
Trust-Aware Service Chain Embedding
Nariman Torkzaban

Department of Electrical
and Computer Engineering &
Institute for Systems Research

University of Maryland
College Park, Maryland, USA

narimant@umd.edu

Chrysa Papagianni
Nokia Bell Labs
Antwerp, Belgium

chrysa.papagianni@nokia-bell-labs.com

John S. Baras
Department of Electrical

and Computer Engineering &
Institute for Systems Research

University of Maryland
College Park, Maryland, USA

baras@isr.umd.edu

Abstract—Network function virtualization (NFV) decouples
network functions (NFs) from dedicated hardware, leading to
significant cost reduction in network service provisioning. With
NFV, a network service is represented by a series of inter-
connected virtual network functions (VNFs), forming a service
function chain (SFC). The problem of placing the VNFs on
the NFV infrastructure (NFVI) and establishing the routing
paths between them, according to the service chain template, is
termed as SFC embedding. The objectives and constraints for the
optimization problem formulation of SFC embedding may vary
depending on the corresponding network service. We introduce
the notion of trustworthiness as a measure of security in SFC
embedding and thus network service deployment. We formulate
the resulting trust-aware SFC embedding problem as a Mixed
Integer Linear Program (MILP). We relax the integer constraints
to reduce the time complexity of the MILP formulation, and
obtain a Linear Program (LP). We investigate the trade-offs
among the two formulations, seeking to strike a balance between
results accuracy and time complexity.

I. INTRODUCTION

With the emergence of network function virtualization
(NFV) and software-defined networking (SDN), networks are
becoming increasingly agile. Supported features such as pro-
grammability, IT virtualization and open interfaces, enable
operators and infrastructure providers to launch a network
service rapidly and in a more cost and operation efficient
manner, allowing for shorter time-to-market cycles, while
driving down both operational and capital costs.

Essentially, NFV implements NFs through software virtu-
alization techniques (e.g., running on containers or virtual
machines) and runs them on commodity hardware [1]. Exam-
ples of such VNFs include firewalls, load balancers, intrusion
detection systems (IDS), caches etc. and more recently mobile
network functions [2]. These virtual appliances can be instan-
tiated and scaled on demand, using cloud scaling technolo-
gies, to match the service demand requirements and utilize
the underlying distributed compute, storage, and networking
resources in the most efficient manner. To support complex
services, a sequence of NFs may be stitched together, creating
an SFC, and can be represented by a graph containing VNFs
as nodes and the traffic demand between those VNFs, termed
VNF Forwarding Graph (VNF-FG) [3].

Towards the deployment of SFCs, the SFC embedding
problem becomes of paramount importance. The problem

entails the placement of VNFs on the physical hosts and
establishing the routing paths between them, according to the
SFC template. Appropriate approaches are needed for allocat-
ing network and computing resources to the requested SFC.
Solving the service chain embedding problem requires the
identification and adoption of appropriate resource allocation
policies, resulting from the identified strategic objective(s) to
optimize. Depending on the network service, such objective(s)
may be related to QoS, profit maximization, fault tolerance,
load balancing, energy saving, security etc. Many of these can
be expressed as hard constraints in the problem formulation
e.g., end-to-end delay in [4]. In this paper, we also consider
constraints and objectives motivated by security recommenda-
tions laid out to protect systems supporting multi-tenancy.

In particular, similar to [5], we capture the notion of security
by integrating “trust weights” into the service chain embedding
problem. These weights indicate the trustworthiness of a host
system, based on its interactions with the other network
entities, location (e.g., physically secured location), the level
of hardening for the host, etc. Thus, by using such weights, we
enhance the trustworthiness of the service chain deployment
and its resilience to attacks. We assume that such trust weights
are developed based on monitoring and configuration/deploy-
ment data and are disseminated via appropriate methods so
that they are timely available to the entity (e.g., orchestrator,
domain controller) that performs the embedding process.

Trust weights are also considered for the VNFs in the
service chain, expressing their respective requirements in terms
of security, e.g., VNFs performing mission critical operations
must be hosted on a trusted infrastructure. Hence, the proposed
trust-aware service chain embedding approach ensures match-
ing the requested security level of each VNF in the chain, with
the security level offered by the servers that will host them.

Though the incorporation of trust seems intuitively more fit
for resource allocation problems spanning multiple administra-
tive domains, due to the uncertainty in dealing with multiple
infrastructure providers (InPs), we believe that it befits also
the case of a single InP, due to the distributed heterogeneous
nature of the NFV Infrastucture (NFVI). For example, edge
NFVI Points of Presence (PoPs) are less reliable/secure than
the NFVI in the central office or core Data Centers (DCs); in
a single NFVI PoP the security levels of the hosts may not be

2019 Sixth International Conference on Software Defined Systems (SDS)

978-1-7281-0722-6/19/$31.00 ©2019 IEEE 242

homogeneous (e.g., adoption of security zones, as collections
of resources that share a common security exposure or security
risk). In this paper we provide the basic formulation of the
problem considering a single InP.

The remainder of the paper is organized as follows. Sec-
tion II describes the trust-aware service chain embedding
problem. In Section III we introduce a MILP formulation and
its relaxed variant (LP). Section IV presents our evaluation
results, whereas Section V provides an overview of related
work. Finally, in Section VI, we highlight our conclusions
and discuss directions for future work.

II. NETWORK MODEL AND PROBLEM DESCRIPTION

Trust is widely adopted in various application domains such
as e-commerce, peer-to-peer systems, cloud computing, social
networks etc. Trust management systems are used to specify
and collect trust related evidence, assess, establish and manage
trust relationships between entities in distributed systems.
Specification of the trust model and trust assessment are be-
yond the scope of this paper. We assume that the infrastructure
provider has appropriate mechanisms in place to efficiently
distribute trust evidence of the underlying infrastructure.

Network Model. We model the substrate network as a
directed graph GS = (NS,ES). Servers, switches (e.g., nodes
u, z in Fig. 1) and links are associated with their residual
capacity, in terms of CPU ru and bandwidth cuv, respectively.
We define trust for each node u in the substrate network as tu.

There are various ways to quantify trust; in different trust
schemes, continuous or discrete numerical values have been
assigned to measure the level of trustworthiness for a network
entity. For example, in [5] the trustworthiness of nodes in
multi-hop wireless networks is defined as a continuous value
in [0,1]. In [6] reputation-based trust for experimental infras-
tructures in a federated environment is defined in the same
fashion. Following the same rationale, we denote that trust
takes a continuous numerical value in [0,1].

The trust estimate is updated periodically; we denote the
update period as Tinterval . During the update period, denoted
by [τ − Tinterval ,τ], the trust evaluation mechanism provides
the trust estimate of node u denoted as t ′u. We use exponential
weighted moving average (EWMA), to characterize the time-
varying trustworthiness of the node over a period of time, as it
reacts faster to recent updates in trust values. Hence, the new
derived trust value for node u at time τ is given by

tu(τ) = (1−α)tu(τ−Tinterval)+α t ′u (1)

where α ∈ [0,1] is a constant weight indicating the preference
between the updated and historic samples of trust values.

Request Model. We use a directed graph GF = (NF ,EF) to
express a service chain request (Fig. 1). The set of vertices NF
includes the VNFs that the traffic has to traverse. Each network
function i∈NF can be hosted by a server at the substrate, while
two VNFs are linked through a directional edge (i, j) ∈ EF .
We denote the CPU and bandwidth demands on the requested
nodes and edges as gi and di j respectively. We also denote as
ti the trust level required by each VNF i ∈ NF .

Fig. 1: Example of trust-based SFC embedding.

Trust-aware SFC Embedding. Considering trust-aware
embedding of service chains, VNFs apart from their computing
requirements can have also explicit requirements in terms
of security, expressed via the respective trust values in the
Request. Both can be expressed as constraints in the corre-
sponding resource allocation problem. Thus, the trust-aware
embedding solution in Fig. 1 ensures that: (i) the computing
and bandwidth resources, allocated to the service chain, do not
exceed the residual capacities of servers and links, respectively
and, (ii) each VNF in the chain is assigned to a server that
matches (at minimum) its requested trust level. For example,
considering VNF j, even though servers w and x can both
support its computing requirements, only server w can provide
(at minimum) the required trust level. In other words the
trustworthiness of the server should be equal or higher to the
one requested. Binding the SFC End Points (EPs) to substrate
ingress and egress nodes has been omitted for readability
purposes.

III. PROBLEM FORMULATION

A. MILP Formulation

In order to formulate the trust-aware service chain embed-
ding problem, we consider:

• the set of binary variables x, where xi
u expresses the

assignment of VNF i to the substrate node u
• the set of continuous variables f, where f i j

uv expresses the
amount of bandwidth from substrate link (u,v) allocated
to VNF-FG edge (i, j) of the SFC.

The problem is formulated as follows:

Objective:

Min. ∑
i∈NF

∑
u∈NS

tugixi
u +φ ∑

i j∈EF

∑
uv∈ES

f i j
uv s.t. (2)

Placement Constraints:

∑
u∈NS

xi
u = 1, ∀i ∈ NF (3)

Trust Constraints:

(tu − ti)xi
u ≥ 0, ∀i ∈ NF ,∀u ∈ NS (4)

2019 Sixth International Conference on Software Defined Systems (SDS)

243

Flow Constraints:

∑
v∈NS

(f i j
uv − f i j

vu) = di j(xi
u − x j

u) ∀i j ∈ EF ,u ∈ NS (5)

Capacity Constraints:

∑
i∈NF

gixi
u ≤ ru, ∀u ∈ NS (6)

∑
i j∈EF

f i j
uv ≤ cuv, ∀uv ∈ ES (7)

Domain Constraints:

f i j
uv ≥ 0, ∀i j ∈ EF ,uv ∈ ES (8)

xi
u ∈ {0,1}, ∀i ∈ NF ,u ∈ NS (9)

Constraint (3) ensures that each VNF is placed on exactly
one server. Constraint (4) ensures that each VNF is placed on
a server that can support its requested trust level. Constraint
(5) enforces flow conservation; i.e. the sum of all inbound
and outbound traffic in switches and servers that do not host
VNFs should be zero. Moreover, this condition ensures that
for a given pair of assigned nodes i, j (VNFs), there is a path
in the network graph where the VNF-FG edge (i, j) has been
mapped. Constraints (6) and (7) guarantee that the allocated
computing and bandwidth resources do not exceed the residual
capacities of servers and links, respectively. Constraints (8),
(9) express the domain constraints for the variables x and f.

The first term of the objective function (2) represents the
amount of CPU resources multiplied by the trust estimate of
each assigned server. This term is minimized, if servers with
lower security levels are preferred. Coupled with the set of
constraints (4), it leads to solutions where the trust level of
the servers hosting the requested VNFs is close (but over)
to the requested one. The term essentially is used to get
a better mapping between the requested and substrate trust
levels. The second term of the objective function expresses
the accumulated bandwidth assigned to the VNF-FG edges.
The term is minimized if all VNFs in the chain are collocated
in the same host. The parameter φ = 1

∑i j∈EF di j

(
∑i∈NF gi

)
is

used for the normalization of CPU and bandwidth units.

B. LP Relaxation and Rounding Algorithm

We derive the LP model from the original MILP model by
relaxing the integrality of the binary x variables. Thus, the
domain constraints in MILP are replaced by the following:

0 ≤ xi
u ≤ 1 ∀i ∈ NF ,u ∈ NS, f i j

uv ≥ 0 ∀i j ∈ EF ,uc ∈ ES

As the non-binary xi
u values do not represent mappings be-

tween the VNFs and the servers, we use a deterministic
rounding technique to obtain integer values for the variables
x and embed the SFC requests.

The pseudo-code for the LP rounding is shown in Algo-
rithm 1. The LP solver (Solve LP(..)) is called iteratively.
At each iteration (Lines 2-12), one dimension xi

u of the LP
solution is rounded. The selected dimension is the maximum
fractional value among x that, if rounded to 1, still satisfies

the capacity constraint of the corresponding substrate node.
The rest of the xi

v, ∀v ∈ NS \ {u} fractional solutions for the
particular VNF will be zero, due to constraint (3). In the case
that the capacity constraint can not be satisfied for any of the
fractional solutions, the request will be rejected (Sol=false).

Given the mapping of the VNFs to the infrastructure (inte-
gral x values) we solve the multi-commodity flow allocation
(MCF) problem, to determine the routing paths between them,
as prescribed by the SFC (Lines 14-17). The algorithm will
terminate if there is no solution found for the LP (Sol=false),
or if there are no remaining dimensions of the solution to be
rounded (Sol=true). The Sol flag determines the rejection/ac-
ceptance of the request (Lines 18-23).

Algorithm 1 LP Rounding
1: repeat
2: {xi

u, f i j
uv}← Solve LP(..)

3: If solution exists Sol:= true, Otherwise Sol:= false
4: X ←{xi

u|xi
u /∈ {0,1}}

5: if X �= 0 then
6: {i0,u0}← argmax{i∈Nf ,u∈Ns|gi≤ru}X
7: if {i0,u0} exists then
8: Add LP Constraint xi0

u0 = 1
9: else

10: Sol=false
11: end if
12: end if
13: until (X = 0)∨ (Sol = f alse)
14: if Sol = true then
15: {xi

u, f i j
uv}← Solve MCF(..)

16: If solution exists Sol:= true, Otherwise Sol:= false
17: end if
18: if Sol:= true then
19: return {xi

u, f i j
uv} {Accept the request}

20: else
21: {∀xi

u := 0,∀ f i j
uv := 0}

22: return {xi
u, f i j

uv} {Deny the request}
23: end if

Contrary to the MILP formulation that is computationally
very expensive to solve or even intractable for large prob-
lem instances, the relaxed linear program can be solved in
polynomial-time. The LP solver is invoked at most |NF |+ 1
times, as every iteration, up to |NF |, leads (ideally) to the
mapping of a VNF, while the MCF algorithm at the end
provides us with the corresponding flow allocation.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the efficiency of the proposed
trust-aware SFC embedding method; we benchmark the LP
algorithm against the MILP one. Specifically, we provide an
overview of the performance evaluation setup (IV-A), and
discuss the evaluation results (IV-B).

A. Performance Evaluation Setup
For the simulations, we use an event-based simulator imple-

mented in Java ([8], [9]), including an SFC and DC topology

2019 Sixth International Conference on Software Defined Systems (SDS)

244

generator. We use CPLEX for our MILP models based on the
branch-and-cut method. We used the dual simplex method for
the LP problem. Our tests are carried out on a server with an
Intel i5 CPU at 2.3 GHz and 8 GB of main memory.

NFV Infrastructure. We have generated a 3-layer fat tree
network topology for the DC, consisting of 16 pods. In our
evaluations, we use only one portion (or zone) of the DC
consisting of 4 (out of 16) pods, utilizing 2 switches per
layer and the corresponding set of 2 servers per ToR switch.
For each server we consider 8 cores running at 2 GHz. Each
server’s initial utilization is uniformly distributed U(0.3,0.6).
The ToR-to-Server link capacity is 8 Gbps while the inter-
rack link capacity is 16 Gbps. The initial trustworthiness of the
substrate nodes is drawn from a uniform distribution U(0.2,1).

Service Chains. We generate VNF-FGs based on three
service chain templates: (i) a chain handling traffic that
needs to pass through a particular sequence of VNFs, i.e.,
a Network Address Translation (NAT) and a Firewall (FW)
followed by an IDS; (ii) the second template reflects the case
where traffic in a service chain is split by a particular VNF,
according to some predefined policy, e.g., load balancing;
(iii) the last template corresponds to a bifurcated path with
a single endpoint reflecting cases where one part of the
traffic needs to be encrypted while another part needs to
pass through a firewall [10]. For each chain the number of
requested VNFs, inbound traffic demands and requested trust
level is uniformly distributed, U(5,9), U(50,100) Mbps and
U(0.2,0.8) respectively. The CPU demand of each VNF is
derived from the inbound traffic rate and the respective VNF
profile (cycles per packet). Resource profiles are available for
a wide range of VNFs [11], [12], while profiling techniques
can be employed for processing workloads whose computing
requirements are not known in advance [12].

Evaluation Scenarios. We conducted two sets of simula-
tions for two distinct cases. In the first case the trustworthiness
of each substrate node does not change over time (Experiment
A: Static Trustworthiness), while in the second one the trust
estimate is updated at intervals of 500 time units, according
to the description in Section III (Experiment B: Dynamic
Trustworthiness). The purpose of the 1st experiment is to
benchmark the approximation algorithm against the optimal
embedding approach, while the 2nd one aims to showcase
the impact of the trustworthiness updates in the embedding
process. The new trust estimates (t ′u) are drawn from a uniform
distribution U(0.4,1). The α parameter in formula (1) is tuned
to 0.25 [13]. For both cases, requests arrive according to a
Poisson process, with an average rate of 4 requests per 100
time units, each having an exponentially distributed lifetime
with an average of 1,000 time units. Every simulation is
executed for 6,000 requests and repeated for 10 iterations [9].

Evaluation Metrics. We use the following metrics for the
evaluation of the two service chain mapping methods:

• Request Acceptance Rate is the rate of successfully em-
bedded requests divided by the total number of requests.

• Resource Utilization is the amount of CPU or bandwidth
units allocated for all the embedded requests.

• Resource Revenue per Request is the average amount
of CPU or bandwidth units specified in the requests that
have been embedded successfully.

• Cumulative Resource Revenue is the cumulative amount
of CPU or bandwidth units in requests that have been
embedded successfully, divided by the total number of
embedding requests (successful or not successful).

• Cumulative Resource Cost is the cumulative amount of
CPU or bandwidth units allocated to requests that have
been embedded successfully, divided by the total number
of embedding requests (successful or not successful).

B. Evaluation Results

1) Experiment A: Static Trustworthiness: Fig. 2 illustrates
the rate of accepted requests for the LP and the MILP
approaches. The acceptance rate of the LP, as expected, lags in
steady state by approximately 5%. The trend in the acceptance
rate is in accordance to the average CPU utilization statistics
across DCs, depicted in Fig. 3. CPU utilization is below 80%
in steady state for both approaches. The higher utilization
levels (9%) achieved by the MILP stem from the higher
request acceptance rate. Bandwidth utilization is on average
less than 50%, hence not included here due to lack of space.
The low link utilization can be attributed to the infrastructure
properties and the fact that consecutive VNFs in a chain
can be placed in the same host. Service request denials, are
mainly caused due to the inability of the substrate to match
the required trust values of the VNFs. In particular over
time, trustworthy servers become saturated while less utilized
servers cannot support the required trust levels of the SFCs,
leading to service request denials.

Fig. 4 and Fig. 5 present the percentage increase of the
cumulative CPU and bandwidth revenue for the MILP, as
opposed to the approximation algorithm. In particular, the
MILP generates in steady state approximately 10% more CPU
and bandwidth revenue, compared to the LP. The result is
in accordance to the above mentioned gap in the request
acceptance rate between the two approaches.

Fig. 6 presents the percentage difference for the cumu-
lative bandwidth cost between the MILP and the LP. The
bandwidth cost for the MILP in steady state is approximately
16% higher than the LP. The percentage is not analogous to
the percentage difference in accepted requests, as resources
get fragmented over time, hence longer paths are used for
SFC embedding. Since the MILP accepts more requests, the
fragmentation is more severe. Consequently, higher per-request
cost is associated with the MILP. Moreover, in transient state,
the noted difference is due to the sub-optimal solutions of the
LP. Collocation of the requested VNFs renders the bandwidth
cost to zero; the approximation algorithm starts to employ
multiple hosts for the embedding (hence not all VNFs of the
SFC are collocated) at request #10 as opposed to the MILP
that does so after request #25.

Fig. 7 and Fig. 8 present the minimum, first quartile, me-
dian, third quartile, and maximum of the CPU and bandwidth
revenue per request, for the two approaches. Fig. 9 depicts the

2019 Sixth International Conference on Software Defined Systems (SDS)

245

Fig. 2: Exp-A:Acceptance
Rate

Fig. 3: Exp-A:CPU Utiliza-
tion

Fig. 4: Exp-A:Incremental
Cum. CPU Revenue to LP

Fig. 5: Exp-A:Incremental
Cum. BW Revenue to LP

Fig. 6: Exp-A:Incremental
Cum. BW Cost

Fig. 7: Exp-A:CPU Revenue
per Request

Fig. 8: Exp-A:BW Revenue
per Request

Fig. 9: Exp-A:CDF of Ac-
cepted Requests

Fig. 10: Exp-B:Acceptance
Rate

Fig. 11: Exp-B:CPU Uti-
lization

Fig. 12: Exp-B:Incremental
Cum. CPU Revenue to LP

Fig. 13: Exp-B:Incremental
Cum. BW Revenue to LP

CDF of the service chains’ size (number of VNFs) successfully
embedded by the two programs. We notice that the LP follows
the same trend as the MILP, in terms of the the sizes of the
requests it accepts. Moreover, the difference in revenue per
request is less than 2%, for CPU and bandwidth. Both results
prove the efficiency of the approximation algorithm.

2) Experiment B: Dynamic Trust Estimates: Fig. 10 illus-
trates the rate of accepted requests for the LP and MILP, for
dynamic trust estimates. Two additional α values are used for
the MILP to showcase two extreme cases; in the first case the
trustworthiness of a node relies on the historical data (α=0),
while in the second case it is equal to the trust estimate for
the particular time interval (α =1). Fig. 11 denotes the average
CPU utilization of the substrate servers for the LP and MILP.
Regarding the different α values for the MILP, we notice no
difference prior to the first trust update. Thereupon, since on
average the trustworthiness of the servers increases, the graphs
corresponding to (α = 0.25) and (α = 1) diverge from the
static-trust one (α = 0) leading to higher acceptance rates.
The increase, as expected, is gradual for α = 0.25, while over
time converges to the graph corresponding to (α = 1).

We observe a similar trend to Experiment A, with regards to
the acceptance ratio between the two programs. The difference
in steady state is around 6%. Moreover we notice an increase
in the acceptance rate for both programs over time, due to
the gradual increase in the trustworthiness of the servers,
according to the experiment setup. This leads to an increase
in the acceptance rate by 10% compared to the static scenario.
This increase is also witnessed by the corresponding increase
in utilization; increased trustworthiness of the infrastructure
leads to higher acceptance rate and saturation of computing
resources, as trust constraints are more easily satisfied.
Figs. 12 and 13, present the percentage increase of the cumula-
tive CPU and bandwidth revenue for the MILP, as opposed to
the approximation algorithm. Results exhibit a similar trend as
Experiment A and are in accordance with the above mentioned
gap between the acceptance rate of the two approaches.

V. RELATED WORK

In this section we briefly discuss related work on service
chain embedding in general and then we focus on studies
pertaining to security and trust in VNF-FG embedding.

2019 Sixth International Conference on Software Defined Systems (SDS)

246

The definition and approaches for the VNF-FG embedding
problem vary, depending on a number of design decisions
such as: (i) embedding objectives such as QoS [14], profit
maximization [15], fault tolerance [16], load balancing [17],
energy efficiency [18] etc.; (ii) solution strategy such as exact
[19], heuristic [20] or meta-heuristic [21]; (iii) the technology
domain where VNF-FG embedding is applied such as radio
access networks [22], LTE/EPC [8], mobile core network [4],
cloud networks [23]; (iv) type of resources such as CPU
and bandwidth [4], processing time and buffer capacity [24],
ternary content-addressable memory [9]; (v) single adminis-
trative [25] domain or multi-domain approaches[26]. Authors
in [7] provide a taxonomy of SFC embedding approaches.

Trust in NFV has been considered relatively recently, with
studies such as [27] that discusses the challenges associated
with incorporating trust into NFVI, mentioning also the need
to apply policies for binding VNFs to certain (trusted) NFV
platforms depending on the platforms’ configurations. The re-
quirement for placement of NFVs onto trusted platforms/hosts
is more important given the emergence of 5G for supporting
vertical markets (e.g, healthcare). The problem of security
awareness in resource allocation has only been addressed in
the context of virtual network embedding (VNE). Liu at el.
[28] abstract the security requirements of virtual networks to
quantifiable security levels and formulate the problem with
security constraints related to the security demands of the
virtual resources and the minimum security level required for
a virtual node to be hosted on a substrate node. Similar to the
above we consider trust values of the substrate nodes and trust
demands for the VNFs for the placement of VNFs on trusted
servers. To the best of our knowledge, the notion of trust in
the service chain embedding process is introduced for the first
time.

VI. CONCLUSIONS

In this paper, we introduce the trust-aware service chain
embedding problem, for delivering secure network service
deployment on a trustworthy infrastructure. We introduce a
MILP formulation, enforcing trustworthiness through appro-
priate trust-related constraints and trust weights in the objec-
tive function of the optimization problem. We then relax the
integer constraints and use a deterministic rounding approach
to obtain a polynomial-time solution algorithm.

Apart from the trustworthiness of the substrate hosts, it is
also important to take into consideration the trustworthiness
of the substrate network paths used; these can be potentially
expressed as constraints bounded by a minimum path trust
threshold. However, the aggregate trust value of a path can
be expressed as the product (in the simplest formulation)
of the corresponding trust values along the path, thus the
corresponding terms introduce non-linearity in the problem
formulation. This problem is a topic of future research.

REFERENCES

[1] B. Han et al.,. ”Network function virtualization: Challenges and oppor-
tunities for innovations”. IEEE Communications Magazine, 53(2), pp.90-
97., 2015.

[2] K. Katsalis, et al., ”Network Slices toward 5G Communications: Slicing
the LTE Network,” in IEEE Communications Magazine, vol. 55, no. 8,
pp. 146-154, Aug. 2017.

[3] ETSI NFV Architectural Overview, [Online] http://www.etsi.org/
[4] D. Dietrich et al., ”Network function placement on virtualized cellular

cores,” IEEE COMSNETS, Bangalore, 2017, pp. 259-266.
[5] E. Paraskevas, T. Jiang, and J.S. Baras, ”Trust-aware network utility

optimization in multihop wireless networks with delay constraints.” In
IEEE Control and Automation Conf. 2016, pp. 593-598.

[6] A. Kapoukakis et al., ”Reputation-Based Trust in federated testbeds
utilizing user experience,” IEEE CAMAD, Athens, 2014, pp. 56-60.

[7] J. Gil Herrera and J. F. Botero, ”Resource Allocation in NFV: A
Comprehensive Survey,” in IEEE Transactions on Network and Service
Management, vol. 13, no. 3, pp. 518-532, Sept. 2016.

[8] C. Papagianni, P. Papadimitriou, and J. Baras, ”Rethinking Service Chain
Embedding for Cellular Network Slicing”, IFIP Networking 2018, pp
253-261.

[9] C. Papagianni, P. Papadimitriou, and J. Baras, ”Towards Reduced-State
Service Chaining with Source Routing”, IEEE CNSM 2018, pp 438-443.

[10] M. C. Luizelli et al., ”Piecing together the NFV provisioning puzzle:
Efficient placement and chaining of virtual network functions,” IEEE IFIP,
Ottawa, ON, 2015, pp. 98-106.

[11] M. Dobrescu, K. Argyarki, and S. Ratnasamy, ”Toward Predictable
Performance in Software Packet-Processing Platforms,” USENIX NSDI,
San Jose, CA, USA, March 2016.

[12] A. Abujoda, and P. Papadimitriou, ”Profiling packet processing work-
loads on commodity servers”, IFIP WWIC, Russia, June 2013.

[13] J. M. Lucas, M. S. Saccucci, Exponentially Weighted Moving Average
Control Schemes: Properties and Enhancements, Technometrics 32, 1-29,
1990

[14] M. Huang et al., ”Throughput Maximization of Delay-Sensitive Request
Admissions via Virtualized Network Function Placements and Migra-
tions,” IEEE ICC, Kansas, MO, 2018, pp. 1-7.

[15] Y. Ma, et al., ”Profit Maximization for Admitting Requests with Network
Function Services in Distributed Clouds,” in IEEE Trans. on Parallel and
Distributed Systems, vol. 30, no. 5, pp. 1143-1157, 1 May 2019.

[16] B. Yang et al., ”Algorithms for Fault-Tolerant Placement of Stateful
Virtualized Network Functions,” 2018 IEEE International Conference on
Communications (ICC), Kansas City, MO, 2018, pp. 1-7.

[17] F. Carpio, S. Dhahri and A. Jukan, ”VNF placement with replication for
Load balancing in NFV networks,” IEEE ICC, Paris, 2017, pp. 1-6.

[18] V. Eramo, M. Ammar and, F. G. Lavacca, ”Migration Energy Aware
Reconfigurations of Virtual Network Function Instances in NFV Archi-
tectures,” in IEEE Access, vol. 5, pp. 4927-4938, 2017.

[19] I. Jang et al., “Optimal net- work resource utilization in service function
chaining,” in Proc. IEEE NetSoft, Seoul, South Korea, Jun. 2016, pp.
11–14.

[20] V. Eramo et al., ”An Approach for Service Function Chain Routing
and Virtual Function Network Instance Migration in Network Function
Virtualization Architectures,” in IEEE/ACM Trans. on Networking, vol.
25, no. 4, pp. 2008-2025, Aug. 2017.

[21] C. Wang, et al., ”Toward Optimal Resource Allocation of Virtualized
Network Functions for Hierarchical Datacenters,” in IEEE Transactions
on Network and Service Management, vol. 15, no. 4, pp. 1532-1544, Dec.
2018.

[22] C. Chang, N. Nikaein and T. Spyropoulos, ”Radio access network
resource slicing for flexible service execution,” IEEE INFOCOM 2018
- IEEE INFOCOM WKSHPS, Honolulu, HI, 2018, pp. 668-673.

[23] J. Soares and S. Sargento, “Optimizing the embedding of virtualized
cloud network infrastructures across multiple domains,” in Proc. IEEE
ICC, London, U.K., Jun. 2015, pp. 442–447.

[24] R. Mijumbi et al., “Design and evaluation of algorithms for mapping
and scheduling of virtual network functions,” in Proc. of IEEE NetSoft,
London, 2015, pp. 1-9.

[25] R. Cohen et al., ”Near Optimal Placement of Virtual Network Func-
tions”, IEEE INFOCOM, Hong Kong, China, April 2015.

[26] D. Dietrich et al., ”Multi-Provider Service Chain Embedding With
Nestor,” in IEEE Trans. on Network and Service Management, vol. 14,
no. 1, pp. 91-105, 2017.

[27] S. Ravidas et al., ”Incorporating trust in NFV: Addressing the chal-
lenges,” 2017 20th Conference on Innovations in Clouds, Internet and
Networks (ICIN), Paris, 2017, pp. 87-91.

[28] S. Liu et al., ”Security-aware virtual network embedding,” 2014 IEEE
ICC, Sydney, NSW, 2014, pp. 834-840.

2019 Sixth International Conference on Software Defined Systems (SDS)

247

