
Najmeh Sadat Hosseini Motlagh- PhD
- Professor (Assistant) at Meybod university
Najmeh Sadat Hosseini Motlagh
- PhD
- Professor (Assistant) at Meybod university
About
12
Publications
5,609
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
424
Citations
Introduction
Skills and Expertise
Current institution
Meybod university
Current position
- Professor (Assistant)
Publications
Publications (12)
Background & Aim: Ultrasound hyperthermia with nanoparticles has been regarded as an effective method for localized death of cancerous cells with fewer side effects to the surrounding normal tissues. The aim of this study was to investigate the increasing of water temperature by ultrasound waves in the presence of graphene oxide (GO) nanoparticles...
Graphene oxide is used as a singular 2D nano-carrier in cancer therapy. Here, graphene oxide is used as a hybrid chemo-drug graphene oxide (GO) + doxorubicin (DOX), mainly due to its unique chemical and optical properties. The laser triggers GO + DOX for selective drug delivery to optimize the drug release. The characterization of GO is investigate...
Free polymer graphene aerogel nanoparticles (GA NPs) were synthesized by using reduction/aggregation of graphene oxide (GO) sheets in the presence of vitamin C (as a biocompatible reductant agent) at a low temperature (40 °C), followed by an effective sonication. Synthesis of GA NPs in doxorubicin hydrochloride (DOX)-containing solution results in...
The effect of graphene oxide (GO) and nanodiamond (ND) is investigated on the spectral properties of doxorubicin (DOX) fluorescence emissions in the form of ( ) and ( ) biomaterials. It is shown that carbon nanostructure additives lead to sensible blueshifts, due to their optical properties and surface functionality. The quenching coefficient is ob...
We employ laser induced fluorescence (LIF) spectroscopy to discriminate between normal and cancerous human breast (in-vitro) tissues. LIF signals are usually enhanced by the exogenous agents such as Rhodamine 6G (Rd6G) and Coumarin 7 (C7). Although we observe fluorescence emissions in both fluorophores, Rd6G–stained tissues give notable spectral re...
Laser induced breakdown spectroscopy and subsequent acoustic response during microplasma formation are employed to identify cancerous human breast tissues. The characteristic optical emissions identify Ca, Na, and Mg rich species in cancerous tissues compared to those of healthy ones. Furthermore, we show that the characteristic parameters of the m...
The fluorescence nature of chemo-drugs is useful for simultaneous cancer diagnosis and therapy. Here, the laser induced fluorescence (LIF) properties of irinotecan, gemcitabine and navelbine are extensively investigated. The UV photons provoke the desired transitions of the several chemo-drugs by virtue of the XeCl laser at 308 nm. It is shown that...
The fluorescence nature of chemo-drugs is useful for simultaneous cancer diagnosis and therapy. Here, the laser induced fluorescence (LIF) properties of irinotecan, gemcitabine and navelbine are extensively investigated. The UV photons provoke the desired transitions of the several chemo-drugs by virtue of the XeCl laser at 308 nm. It is shown that...
Several chemo-drugs act as the biocompatible fluorophores. Here, the laser induced fluorescence (LIF) properties of doxorubicin, paclitaxel and bleomycin are investigated. The absorption lines mostly lie over UV range according to the UV-VIS spectra. Therefore, a single XeCl laser provokes the desired transitions of the chemo-drugs of interest at 3...
Simultaneous laser induced-breakdown spectroscopy (LIBS) and acoustic response techniques as well as Laser induced fluorescence (LIF) are applied to investigate the abnormal lymph tissues due to Hodgkin disease. The spectral shift in the emissive fluorescence of the cancerous tissues has been observed respect to the normal ones. Regarding LIBS, the...
Abstract: Laser induced fluorescence (LIF) and simultaneous laser induced- breakdown
spectroscopy (LIBS) and acoustic response techniques are applied to investigate abnormal lymph
tissues due to Hodgkin disease.