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Abstract
A paradigm shift has emerged over the last decade pointing to an exciting research area dealing
with the harnessing of elastic structural instabilities for ‘smart’ purposes in a variety of venues.
Among the different types of unstable responses, buckling is a phenomenon that has been known
for centuries, and yet it is generally avoided through special design modifications. Increasing
interest in the design of smart devices and mechanical systems has identified buckling and
postbuckling response as a favorable behavior. The objective of this topical review is to
showcase the recent advances in buckling-induced smart applications and to explain why
buckling responses have certain advantages and are especially suitable for these particular
applications. Interesting prototypes in terms of structural forms and material uses associated with
these applications are summarized. Finally, this review identifies potential research avenues and
emerging trends for using buckling and other elastic instabilities for future innovations.
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(Some figures may appear in colour only in the online journal)

1. Introduction

The study of structural elastic stability [1, 2], a field con-
sidered among the most mature in mechanics, has been
experiencing a paradigm shift over the last decade in terms of
rekindling the popularity of the study of elastic instabilities
(EIs) of many kinds [3], such as snapping, buckling, wrink-
ling, crumpling, phase transitions, and cavitation. Among
these, buckling is a phenomenon that has been known for
centuries—ever since an equation to determine the critical
buckling of a column was derived by Leonhard Euler. Such a
phenomenon is generally avoided through special design
modifications, but new and emerging applications consider
such behavior to be favorable. Recent studies of buckling, and
postbuckling in general, have tried to transform this effect
from a negative into a positive. A research field has thus
emerged to harness such elastic unstable events for their
potential contribution to ‘smart’ purposes. It is a highly multi-
disciplinary problem that includes elements of applied

mathematics, biology, material science, mechanics, physics,
engineering, sustainability, etc. The emergence of a research
community studying elastic instabilities from this new per-
spective was showcased in a special issue of Soft Matter [4].
Buckling-induced instabilities are thus being increasingly
explored as a desirable opportunity, and a new journal called
Extreme Mechanics Letters featured studies of elastic
instabilities in natural and engineering systems in its launch
issue [5].

An overview of this topic has not been written yet, and it
is worthwhile to review and showcase this interesting and still
not fully exposed research trend. The main objective of this
review is therefore to present a broad perspective of research
efforts during the past decade with respect to buckling-
induced smart applications and their prototypes. Section 2
discusses a number of major applications by way of
explaining why buckling responses have certain advantages
that fit their purposes. Interesting prototypes in terms of
structural forms and material uses associated with buckling-
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induced applications are summarized in sections 3 and 4,
respectively. Section 5 identifies potential research avenues
and emerging trends for using the buckling response in future
innovations.

2. Why buckling? smart applications

For centuries, buckling has been a major concern in the
design of all slender structural elements and systems due to
the resultant capacity reduction, associated large deforma-
tions, and catastrophic failure. The structural response beyond
the first bifurcation, i.e., the postbuckling response, usually
attracts interest only in terms of residual capacity but is
otherwise not given much attention and is thought to be of
little practical use in most cases. This is because it is difficult
to predict and control due to its high sensitivity to initial
conditions, namely, geometric imperfections. Other than load-
carrying capacity, two encouraging features of many buckling
phenomena are high-rate motion and sudden energy release.
Within the elastic region, structures are capable of snapping
from their initial shape into a buckled shape accompanied by
a significant amount of energy release from the system,
represented as a load drop in the response curve. These two
features make buckling an ideal mechanism for adaptive and
smart applications. Increasing studies are demonstrating the
use of such behavior across disciplines, which can be divided
into two main categories: energy-related and motion-related
applications (see figure 1).

2.1. Energy-related applications

Energy-related applications can be further categorized into
energy production and energy dissipation. Energy released
from buckling events can be used in the design of energy
harvesters and sensors for micro-electromechanical systems
(MEMS), whereas the energy dissipated by buckling events
can be useful for the design of absorbers, dampers, stabilizers,
and isolators.

Buckling events have been shown to be a promising
source for nonlinear energy harvesters by featuring the gen-
eration of high-frequency impulses over a large frequency
interval, self-tuning features, and the capability of adapting to
variable acceleration levels [6]. Energy harvesting (EH) is an
attractive technique for a wide variety of self-powered
microsystems. Compared with macro EH technology (such as
the kW or MW level of power generated by energy plants),
micro EH technology focuses on the development of alter-
native solutions for the conventional battery [7]. The source
for the EH technology can come from mechanical, thermal,
frictional, photic, chemical, or biological sources, and the
corresponding harvested power ranges from mW to μW.
Energy harvesting from mechanical vibration has gained
considerable interest in recent years by converting mechanical
energy to electrical energy [8]. A smart energy harvester
should be able to respond with large-amplitude motions to
increase power generation as well as EH efficiency. The
harnessing of buckling events offers advantages in the design
of an EH device because the nonlinear behavior can be
excited at high-energy orbits from low-frequency broadband
vibrations at which linear harvesters are usually only weakly
excited. Buckling events explored for use in nonlinear har-
vesters include the snap-through mechanism in laterally loa-
ded clamped-clamped beams and bistability in thin laminated
composite plates. In these applications it has also been found
that the excitation frequency of a harvester becomes less
sensitive to frequency changes compared with linear har-
vesters, such as a cantilever excited at its natural frequency
[9]. Such buckling-induced prototypes have proved suitable
for many MEMS applications because nonlinear response can
broaden their application bandwidth, modify device perfor-
mance, and control resonant frequencies.

The benefit of buckling events has been the catalyst for
much recent research into MEMS applications. With advan-
ces in integrated circuit technology, a wide range of MEMS
applications has been discovered and the production costs
have been significantly reduced [10]. The use of buckling-

Figure 1. Research publications on the use of elastic instability for different purposes.
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induced response has been demonstrated to be reliable and
capable of delivering useful power to MEMS devices. How-
ever, MEMS devices are susceptible to the well-known ‘pull-
in’ instability if the applied electrostatic voltage reaches a
critical level. Since it is widely accepted that ‘pull-in’
instability is unavoidable, an increasing number of studies
have explored the feasibility of using ‘pull-in’ instability to
design special sensors and actuators, as pointed out in a recent
review [11]. More examples and prototypes of buckling-
induced MEMS systems are presented in section 3.

Increasing research activities have focused on the
development of wireless sensors and sensor networks through
the use of buckling and snapping for structural health mon-
itoring (SHM) and non-destructive evaluation (NDE). A
comprehensive review [12] has shown that researchers began
to explore self-powered wireless sensors because power
operation based on batteries was a major drawback. The
emerging concept of wireless sensors with actuation inter-
faces is an important step in the evolution of wireless sensor
technology because it closes the gap between traditional SHM
and NDE methods. Recent efforts have demonstrated the
capability of active sensing due to the actuation from buckling
events in different structural types such as wires [13], beams
[14], strips [15], and cylinders [16]. The actuation provides
the interaction between the wireless sensors and the system
which they are attached to or embedded in. With advances in
smart materials, such as piezoelectric materials, power har-
vesting (conversion to electrical energy) becomes possible.
Buckling events provide the function of modifying the input
to smart materials by serving as a trigger. Under this concept,
active sensors will prove to be a promising technology in the
future.

Promising endeavors in the use of buckling events for
energy dissipation have also been conducted, but to a lesser
extent than for energy production purposes. A major reason is
that postbuckling response is usually associated with failure.
Yet recent studies have explored the possibility of taking
advantage of such a response for the design of absorbers [17–
19], dampers [20, 21], and isolators [22–25]. It should be
noted that in all of these applications the structural elements
suffering buckling and postbuckling response are in the
elastic response region. Plastic buckling along with pro-
gressive failure mechanisms are outside the scope of this
review.

2.2. Motion-related applications

The high rate of motion associated with snap-through buck-
ling is another promising feature that has been investigated to
develop novel design concepts for actuators and micro-optical
switching in MEMS devices. Small perturbations can gen-
erate sudden snapping behavior in elastic elements that
enables the structure to dynamically change its configuration.
The onset of the snap-buckling transition can provide actua-
tion output in terms of out-of-plane displacements, which
provide a new route for designing materials and structures at
multiple scales with switchable functionalities, morphogen-
esis, etc. The key merit of using snap buckling is that local

and global buckling (which in some cases may happen
together) in structural elements can reduce the actuation force
during shape recovery, and in most cases no additional sta-
bilizing element is required during the transformation
between the equilibrium states. Such findings are included in
a number of recent reviews of morphology in materials and
structures. Kuder et al [26] showed the increasing interest in
using buckling-induced response in terms of multistability to
design morphing features in materials and devices. Friedman
et al [27] showed that snap-through instabilities can lead to
the development of self-deploying or self-locking structures
depending on the stability of their packed configuration.
Huang et al [28] discussed switching in polymeric materials
and their structures due to instability/collapse phenomena in
their shape changes. More buckling-induced mechanisms and
structures are expected to be explored with advances in novel
fabrication technologies.

3. Structural prototypes

The use of buckling and snapping events is diverse, and this
section summarizes various manifestations of structural pro-
totypes related to recent smart applications that have been
designed and experimentally investigated. Based on their
configuration, structural prototypes can be categorized into
classic forms and emerging forms. From a geometrical point
of view, the buckling phenomenon can be found in all slender
members (as shown in table 1), including one-dimensional
members (arches, beams, columns, rods, wires, etc), two-
dimensional members (membranes, plates, shells, etc), and
three-dimensional members (cylinders, tubes, spheres, etc).
Some notes of interest regarding these structural forms are
that (1) laterally loaded beams and bistable plates have been
thoroughly studied for the purposes of energy harvesting; (2)
cylinders/columns/tubes have been heavily investigated for
energy dissipation purposes; (3) 3D forms are more favorable
for use in motion-based applications such as morphing
structures, deployable structures, and adaptive structures; and
(4) novel prototypes have been proposed under each form
type to address multiple potential applications. The following
section highlights some of the examples listed in table 1 to
identify the changing role of some classic buckling phe-
nomena and to present emerging efforts regarding new forms
with a view to potential applications.

3.1. Classic forms for energy-related applications

The loss of stability in a structure depends on the prescribed
form and its geometrical imperfections. In most cases, snap-
through buckling occurs at a limit point rather than at a
bifurcation point. Figure 2 shows a classic structure that is
known to exhibit unstable behavior once it is subjected to
external loading. A laterally loaded beam/arch/strip is the
simplest 1D structural form reported in energy-related appli-
cations [9, 14, 29, 75, 77, 130–132]. This phenomenon is
familiar to engineers and has only one limit point on the initial
loading path. Physically, external loading at the critical state
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Table 1. Existing structural prototypes and their use in buckling-induced applications.

1D forms 2D forms 3D forms

Arch beam strip Bar rod wire Plate sheet surface Membrane Cylinder column tube Sphere Origami Hybrid Review

Proposed prototype [29, 30] [31–33] [34–38] [39, 40] [41, 42] [43, 44] [45] [46]
Energy-based application
Energy harvester [15, 47–52] [53, 54] [9]a [55] [56, 57] [58] [6, 9, 59]
Sensor [14, 60] [13] [61] [16] [62]
Damper Absorber [18, 19] [13] [20, 21, 63–67] [17, 68]a [69]
Isolator [70] [22, 23] [24, 71, 72]
Motion-based application
Actuator [73–80] [81–86] [87–91] [92, 93] [94] [95]
Adaptive structure [96] [97–99] [100] [101, 102]
Deployable structure [103] [104] [105] [106] [107–110] [111, 112] [27]
Morphing structure [96, 113] [114] [100, 115–120] [100] [121, 122] [122–125] [126–128] [111] [26, 28, 129]

a

Topical review of a specific structural form for a single application.
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leads to snap-buckling along the loading direction. Another
common structural form for energy harvesting is the bistable
panel/plate. Snap-through buckling in a bistable system can
also cause large-amplitude motion due to its transition from
one stable state to another, which can significantly improve
the efficiency of energy harvesters. Compared with a laterally
loaded beam, the snap-through behavior of a bistable plate
depends on both its bending and its in-plane stiffness. A
recent review [9] highlights the increasing body of literature
on energy harvesting from bistable plates. Buckling in 3D
forms (such as cylinders and spheres) has been far less studied
for energy harvesting purposes. One of the reasons is that
postbuckling behavior in cylinders and spheres is usually an
asymmetric bifurcation response that exhibits random beha-
vior. Predicting and controlling such behavior is more diffi-
cult due to its high imperfection sensitivity.

Many recent studies
[35, 49, 51, 52, 54, 74, 76, 79, 121, 133] have explored
various techniques to trigger snap buckling triggered by non-
mechanical loading for the development of MEMS devices or
energy harvesters (see figure 3). Figure 3(a) shows snap-
through buckling of a curved double-clamped beam from the
electrostatic actuation of a fringing field engendered by
symmetrically located electrodes [76]. Figure 3(b) demon-
strates a semi-flexible strip made of 115 μm-thick curved
bimetals designed to snap at 47 °C and to snap back at
42.5 °C, whereby a hysteretic thermal gradient can trigger
snap-through behavior between the two positions [51].
Figure 3(c) displays a steel buckled beam subjected to a
magnetic levitation system repelled by top and bottom mag-
nets to trigger the second buckling mode and thus enhance
energy harvesting at low frequency and under small-excita-
tion conditions [52]. Two classes of azobenzene-functiona-
lized polymers (figure 3(d)) have been investigated with a
view to designing contactless photo-initiated snap-through

events in bistable arches, leading to orders-of-magnitude
enhancement in the actuation rates (∼102 mm s−1) and powers
(∼1 kWm−3) under moderate irradiation intensities
(≪100 mW cm−2) [78]. For micro-device design, capillarity-
induced snapping of elastic beams and solvent-induced
snapping of a beam (see figures 3(e)–(f)) are reported in [74]
and [79], respectively. However, one of the noted drawbacks
in these systems is that the external source may not always be
available and/or suitable for applications at different scales.
For example, it is difficult to integrate permanent magnets at
the nanoscale, and magnetic fields can strongly interact with
other components in electronic devices [48]. In addition to
triggering from external sources, structural prototypes using
smart materials offer the features of self-tuning and self-
adapting; more discussion of this aspect of device develop-
ment is presented in section 4.

Another well-documented form class with postbuckling
behavior is axially loaded structures. Such prototypes have
not been extensively studied for energy harvesting purposes,
but they have been used for energy dissipation devices such
as absorbers, dampers, and isolators. For these devices, 3D
forms, particularly cylinders and tubes, are more frequently
used as a structural prototype than 1D and 2D forms. Figure 4
shows the load-deformation curve of an axially compressed
cylindrical shell, which exhibits a postbuckling response with
multiple bifurcation points (also termed mode transitions) due
to changes in the deformed geometry after each critical point.
Cylindrical shells can attain their postbuckling regime due to
the natural transverse deformation restraint provided by their
geometry. Dealing with such complex nonlinear behavior has
proved to be a challenging task due to high imperfection
sensitivity, and thus this prototype form suffers from practical
limitations in the design of thin-walled structures. Three-
dimensional prototypes may therefore gain more attention if
the static and dynamic response from mode branch switching
in their postbuckling response can be modified and tailored.

Many experimental and numerical studies have provided
valuable knowledge with respect to characterizing the elastic
postbuckling response of axially loaded structures. With
increased understanding of response in the postbuckling
regime, a wide variety of structural forms have been explored
for energy dissipation purposes. For example, the postbuck-
ling response of axially compressed cylindrical shells
(figure 5(a)) can occur at a lower energy level, and efforts to
characterize this response experimentally and numerically
have been motivated by the interest of using the residual
strength as a safeguard [63, 65, 134]. A recent study [69] may
inspire using a group of cylinders connected by ligaments for
use as an energy absorber (figure 5(b)). The bifurcation and
snap-through collapse of a variety of thin-walled structures
can be found in a comprehensive review [68]. An inspiring
study [22] has investigated several vertical vibration isolation
designs by using Euler buckling springs (figure 5(c)). A
recent endeavor [70] uses a composite bistable plate as part of
a vibration isolator subjected to harmonic base excitation
(figure 5(d)). Another interesting feature in prototypes dis-
playing buckling events is that they give rise to negative
stiffness, which can potentially be used for the design of

Figure 2. Schematic snap-through buckling of a laterally loaded
arch beam.
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advanced dampers. For example, an interesting damping
system (figure 5(e)) was designed with negative stiffness and
large hysteresis by using the snap buckling of a column with
flat ends [20]. A negative stiffness device using snap buckling
under a similar framework was recently attempted for use as
seismic protection for structures (figure 5(f)) [71, 72]. Similar
buckling-induced responses in various structural prototypes
can also be used as isolators.

3.2. Classic forms for motion-related applications

One of the key features of snap buckling is its actuation
capacity. Many classic buckling phenomena have been
incorporated into the design of energy harvesters and MEMS
devices. Figure 6(a) shows a widely used example of using an
arch-shaped beam as an actuator [73]. In this case, a magnetic
field normal to the chip surface creates a Lorentz force to
trigger snap-through buckling of the arch-shaped leaf spring.
Similar snapping behavior can also be found in many plate
designs [129] for adaptive and morphing structures

(figure 6(b)). Brinkmeyer et al [100] explored the snap-
through buckling of an isotropic spherical dome to design
morphing structures with pseudo-bistable behavior (meaning
that snap buckling occurs slowly due to the use of a viscoe-
lastic material). This dome can recover its original state
without further actuation due to the use of a macro polymer
composite (figure 6(c)).

Nature has long made use of elastic instabilities for
functionality, and this has generated an important venue for
research over the last decade. For example, a recent study
[135] found that the mosquito fascicle is laterally supported
throughout the penetration process such that the Euler buck-
ling load is increased by a factor of 6. The results showed the
importance of lateral supports for modifying the stability of
elastic structures, which is similar to man-made laterally
constrained systems. Within the subject of this review, bio-
inspired concepts and biomimetics have been used in the
development of structures and mechanisms with two major
features: snapping and folding. With inspiration from the
Venus flytrap’s fast closure [136], a biomimetic responsive
surface was developed that can snap from one curvature to
another [81], a hingeless flapping device (figure 6(d)) was
developed and patented under the name Flectofin [82], and a
flytrap-inspired robot and novel actuation mechanism were
designed [137]. Other recent biomimetic lessons on snapping
behavior include the design of an initially flat pod valve that
turns into a helix, which was inspired from the mechanical
process of seed pods opening in Bauhinia variegata [138],
and the development of a dragonfly-inspired flapping strip
with piezoelectric patches [113]. Folding is another interest-
ing mechanism that can be useful for the design of deployable
and morphing structures. Leaf-folding patterns have been
investigated to create new fold patterns for thin membrane
structures [39]; a multistable composite cylindrical lattice
structure (figure 6(e)) was designed to mimic the bistable
behavior of the virus bacteriophage T4 [139]; and the design
of a bistable cell (figure 6(f)) capable of reversibly unfolding
from a flat configuration to a highly textured configuration
was inspired by natural systems through origami design
principles [110].

Figure 3. Snap-through buckling of arch/beam forms triggered by various sources other than mechanical loading: from (a) electrode-induced
(reprinted from [76], copyright (2011), with permission from Springer), (b) thermal-induced (reprinted from [51], copyright (2013), with
permission from IOP Publishing), (c) magnetic-induced (reprinted from [52], copyright (2013), with permission from AIP Publishing), (d)
photo-induced (reprinted from [78], copyright (2013), with permission from PNAS), (e) capillarity-induced (reprinted from [74], copyright
(2013), with permission from IOP Publishing), and (f) solvent-induced (reprinted from [79], copyright (2013), with permission from the
American Physical Society).

Figure 4. Schematic postbuckling response of an axially compressed
cylinder.
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3.3. Exploration of emerging forms

Beyond the extensively studied classic forms, structural form-
finding for new prototypes are part of a parallel research
venue for harnessing snap-through buckling for potential
applications. Buckling-induced applications have sparked
advancements in the development of novel forms that can
attain elastic instabilities. A recent review [33] concluded that
many interesting problems within the topic of snap-through
instability remain to be investigated, including (1) the math-
ematical complications in modeling buckling and post-buck-
ling in thin structures, (2) the mechanical instability of
materials associated with inhomogeneity and nonlinearity, (3)
new phenomena due to coupling between geometric and
material nonlinearities, and (4) the usefulness of mechanical
instabilities for broad engineering applications.

The first step for using a specific unstable event is to
identify the desirable features of a given response. Recent
contributions within this arena have considered elastic
instabilities in a variety of structural forms, ranging from 1D
to 3D, with respect to the opportunity and feasibility of using
them as structural prototypes, as shown in figure 7. Featured
examples include slackening of a twisted thin rod [31]
(figure 7(a)), buckling of an elastic planar rod penetrating into
a sliding sleeve [37], snapping of an elastic arched beam
inspired by a popper [140], snapping of a simple stretched bi-
strip of elastomers [114], the buckling and folding of over-
curved rings [126], shrinking and buckling of thin sheets with
non-Euclidean metrics [43, 123], buckling of a planar sheet
with a negative-curvature liquid interface [141], the 3D shape
of a sheet with a series of prescribed concentric curved folds

[45], multistability in spontaneous helical ribbons [30]
(figure 7(b)), the postbuckling of a thin cylindrical shell under
torsional loading to fold to a flat 2D form [107] figure 7(c)),
buckling-induced encapsulation of a spherical shell patterned
with a regular array of circular voids [106] (figure 7(d)), the
secondary buckling instability of an initially spherical elastic
capsule [44], periodic beam lattices [142], and periodic por-
ous structures [143].

4. Material uses

This section summarizes various endeavors regarding buck-
ling-induced applications from a material point of view. A
recent review [28] divided materials for morphing application
into two categories: having the capability of shape change and
having the capability of shape memory. A material may have
these two features separately or simultaneously. It can be seen
from section 3 that buckling response in either energy-based
or motion-based applications can be trigged suddenly, in an
elastic manner, or gradually, in a viscous–elastic fashion.
When an external stimulus is not available a smart structure
should be able to snap back to the original shape with the use
of shape-memory materials. Table 2 summarizes the research
efforts with respect to various material uses for smart pur-
poses. The applications involving shape changing materials
and shape-memory materials are presented in the following
subsections, whereas elastomers and graphene are discussed
in section 5.2.

Figure 5. Harnessing buckling-induced behavior for different energy dissipation purposes. (a) Postbuckling of a CFRP cylindrical shell
(reprinted from [63], copyright (2003), with permission from Elsevier). (b) Buckling of a cylinder group connected by ligaments (reprinted
from [69], copyright (2010), with permission from Elsevier). (c) Buckling of a column used for an isolator (reprinted from [22], copyright
(2002), with permission from Elsevier). (d) Bistable plate used as an isolator (reprinted from [70], copyright (2013), with permission from
Elsevier). (e) Buckling of a column designed for a damper (reprinted from [20], copyright (2013), with permission from Elsevier). (f) Spring-
based negative stiffness device for seismic protection (reprinted from [71, 72], copyright (2013), with permission from ASCE).
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4.1. Shape changing materials

The four major reported materials with the capability of shape
change are metals (including metalloids), fiber-reinforced
composites, polymers, and piezoelectric materials. Conven-
tional metals (such as steel and aluminum) are still a material
option for many motion-based applications. The major
drawbacks of these isotropic materials are their lack of
property tailoring features and that they are usually used as a
base material requiring the aid of some shape-memory
material for smart applications. Research studies of bistable
shells [171] have proved that, for a given configuration, a
structure made from isotropic materials has only one stable
configuration, whereas it can have two stable configurations
by introducing material anisotropy.

Fiber-reinforced composites have been widely used for
smart structures due to the possibility of varying their stiffness
via selection of the individual ply material properties, fiber
orientation, and laminate stacking sequence. Although ani-
sotropic coupling effects are known to reduce the buckling
capacity of many structural forms and are generally avoided
through special laminate designs, their influence has been
seen as favorable for new and emerging smart applications
like the many pursued in this review. Figure 8 showcases four
examples using composites for different smart purposes.
Winkelmann [18] explored an energy absorbing mechanism
by using composite bistable strips. The waiting links, made of
ultra-high molecular weight polyethylene (figure 8(a)), were

designed to provide a redundant load path and provide a
higher ductility to the mechanism through snap-buckling
behavior. Shaw et al [70] experimentally investigated a pas-
sive vibration isolator with the concept of high static stiffness
but low dynamic stiffness via the snap-buckling behavior of a
composite bistable plate (figure 8(b)). The nonlinear behavior
was shown to support substantial load and to significantly
reduce the natural frequency of the system. Figure 8(c) pre-
sents an experimental study of the tristable response of a
doubly curved orthotropic shell, and it shows the use of
curvature and anisotropy to achieve multistability [98].
Lachenal et al [101] investigated an adaptive structural con-
cept using a multistable twisting grid of carbon fiber rein-
forced plastic (CFRP) strips (figure 8(d)). More interesting
studies of the bistability and multistability of composite
structures for morphing and adaptive application can be found
in the review by Daynes and Weaver [102].

The potential of polymeric materials for smart applica-
tions is similar to that of fiber-reinforced composites, parti-
cularly in the development of micro devices and mechanisms.
Two major types of polymers used for buckling-induced
applications are glassy polymers and rubbery polymers. A
comprehensive review of instability phenomena in polymeric
materials and their structures can be found in [28].

Finally, piezoelectric materials have received the most
attention for buckling-induced applications due to their ability
to directly convert applied strain energy to usable electric
energy, particularly for integration into microscale devices.

Figure 6. Harnessing snap-buckling instabilities for motion-based purposes. (a) Snap-through buckling of beam for actuator (reprinted from
[73], copyright (2004), with permission from IOP Publishing). (b) Snapping behavior of adaptive morphing trailing edge (reprinted from
[129], copyright (2013), with permission from John Wiley and Sons). (c) Snap-through buckling of a dome with self-recovery ability
(reprinted from [100], copyright (2012), with permission from Elsevier). (d) A biomimetic design of a hingeless flapping device using snap
buckling (reprinted from [82], copyright (2012), with permission from IOP Publishing). (e) Multistable cylindrical lattices inspired from the
bistable behavior of a virus (reprinted from [139], copyright (2013), with permission from Elsevier). (f) Cell deployable by using snap-
buckling behavior (reprinted from [110], copyright (2013), with permission from IOP Publishing).
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Several reviews [7, 59, 149, 150] have shown that the high
compliance associated with piezoelectric materials is attrac-
tive for the design of energy harvesters, actuators, and self-
powered sensors. Another interesting research area is the
active control of snap-buckling instabilities in structures
through piezoelectric actuator-induced loading. Similar con-
cepts have been explored for various structural prototypes,
and they have shown the possibility of instability control in
columns [172, 173] and beams [131, 174]. Further discussion
of the hybrid use of piezoelectric materials with other mate-
rials for buckling-induced applications is presented in
section 5.

4.2. Shape-memory materials

As discussed in section 3, self-adapting and self-recovering
are preferable features for buckling-induced applications so
that a structure can have snap-back behavior after snap
buckling. Shape-memory alloys (SMAs) are one of the well-
known candidates among many smart materials for this pur-
pose. The shape recovery of SMAs can be induced by either a
stress or a temperature change, which results in transforma-
tion between its two main phases due to its different crystal
structure. It has been reported that SMAs can regain their
original shape after being deformed well beyond 6–8% strain
and that magnetic shape-memory alloys (MSMAs) can
demonstrate reversible strain levels up to even 10% [151].
SMAs have a number of unique properties that make them
appealing for a wide variety of applications in the biomedical

and aerospace industries, including large energy dissipation
capacity, good fatigue and corrosion resistance, large damp-
ing capacity, and availability in many configurations
[146, 155]. Advances in and challenges of using SMAs can
be found in a recent review paper [168]. Another promising
candidate for buckling-induced applications is shape-memory
polymers (SMPs). Compared with thermal-induced and
mechanical-induced SMAs, SMPs can also be activated by
electricity, light, moisture, and even certain chemical stimu-
lus. The shape recovering capacity of SMPs can reach up to
400% in recoverable strain, and more important, they cost less
than SMAs. More smart applications using SMPs can be
found in two recent comprehensive reviews [166, 167].

5. Discussion: research trends

Previous sections have shown four major aspects of the
efforts regarding buckling-induced applications (see figure 9),
including application purposes, application scales, structural
prototypes, and material prototypes. This section presents
emerging trends within these four aspects in harnessing
buckling and other elastic instabilities.

5.1. In applications

The spectrum of smart applications covered in section 2 has
profiled the increasing interest in buckling responses, and the
ongoing trend is to use the fundamental aspects behind

Figure 7. Explorations of structural prototypes for smart applications. (a) Twisting buckling of a thin rod (reprinted from [31], copyright
(2005), with permission from Springer). (b) Multistability in a helical ribbon (reprinted from [30], copyright (2014), with permission from
AIP Publishing). (c) Postbuckling of an origami-inspired cylinder (reprinted from [107], copyright (2005), with permission from Elsevier).
(d) Buckling-induced deployable sphere, Buckliball (reprinted from [106], copyright (2012), with permission from PNAS).
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Table 2. Harnessing snap-through instabilities for smart purposes by material use.

Shape changing materials Emerging soft materials

Metals Fiber-reinforced composites Polymers Piezoelectrics
Shape-memory
materials Elastomers Graphene

Actuator [73, 76, 87] [77]b [83, 85, 86, 117, 118] [74, 78, 79, 100] [144, 145] [84] [146]a [89, 91, 147, 148] [90]
Sensor [62] [13] [14] [60, 144]
Energy harvester [49, 51, 133] [15, 53, 61] [54, 58] [47, 48, 50, 52, 56, 57],

[7, 59, 149, 150]a
[151, 152] [55, 148, 153, 154]

Absorber Damper
Isolator

[20, 69] [63, 65, 70, 134] [21] [21] [155]a

Morphing
structure

[42, 100, 104] [98, 111, 119, 121]
[101, 102]a

[106] [28]a [113, 116] [26] [156]a [81, 157, 158] [124, 159, 160]

Deployable
structure

[161] [82, 161] [110] [162] [114]

Prototype [34, 46] [41] [140] [29] [163] [164, 165]
Topical review [166–168] [169, 170]

a

Topical review of a specific application.
b

A metalloid (specifically, silicon).
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energy-related and motion-related applications for diverse
purposes. Another interesting trend is the use of elastic
instabilities across multiple scales, particularly at the nanos-
cale. This section discusses these two trends.

Beyond the fundamental design of actuators and energy
harvesters, a number of recent endeavors have shown the
promising potential of using buckling-induced behavior for
multiple other purposes (see figure 10). Figure 10(a) presents
a bistable compliant mechanism for a MEMS-based accel-
erometer in which the mechanism can switch from one
position to another when the force on the accelerometer
exceeds a threshold value [62]. Figure 10(b) shows a half-
section view of a curved water-soluble polyethylene beam
that is designed to increase the rate of solvent transport. Snap
buckling of the beam is trigged by the release of internal
elastic energy due to the swelling and shrinking processes
when the solvent diffuses into the water-soluble polyethylene
[74]. Such a mechanism can also be used in the design of
artificial muscles. The schematic picture in figure 10(c) shows
a new experimental approach to determine the bending
rigidity of graphene using the snap-buckling instability in a
prebuckled graphene membrane. Such a concept offers an
interesting method for predicting the properties of nanoscale

materials [90]. For example, Sadeghian et al [175] experi-
mentally estimated the Young’s modulus of a silicon nano-
cantilever from the instability induced by electrostatic pull-in
forces. This approach has substantial advantages over other
methods used for the characterization of nanoelec-
tromechanical systems. Figure 10(d) shows an experimental
setup to examine the snap-through instability of a membrane
subjected to an axially symmetric load simulated through
water inside an acrylic column. This prototype was developed
to harness the nonlinear behavior of snap buckling for the
design of a ventricular assist device for better transmission of
pneumatic load to the blood [87, 88]. A sensor relying on the
elastic buckling of a thin wire (figure 10(e)) was designed and
tested for memorizing peak strains in structures to identify
damage. Such a mechanical-memory mechanism is a pro-
mising concept for damage index sensors [13]. Figure 10(f)
shows a biomimetic responsive surface inspired by Venus
flytrap leaves, which can snap from concave to convex states
[81]. The sphere snaps by swelling an elastic network with an
organic solvent to develop an osmotic stress. Such snapping
surfaces can impact a variety of applications, such as coat-
ings, adhesives, and drug delivery.

Figure 8. The use of snap buckling in fiber-reinforced composites for different smart purposes. (a) A bistable composite strip for energy
absorption (reprinted from [18], copyright (2013), with permission from Elsevier). (b) A spring mechanism incorporating a bistable
composite plate for vibration isolation (reprinted from [70], copyright (2013), with permission from Elsevier). (c) Three stable states for an
orthotropic shallow shell with constant curvature (reprinted from [98], copyright (2013), with permission from Elsevier). (d) A multistable
twisting grid of carbon fiber reinforced plastic strips (reprinted from [101], copyright (2013), with permission from SAGE Publications).
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Harnessing buckling has been explored for many
microscale applications, yet the emerging trend is to extend
the instability principles for uses across multiple scales, par-
ticularly the nanoscale. For example, dramatic mechanically
triggered transformations in 2D periodic elastomeric struc-
tures using unstable events have been used to transform
phononic band gaps [157]. In a similar vein, microstructure
elastic buckling responses have been used to trigger abrupt
changes in the phononic properties of nanomaterials [176], to
create unidirectional negative Poisson’s ratio behavior in
materials with periodic microstructures [177], and to assist the
nanoscale assembly of complex structures [178]. A similar
idea [179] has been numerically investigated by using a two-
phase transition to design a viscoelastic material with negative

elastic modulus to be used as inclusions in a positive elastic
modulus matrix. Elastic instabilities have been found in many
nanoscale structures [160, 180], such as nanowires and
nanotubes. The major issue at such a scale is surface effects,
and they should be taken into account as part of the total
energy potential of the system [33]. At the same time, the
success of microscale buckling-induced applications has been
extended toward the discussion of possibly using similar
concepts for large-scale applications. For energy-related
applications, an increasing amount of published literature has
shown the great potential of self-powered smart sensors based
on snap buckling for wireless structural monitoring networks
in buildings and bridges [15, 60, 181–184]. For motion-
induced application, a number of reviews have identified

Figure 9. Concept map of the advances in buckling-induced applications.

Figure 10. Harnessing of elastic instabilities for diverse purposes. (a) A bistable compliant mechanism for a MEMS-based accelerometer
(reprinted from [62], copyright (2007), with permission from IOP Publishing). (b) A curved water-soluble polyethylene beam to increase
solvent transport (reprinted from [74], copyright (2010), with permission from IOP Publishing). (c) A method of determining material
properties using snap buckling (reprinted from [90], copyright (2012), with permission from American Chemical Society). (d) A ventricular
assist device using snap buckling (reprinted from [87], copyright (2003), with permission from Elsevier). (e) A smart sensor with memorizing
peak strain for damage identification (reprinted from [13], copyright (2003), with permission from IOP Publishing). (f) A biomimetic
responsive surface based on snap-through buckling of domes (reprinted from [81], copyright (2007), with permission from John Wiley
and Sons).
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opportunities for using buckling behavior to design morphing
components for different structures, such as automobiles
[102], wind turbine blades [129], and infrastructure [27].

5.2. In prototypes

Future buckling-induced smart applications require the
development of prototypes with tailored geometric config-
urations and material distributions. The snap-through buck-
ling response in the structural prototypes presented thus far
shows no more than two stable states. Research efforts are
emerging to explore the possibility of achieving multistable
events through four different approaches: (1) varying material
and geometrical properties, (2) using hybrid systems, (3)
using hybrid material combinations, and (4) adding
constraints.

A study [171] has identified that an isotropic cylindrical
shell may be stable only in its initial configuration but will
exhibit second or further stable configurations if made from
fiber-reinforced composites. Tailoring laminated composite to
achieve tristability has been investigated for multiple shell
forms, such as corrugated shells [104], orthotropic shells
[185], double-curved shells [98], and shells with piezoelectric
patches [116].

More multistable mechanisms have been reported by
using hybrid material systems. A quadri-stable compliant
mechanism has been designed and tested by using a bistable
curved beam embedded in an arch beam [46]. A bistable
switching mechanism has been achieved through a hybrid
system of curved strips attached to a center beam [58]. A
multistable lattice structure (figure 11(a)) has been developed
based on a tristable lattice cell made from bistable laminates
[111]. Hybrid carbon fiber/E-glass/epoxy cylindrical shells
have been shown to obtain multiple mode transition in the
postbuckling regime with a certain degree of control [41].
Finally, rather than proposing an actual physical model,
recent studies have explored the design of smart structures by
connecting multiple unstable configurations through a repre-
sentative model, namely, the use of heteroclinic connections
between unstable equilibria [186, 187].

Buckling and postbuckling response has also been stu-
died by the combination of two materials for achieving sus-
tainable snapping events, such as shape-memory alloy wire

actuators embedded in laminated composites [84, 188] and
composite plates with piezoelectric actuators and sensors
[144, 189]. Many studies have successfully investigated snap
bucking in structural prototypes with piezoelectric patches
and applied them to the design of novel adaptive multistable
composites. Figure 11(b) shows a prototype of bistable
composite plates with four piezoelectric patches such that the
bistable structure can snap back to its initial configuration
without the need of an external actuation force [53]. A similar
effect has been achieved by using another emerging smart
material to provide the actuation load—macro-fiber compo-
sites (MFC) [85, 86, 116]. MFC bonded onto other structures
is also being used for developing energy harvesting proto-
types due to its large deformation capacity and high energy
conversion efficiency compared with traditional piezoelectric
materials [47].

The use of lateral constraints has also been shown to be
effective for achieving sustained snap-through and snap-back
response in the far postbuckling regime. For example, the
disordered packing behavior of an elastic rod constrained by a
cylindrical chamber has been studied to develop the prototype
for a folding mechanism [32]. Bilaterally constrained axially
loaded strips, which can exhibit snap-through behavior
between multiple buckling modes [190], have been shown to
be efficient for devices that may harvest energy from pseudo-
static motions [15]. Such behavior has been exploited for
energy harvesting purposes (figure 11(c)). Inner constraints
have also been shown to be a viable mechanism to modify,
and potentially tailor, the postbuckling response of axially
compressed composite cylindrical shells [41].

Searching structural forms to achieve snapping and
buckling can be assisted by design optimization methods.
Topology optimization techniques have been developed to
seek the best material/stiffness distribution for a given
objective [191], and their fundamental principles are well
documented [192]. A recent review [193] showed that
topology optimization has been extensively used to solve a
variety of multidisciplinary problems in the last decade.
Topology optimization methods with a buckling response
objective are also emerging, thus shifting the concept from the
search of maximum strength or stiffness under static loading
demands to problems dealing with nonlinear large

Figure 11. Structural prototypes for obtaining multistable behavior. (a) A bistable-composites concept for energy absorption (reprinted from
[111], copyright (2013), with permission from Elsevier). (b) Bistable composites attached with four piezoelectric patches (reprinted from
[53], copyright (2012), with permission from AIP Publishing). (c) A bilaterally constrained axially loaded CFRP strip (reprinted from [15],
copyright (2014), with permission from IOP Publishing).
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deformations for smart purposes. Numerical algorithms that
can track the nonlinear structural response following a path
that exhibits snap-through behavior have been developed
[194–198]. Recent efforts have also showcased the use of
topology optimization to find material layouts that lead to
larger displacement and energy release from snap-through
behavior for different purposes, such as actuators
[61, 73, 83, 145, 199], energy harvesters [53, 56, 200],
dampers [67], multistable compliant mechanisms [201, 202],
thermoelectric generators [203], and flutter control [36]. Thus,
topology optimization is a promising technique for finding
new structural and material layouts to meet a targeted elastic
unstable response.

Another growing research trend pertains to the use of soft
and superelastic materials for triggering elastic instabilities. It
should be noted that the following discussion is not focused
solely on buckling-induced but rather EI-induced applications
in general. Two major materials reported in the literature for
this purpose are dielectric elastomers (DEs) and graphene.
DEs are ideal candidates for high-performance and low-cost
applications due to their characteristics of light weight, ease
of fabrication, and low cost. General behavioral theory and
applications of DEs can be found in [204] and [169],
respectively. Research studies [89, 164, 205] have shown that
DEs are capable of having large voltage-induced snap-
through instabilities (figure 12(a)), and their potential has
been demonstrated for different purposes, such as actuators

[91, 147, 165, 206], energy harvesters [55, 148, 153], soft
generators [154], and morphing in elastomer systems
(figure 12(b)) [114]. More endeavors toward harnessing snap-
through instabilities using DEs can be found in two recent
reviews [170, 207].

Graphene is a monolayer of carbon atoms densely packed
in a honeycomb crystal lattice [159]. Studies [124, 158, 160]
have recognized that the morphology of graphene can lead to
a sudden snap-through transition and that it has great potential
for the development of graphene-based interfaces and devices
(figure 12(c)). Another soft material that has caught the
attention of researchers for buckling-induced applications is
ionic polymer–metal composites (IPMC). The features of
IPMCs are their light weight, their ability to sustain large
deformation, and their ability to be used in wet conditions.
Typical IPMC materials include Nafion and Flemion [169].
Figure 12(d) presents a double-clamped buckled beam under
the electrical actuation of an IPMC [208]. Cellini et al [54]
have explored the feasibility of using the snap buckling of
two IPMC sliding cranks induced by a steady fluid flow for
energy harvesting purposes (figure 12(e)). Beyond snap-
through buckling of beam-like IPMC samples, a recent study
by Shen et al [16] showcased a prototype, along with a novel
fabrication method, for sensors based on the buckling of
axially compressed IPMC pipes (figure 12(f)). A compre-
hensive review of IPMC can be found in [209], whereas
studies [123] also indicate that there is plenty of room left for

Figure 12. The potential use of emerging soft material for buckling-induced applications. (a) A bistable compliant mechanism for a MEMS-
based accelerometer (reprinted from [89], copyright (2012), with permission from RSC Publishing). (b) Snapping a simple stretched bi-strip
of elastomers (reprinted from [114], copyright (2012), with permission from RSC Publishing). (c) A graphene blister with a switchable snap-
buckling feature (reprinted from [124], copyright (2013), with permission from American Chemical Society). (d) A double-clamped IPMC
actuated beam (reprinted from [208], copyright (2010), with permission from Elsevier). (e) An energy harvesting concept with two IPMC
sliding cranks (reprinted from [54], copyright (2013), with permission from SAGE Publications). (f) An experimental study of buckling of
IPMC pipes (reprinted from [16], copyright (2013), with permission from IOP Publishing).
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material science researchers to develop artificial materials to
achieve elastic instabilities.

6. Summary

This topical review presented state-of-the-art developments
regarding the harnessing one of the elastic instabilities
(namely, buckling and postbuckling behavior) for smart
purposes. The buckling response in slender structures and
systems has been an area of little relevance due to the sig-
nificant loss of load-carrying capacity and large deformations
resulting from such an event. However, the increasing interest
in various disciplines for developing smart applications over
the last decade has motivated creative researchers to trans-
form buckling behavior into a promising phenomenon for the
design of novel materials and mechanical systems. Harnes-
sing buckling and other elastic instabilities is a promising
technique that is yet to be fully explored. Four major aspects
include application purposes, application scales, structural
prototypes, and material prototypes. The following lessons
learned can be drawn from the presented review:

• Existing endeavors regarding buckling-induced applica-
tions can be generally divided into two main categories:
energy-related and motion-related. Energy-related appli-
cations can be further categorized into energy production
and energy dissipation. Energy released from snap-
through buckling can be used in the design of energy
harvesters, sensors, actuators, and micro-electromecha-
nical systems (MEMS), whereas the energy dissipated
from buckling events can be used for the design of
energy dissipaters, dampers, stabilizers, isolators, etc. For
motion-related applications, snap-buckling instabilities
have been proved to be useful in the design of morphing,
adaptive, and deployable structures.

• Compiled research efforts have shown that buckling and
other elastic instabilities can be found across scales: from
nanostructured materials to macro-scale structural ele-
ments. Energy-related and motion-related applications
using snapping and buckling have been explored
primarily at the microscale level. However, an emerging
trend is to extend the basic principles as a platform for
nanoscale applications. Prototypes of EI-induced sensors
and actuators are also gaining momentum for the
monitoring of large structures.

• The key step for using a specific unstable event is to
identify a desirable structural prototype. The studies
highlighted in this review have shown that laterally
loaded beams and bistable plates are the most frequently
used structural forms for the purpose of energy harvest-
ing, whereas cylinder-type structures have been heavily
studied for energy dissipation purposes. Three-dimen-
sional forms, by their nature, are more favorable for
motion-based applications with morphing or deployable

features. Extending beyond the bistability featured by
many existing forms, a research trend is emerging to
explore the structural systems that can feature multistable
events by varying material properties, using hybrid
structural/mechanical systems, using hybrid materials,
and adding constraints. The search for structural forms to
achieve desirable snap-through instabilities is also being
assisted by optimization methods, such as topology
optimization.

• Another key step for using a specific unstable event is to
select a suitable material. Two major features in the
selection of a material for EI-induced purposes are the
capability of shape change and the capability of shape
memory. A material may have these features separately
or simultaneously. Four major reported materials with the
capability of shape change are metals (including
metalloid), fiber-reinforced composites, polymers, and
piezoelectric materials. Shape-memory alloys (SMAs)
and shape-memory polymers (SMPs) are well-known
candidates among many smart materials. An ongoing
trend is using soft and superelastic materials, such as
dielectric elastomers (DEs), graphene, and ionic poly-
mer–metal composites (IPMCs), to trigger elastic
instabilities.

This review has covered diverse studies under the over-
arching concept of harnessing buckling and elastic instabil-
ities. However, it should be noted that snap buckling is only
one type of instability phenomenon. This narrower treatment
follows from the fact that it is not easy to classify or unify all
kinds of instabilities into a single category. Nonetheless, the
research trend is toward the exploration of many kinds of
instabilities. Having said this, we apologize to those
researchers who are, or have, worked on the study of elastic
instabilities if their works were not covered by this review.
Furthermore, this review featured a great body of experi-
mental works on the subject and focused on conceptual and
physical aspects, but it did not highlight aspects of funda-
mental analysis. Research studies have shown that many EI-
induced responses can be captured by using numerical
methods, many of them commercially available. Finally,
continuous advances in materials processing and fabrication
methods are likely to motivate the creativity of researchers
seeking to harness EI-induced mechanisms, indicating
increasing growth and development in this research field for
several years to come.
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