Naren Ramakrishnan

Naren Ramakrishnan
  • Virginia Tech

About

536
Publications
121,655
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
10,428
Citations
Current institution
Virginia Tech

Publications

Publications (536)
Preprint
Full-text available
Determining and verifying product provenance remains a critical challenge in global supply chains, particularly as geopolitical conflicts and shifting borders create new incentives for misrepresentation of commodities, such as hiding the origin of illegally harvested timber or stolen agricultural products. Stable Isotope Ratio Analysis (SIRA), comb...
Preprint
Full-text available
Illegal logging poses a significant threat to global biodiversity, climate stability, and depresses international prices for legal wood harvesting and responsible forest products trade, affecting livelihoods and communities across the globe. Stable isotope ratio analysis (SIRA) is rapidly becoming an important tool for determining the harvest locat...
Article
Full-text available
Trade in wood and forest products spans the global supply chain. Illegal logging and associated trade in forest products present a persistent threat to vulnerable ecosystems and communities. Illegal timber trade has been linked to violations of tax and conservation laws, as well as broader transnational crimes. The United States is the largest impo...
Article
Full-text available
Determining the harvest location of timber is crucial to enforcing international regulations designed to protect natural resources and to tackle illegal logging and associated trade in forest products. Stable isotope ratio analysis (SIRA) can be used to verify claims of timber harvest location by matching levels of naturally occurring stable isotop...
Preprint
Full-text available
Building on their demonstrated ability to perform a variety of tasks, we investigate the application of large language models (LLMs) to enhance in-depth analytical reasoning within the context of intelligence analysis. Intelligence analysts typically work with massive dossiers to draw connections between seemingly unrelated entities, and uncover ad...
Article
Large language models (LLMs) and foundation models have been recently touted as a game-changer for 6G systems. However, recent efforts on LLMs for wireless networks are limited to a direct application of existing language models that were designed for natural language processing (NLP) applications. To address this challenge and create wireless-cent...
Preprint
Full-text available
The pretraining-fine-tuning paradigm has been the de facto strategy for transfer learning in modern language modeling. With the understanding that task adaptation in LMs is often a function of parameters shared across tasks, we argue that a more surgical approach to regularization needs to exist for smoother transfer learning. Towards this end, we...
Preprint
Full-text available
Large language models (LLMs) have demonstrated their prowess in generating synthetic text and images; however, their potential for generating tabular data -- arguably the most common data type in business and scientific applications -- is largely underexplored. This paper demonstrates that LLMs, used as-is, or after traditional fine-tuning, are sev...
Article
The neural boom that has sparked natural language processing (NLP) research throughout the last decade has similarly led to significant innovations in data-to-text generation (D2T). This survey offers a consolidated view into the neural D2T paradigm with a structured examination of the approaches, benchmark datasets, and evaluation protocols. This...
Article
Public deliberations are often a staple ingredient in community decision-making. However, traditional, time-constrained, in-person debates can become highly polarized, eroding trust in authorities, and leaving the community divided. This is the case in redistricting deliberations for public school zoning. Seeking alternative ways of support, we eva...
Article
Forecasting citations of scientific patents and publications is a crucial task for understanding the evolution and development of technological domains and for foresight into emerging technologies. By construing citations as a time series, the task can be cast into the domain of temporal point processes. Most existing work on forecasting with tempo...
Article
We introduce EINNs, a framework crafted for epidemic forecasting that builds upon the theoretical grounds provided by mechanistic models as well as the data-driven expressibility afforded by AI models, and their capabilities to ingest heterogeneous information. Although neural forecasting models have been successful in multiple tasks, predictions w...
Article
The US public school system is administered by local school districts. Each district comprises a set of schools mapped to attendance zones which are annually assessed to meet enrollment objectives. To support school officials in redrawing attendance boundaries, existing approaches have proven promising but still suffer from several challenges, incl...
Preprint
Determining the harvest location of timber is crucial to enforcing international regulations designed to protect natural resources and to tackle illegal logging and associated trade in forest products. Stable Isotope Ratio Analysis (SIRA) can be used to verify claims of timber harvest location by matching levels of naturally-occurring stable isotop...
Preprint
Full-text available
The field of Math-NLP has witnessed significant growth in recent years, motivated by the desire to expand LLM performance to the learning of non-linguistic notions (numerals, and subsequently, arithmetic reasoning). However, non-linguistic skill injection typically comes at a cost for LLMs: it leads to catastrophic forgetting of core linguistic ski...
Article
Full-text available
Background Bistable systems, i.e., systems that exhibit two stable steady states, are of particular interest in biology. They can implement binary cellular decision making, e.g., in pathways for cellular differentiation and cell cycle regulation. The onset of cancer, prion diseases, and neurodegenerative diseases are known to be associated with mal...
Article
Detecting illegal shipments in the global timber trade poses a massive challenge to enforcement agencies. The massive volume and complexity of timber shipments and obfuscations within international trade data, intentional or not, necessitates an automated system to aid in detecting specific shipments that potentially contain illegally harvested woo...
Preprint
Full-text available
Through their transfer learning abilities, highly-parameterized large pre-trained language models have dominated the NLP landscape for a multitude of downstream language tasks. Though linguistically proficient, the inability of these models to incorporate the learning of non-linguistic entities (numerals and arithmetic reasoning) limits their usage...
Preprint
Full-text available
Anomaly detection is a ubiquitous and challenging task relevant across many disciplines. With the vital role communication networks play in our daily lives, the security of these networks is imperative for smooth functioning of society. To this end, we propose a novel self-supervised deep learning framework CAAD for anomaly detection in wireless co...
Preprint
Full-text available
Spatial optimization problems (SOPs) are characterized by spatial relationships governing the decision variables, objectives, and/or constraint functions. In this article, we focus on a specific type of SOP called spatial partitioning, which is a combinatorial problem due to the presence of discrete spatial units. Exact optimization methods do not...
Preprint
Full-text available
Timber and forest products made from wood, like furniture, are valuable commodities, and like the global trade of many highly-valued natural resources, face challenges of corruption, fraud, and illegal harvesting. These grey and black market activities in the wood and forest products sector are not limited to the countries where the wood was harves...
Preprint
Full-text available
Understanding key insights from full-text scholarly articles is essential as it enables us to determine interesting trends, give insight into the research and development, and build knowledge graphs. However, some of the interesting key insights are only available when considering full-text. Although researchers have made significant progress in in...
Preprint
Full-text available
The problem of algorithmic recourse has been explored for supervised machine learning models, to provide more interpretable, transparent and robust outcomes from decision support systems. An unexplored area is that of algorithmic recourse for anomaly detection, specifically for tabular data with only discrete feature values. Here the problem is to...
Article
Full-text available
Influence blocking maximization (IBM) is crucial in many critical real-world problems such as rumors prevention and epidemic containment. The existing work suffers from: (1) concentrating on uniform costs at the individual level, (2) mostly utilizing greedy approaches to approximate optimization, (3) lacking a proper graph representation for influe...
Preprint
Full-text available
Recently, an increasing number of researchers, especially in the realm of political redistricting, have proposed sampling-based techniques to generate a subset of plans from the vast space of districting plans. These techniques have been increasingly adopted by U.S. courts of law and independent commissions as a tool for identifying partisan gerrym...
Article
The forecasting of significant societal events such as civil unrest and economic crisis is an interesting and challenging problem which requires both timeliness, precision, and comprehensiveness. Significant societal events are influenced and indicated jointly by multiple aspects of a society, including its economics, politics, and culture. Traditi...
Preprint
Full-text available
The success of sites such as ACLED and Our World in Data have demonstrated the massive utility of extracting events in structured formats from large volumes of textual data in the form of news, social media, blogs and discussion forums. Event extraction can provide a window into ongoing geopolitical crises and yield actionable intelligence. With th...
Preprint
Full-text available
The availability of wide-ranging third-party intellectual property (3PIP) cores enables integrated circuit (IC) designers to focus on designing high-level features in ASICs/SoCs. The massive proliferation of ICs brings with it an increased number of bad actors seeking to exploit those circuits for various nefarious reasons. This is not surprising a...
Preprint
We introduce a new class of physics-informed neural networks-EINN-crafted for epidemic forecasting. We investigate how to leverage both the theoretical flexibility provided by mechanistic models as well as the data-driven expressability afforded by AI models, to ingest heterogeneous information. Although neural forecasting models has been successfu...
Preprint
Full-text available
Modeling the spatiotemporal nature of the spread of infectious diseases can provide useful intuition in understanding the time-varying aspect of the disease spread and the underlying complex spatial dependency observed in people's mobility patterns. Besides, the county level multiple related time series information can be leveraged to make a foreca...
Conference Paper
Modeling the spatiotemporal nature of the spread of infectious diseases can provide useful intuition in understanding the time-varying aspect of the disease spread and the underlying complex spatial dependency observed in people's mobility patterns. Besides, the county level multiple related time series information can be leveraged to make a foreca...
Preprint
Full-text available
We describe lessons learned from developing and deploying machine learning models at scale across the enterprise in a range of financial analytics applications. These lessons are presented in the form of antipatterns. Just as design patterns codify best software engineering practices, antipatterns provide a vocabulary to describe defective practice...
Article
Forecasting influenza in a timely manner aids health organizations and policymakers in adequate preparation and decision making. However, effective influenza forecasting still remains a challenge despite increasing research interest. It is even more challenging amidst the COVID pandemic, when the influenza-like illness (ILI) counts are affected by...
Article
Forecasting citations of scientific patents and publications is a crucial task for understanding the evolution and development of technological domains and for foresight into emerging technologies. By construing citations as a time series, the task can be cast into the domain of temporal point processes. Most existing work on forecasting with tempo...
Preprint
Full-text available
Detecting anomalies has been a fundamental approach in detecting potentially fraudulent activities. Tasked with detection of illegal timber trade that threatens ecosystems and economies and association with other illegal activities, we formulate our problem as one of anomaly detection. Among other challenges annotations are unavailable for our larg...
Article
Full-text available
In the past few years, neural abstractive text summarization with sequence-to-sequence (seq2seq) models have gained a lot of popularity. Many interesting techniques have been proposed to improve seq2seq models, making them capable of handling different challenges, such as saliency, fluency and human readability, and generate high-quality summaries....
Preprint
Full-text available
Forecasting influenza like illnesses (ILI) has rapidly progressed in recent years from an art to a science with a plethora of data-driven methods. While these methods have achieved qualified success, their applicability is limited due to their inability to incorporate expert feedback and guidance systematically into the forecasting framework. We pr...
Preprint
Full-text available
In this paper, we propose a surrogate-assisted evolutionary algorithm (EA) for hyperparameter optimization of machine learning (ML) models. The proposed STEADE model initially estimates the objective function landscape using RadialBasis Function interpolation, and then transfers the knowledge to an EA technique called Differential Evolution that is...
Article
Full-text available
Group or collective identity is an individual’s cognitive, moral, and emotional connection with a broader community, category, practice, or institution. There are many different contexts in which collective identity operates, and a host of application domains where collective identity is important. Collective identity is studied across myriad acade...
Article
Full-text available
There is large interest in networked social science experiments for understanding human behavior at-scale. Significant effort is required to perform data analytics on experimental outputs and for computational modeling of custom experiments. Moreover, experiments and modeling are often performed in a cycle, enabling iterative experimental refinemen...
Conference Paper
Full-text available
Spatial optimization problems (SOPs) are characterized by spatial relationships governing the decision variables, objectives and/or constraint functions. These are mostly combinatorial problems (NP-hard) due to the presence of discrete spatial units. Hence, exact optimization methods cannot solve them optimally under practical time constraints, esp...
Article
Full-text available
Physics-based simulations are often used to model and understand complex physical systems in domains such as fluid dynamics. Such simulations, although used frequently, often suffer from inaccurate or incomplete representations either due to their high computational costs or due to lack of complete physical knowledge of the system. In such situatio...
Preprint
Full-text available
Forecasting influenza in a timely manner aids health organizations and policymakers in adequate preparation and decision making. However, effective influenza forecasting still remains a challenge despite increasing research interest. It is even more challenging amidst the COVID pandemic, when the influenza-like illness (ILI) counts is affected by v...
Preprint
Full-text available
Toxin classification of protein sequences is a challenging task with real world applications in healthcare and synthetic biology. Due to an ever expanding database of proteins and the inordinate cost of manual annotation, automated machine learning based approaches are crucial. Approaches need to overcome challenges of homology, multi-functionality...
Article
Full-text available
Developing algorithms that identify potentially illegal trade shipments is a non-trivial task, exacerbated by the size of shipment data as well as the unavailability of positive training data. In collaboration with conservation organizations, we develop a framework that incorporates machine learning and domain knowledge to tackle this challenge. Mo...
Article
Full-text available
Public school boundaries are redrawn from time to time to ensure effective functioning of school systems. This process, also called school redistricting, is non-trivial due to (1) the presence of multiple design criteria such as capacity utilization, proximity and travel time which are hard for planners to consider simultaneously, (2) the fixed loc...
Article
Full-text available
The surveillance and preventions of infectious disease epidemics such as influenza and Ebola are important and challenging issues. It is therefore crucial to characterize the disease progress and epidemics process efficiently and accurately. Computational epidemiology can model the progression of the disease and its underlying contact network, but...
Conference Paper
Full-text available
Developing algorithms that identify potentially illegal trade shipments is a non-trivial task, exacerbated by the size of shipment data as well as the unavailability of positive training data. In collaboration with conservation organizations, we develop a framework that incorporates machine learning and domain knowledge to tackle this challenge. Mo...
Preprint
Full-text available
Effective representation learning from text has been an active area of research in the fields of NLP and text mining. Attention mechanisms have been at the forefront in order to learn contextual sentence representations. Current state-of-art approaches in representation learning use single-head and multi-head attention mechanisms to learn context-a...
Preprint
Physics-based simulations are often used to model and understand complex physical systems and processes in domains like fluid dynamics. Such simulations, although used frequently, have many limitations which could arise either due to the inability to accurately model a physical process owing to incomplete knowledge about certain facets of the proce...
Conference Paper
Full-text available
Due to constant shifts in population and changing demographics, school boundary processes take place to make adjustments to school attendance zones. This spatial problem has multiple criteria like locations of schools, their capacity utilization, proximity, presence of geographical/ man-made barriers, etc. In this paper, we formulate the problem of...
Conference Paper
Full-text available
Nowadays social network platforms like Twitter, Facebook, Weibo have created a new landscape to communicate with our friends and the world at large. In this landscape our social activities, purchase decisions, check-ins etc. become available immediately to our friends/followers and thus encouraging them to involve in the same activity. This gives r...
Article
Full-text available
The Fragile Families Challenge charged participants to predict six outcomes for 4,242 children and their families interviewed in the Fragile Families and Child Wellbeing Study. These outcome variables are grade point average, grit, material hardship, eviction, layoff and job training. The data set provided contained longitudinal survey and observat...
Conference Paper
The penetration of social media has had deep and far-reaching consequences in information production and consumption. Widespread use of social media platforms has engendered malicious users and attention seekers to spread rumors and fake news. This trend is particularly evident in various microblogging platforms where news becomes viral in a matter...
Article
In recent times, sequence-to-sequence (seq2seq) models have gained a lot of popularity and provide state-of-the-art performance in a wide variety of tasks, such as machine translation, headline generation, text summarization, speech-to-text conversion, and image caption generation. The underlying framework for all these models is usually a deep neu...
Conference Paper
Full-text available
Modeling and forecasting forward citations to a patent is a central task for the discovery of emerging technologies and for measuring the pulse of inventive progress. Conventional methods for forecasting these forward citations cast the problem as analysis of temporal point processes which rely on the conditional intensity of previously received ci...
Conference Paper
Full-text available
Multivariate time series forecasting is an important task in state forecasting for cyber-physical systems (CPS). State forecasting in CPS is imperative for optimal planning of system energy utility and understanding normal operational characteristics of the system thus enabling anomaly detection. Forecasting models can also be used to identify sub-...
Conference Paper
Influenza leads to regular losses of lives annually and requires careful monitoring and control by health organizations. Annual influenza forecasts help policymakers implement effective countermeasures to control both seasonal and pandemic outbreaks. Existing forecasting techniques suffer from problems such as poor forecasting performance, lack of...
Preprint
Full-text available
The uncertainty measurement of classifiers' predictions is especially important in applications such as medical diagnoses that need to ensure limited human resources can focus on the most uncertain predictions returned by machine learning models. However, few existing uncertainty models attempt to improve overall prediction accuracy where human res...
Preprint
Full-text available
Modeling and forecasting forward citations to a patent is a central task for the discovery of emerging technologies and for measuring the pulse of inventive progress. Conventional methods for forecasting these forward citations cast the problem as analysis of temporal point processes which rely on the conditional intensity of previously received ci...
Conference Paper
Full-text available
Classical event encoding and extraction methods rely on fixed dictionaries of keywords and templates or require ground truth labels for phrase/sentences. This hinders widespread application of information encoding approaches to large-scale free form (unstructured) text available on the web. Event encoding can be viewed as a hierarchical task where...
Article
Full-text available
Since 2013, the Centers for Disease Control and Prevention (CDC) has hosted an annual influenza season forecasting challenge. The 2015–2016 challenge consisted of weekly probabilistic forecasts of multiple targets, including fourteen models submitted by eleven teams. Forecast skill was evaluated using a modified logarithmic score. We averaged submi...
Preprint
Full-text available
In the past few years, neural abstractive text summarization with sequence-to-sequence (seq2seq) models have gained a lot of popularity. Many interesting techniques have been proposed to improve the seq2seq models, making them capable of handling different challenges, such as saliency, fluency and human readability, and generate high-quality summar...
Conference Paper
Full-text available
Cascades are an accepted model to capturing how information diffuses across social network platforms. A large body of research has been focused on dissecting the anatomy of such cascades and forecasting their progression. One recurring theme involves predicting the next stage(s) of cascades utilizing pertinent information such as the underlying soc...
Preprint
Full-text available
Deep neural networks are data hungry models and thus they face difficulties when used for training on small size data. Transfer learning is a method that could potentially help in such situations. Although transfer learning achieved great success in image processing, its effect in the text domain is yet to be well established especially due to seve...
Conference Paper
Full-text available
bduction is an inference approach that uses dataand observations to identify plausible (and preferably, best)explanations for phenomena. Applications of abduction (e.g.,robotics, genetics, image understanding) have largely been devoidof human behavior. Here, we devise and execute an iterativeabductive analysis process that is driven by the social s...
Article
The area of anomaly detection has recently been expanded in the graph-based data. Anomalous vertices are always exhibited as a connected subgraph. Few works, however, have focused on connected anomalous subgraph detection because of the challenge of optimizing graph functionals under connectivity constraints. We employ the Non-Parametric Graph Scan...
Conference Paper
Full-text available
In this modern era, infectious diseases, such as H1N1, SARS, and Ebola, are spreading much faster than any time in history. Efficient approaches are therefore desired to monitor and track the diffusion of these deadly epidemics. Traditional compartmental epidemiology models are able to capture the disease spreading trends through contact network, h...
Article
Full-text available
Exploring coordinated relationships (e.g., shared relationships between two sets of entities) is an important analytics task in a variety of real-world applications, such as discovering similarly behaved genes in bioinformatics, detecting malware collusions in cyber security, and identifying products bundles in marketing analysis. Coordinated relat...
Chapter
Full-text available
Recent successes in word embedding and document embedding have motivated researchers to explore similar representations for networks and to use such representations for tasks such as edge prediction, node label prediction, and community detection. Such network embedding methods are largely focused on finding distributed representations for unsigned...
Chapter
Network embeddings have become very popular in learning effective feature representations of networks. Motivated by the recent successes of embeddings in natural language processing, researchers have tried to find network embeddings in order to exploit machine learning algorithms for mining tasks like node classification and edge prediction. Howeve...

Network

Cited By