoked activity in the PER/EC network in response to 50 μA stimulation in AiP (A,B) and LA (C,D) in the control condition. Plots of the latency distribution after 50 μA stimulation of the AiP (A—bins of 1 ms) and LA (C—bins of 1 ms). (B) Temporal pattern of AiP evoked response at a channel in the superficial layers of the PER indicated w...
IntroductionHuman hippocampal tissue resected from pharmacoresistant epilepsy patients was investigated to study the effect of the antiepileptic drug CBZ (carbamazepine) and was compared to similar experiments in the hippocampus of control rats. Methods
The molecular layer of the DG (dentate gyrus) of human epileptic tissue and rat nonepileptic tis...
Graph theory was used to analyze the anatomical network of the rat hippocampal formation and the parahippocampal region (van Strien et al., Nat Rev Neurosci 10(4):272-282, 2009). For this analysis, the full network was decomposed along the three anatomical axes, resulting in three networks that describe the connectivity within the rostrocaudal, dor...
Peripheral nerve injury leads to Wallerian degeneration, followed by regeneration, in which functionality and morphology of the nerve are restored. We previously described that deficiency for complement component C6, which prevents formation of the membrane attack complex, slows down degeneration and results in an earlier recovery of sensory functi...
The hippocampal formation (HF) and the parahippocampal region (PHR) are prominent components of the rat nervous system that have attracted the attention of neuroanatomists since the early days of formal study of the nervous system (Ramón y Cajal, 1893, 1909; Lorente de Nó, 1933, 1934). During the middle of the last century, many of the intrinsic an...
Peripheral nerve damage induces a sequence of degeneration and regeneration events with a specific time course that leads to (partial) functional recovery. Quantitative electrophysiological analysis of degeneration and recovery over time is essential to understand the process.
The presented ex vivo neurophysiological method evaluates functional rec...
Maternal exposure to the neurotoxin methylmercury (MeHg) has been shown to have adverse effects on neural development of the offspring in man. Little is known about the underlying mechanisms by which MeHg affects the developing brain.To explore the neurodevelopmental defects and the underlying mechanism associated with MeHg exposure, the cerebellum...
Most deep brain stimulators apply rectangular monophasic voltage pulses. By modifying the stimulus shape, it is possible to optimize stimulus efficacy and find the best compromise between clinical effect, minimal side effects and power consumption of the stimulus generator. In this study, we compared the efficacy of three types of charge-balanced b...
Maternal exposure to the neurotoxin methylmercury (MeHg) has been shown to have adverse effects on neural development of the offspring in man. Little is known about the underlying mechanisms by which MeHg affects the developing brain. To explore the neurodevelopmental defects and the underlying mechanism associated with MeHg exposure, the cerebellu...
A connectome is an indispensable tool for brain researchers, since it quickly provides comprehensive knowledge of the brain's anatomical connections. Such knowledge lies at the basis of understanding network functions. Our first comprehensive and interactive account of brain connections comprised the rat hippocampal-parahippocampal network. We have...
Clear and comprehensive knowledge of anatomical connections in the brain lies at the basis of understanding brain functions. In the connectome featured on this dataset (see also: www.temporale-lobe.com), the three-dimensional organization of the projection patterns between and within the hippocampal formation, the parahippocampal region and the ret...
Theta oscillations (4-12 Hz) are associated with learning and memory and are found in the hippocampus and the entorhinal cortex (EC). The spatio-temporal organization of rhythmic activity in the hippocampal-EC complex was investigated in vitro. The voltage sensitive absorption dye NK3630 was used to record the changes in aggregated membrane voltage...
Converging evidence suggests that each parahippocampal and hippocampal subregion contributes uniquely to the encoding, consolidation and retrieval of declarative memories, but their precise roles remain elusive. Current functional thinking does not fully incorporate the intricately connected networks that link these subregions, owing to their organ...
The subiculum and the entorhinal cortex (EC) are important structures in processing and transmitting information between the neocortex and the hippocampus. The subiculum potentially receives information from the EC through two routes. In addition to a direct projection from EC to the subiculum, there is an indirect polysynaptic connection. The latt...
The antitumor agent cisplatin has dose-limiting side effects such as ototoxicity. Systemical co-treatment with anti-oxidants like 4-methylthiobenzoic acid (MTBA) and sodium thiosulfate (STS) provides protection against cisplatin ototoxicity. However, systemically administered protective agents may reduce the chemotherapeutic effect of cisplatin. Lo...
The present study was designed to compare the ototoxic effects of volatile ethyl benzene in guinea pigs and rats. Rats showed deteriorated auditory thresholds in the mid-frequency range, based on electrocochleography, after 550-ppm ethyl benzene (8 h/day, 5 days). Outer hair cell (OHC) loss was found in the corresponding cochlear regions. In contra...
The effects on hearing of simultaneous exposure to the ototoxic organic solvent ethyl benzene and broad-band noise were evaluated in rats. The effects of three ethyl benzene concentrations (0, 300 or 400 ppm) and three noise levels (95 or 105 dBlin SPL or background noise at 65 dBlin SPL) and all their combinations were investigated for a 5 day exp...
Introduction. Workers in, for example, the printing industry are exposed to both noise and vapours from solvents. Simultaneous exposure to noise and solvents may be progressively ototoxic.
Methods. The effects on hearing (tested with distortion product otoacoustic emissions (DPOAEs), compound action potentials (CAPs) and outer hair cell (OHCs) coun...
There is increasing evidence that combined exposure to noise and organic solvents induces a more pronounced hearing loss than would be predicted from exposure to noise or solvents alone. We investigated effects of noise and ethyl benzene and their combination on hearing in the rat. Ethyl benzene alone induced an outer hair cell loss, especially in...
Rats were exposed to ethyl benzene at 0, 300, 400 and 550 ppm for 8 hours/day for 5 consecutive days. Three to six weeks after the exposure, auditory function was tested by measuring compound action potentials (CAP) in the frequency range of 1-24 kHz and 2f1-f2 distortion product otoacoustic emissions (DPOAEs) in the frequency range of 4-22.6 kHz....
The effect of noise exposure on the auditory system is well known from animal studies. However, most of the studies concern short-term exposure conditions. The purpose of the present research was to find the dose-effect curve for hearing loss in rats following 5 days of noise exposure. Three groups of eight Wag/Rij rats were exposed to broad band n...
Exposure to organic solvents has been shown to be ototoxic in animals and there is evidence that these solvents can induce hearing loss in humans. In this study, the effects of inhalation of the possibly ototoxic solvent ethyl benzene on the cochlear function and morphology were evaluated using three complementary techniques: (1) reflex modificatio...