ARTICLE IN PRESS – Acta Cryst. C

STRUCTURAL CHEMISTRY Crystal structure, shape analysis and bioactivity of new Li¹, Na¹ and Mg¹¹ complexes with 1,10-phenanthroline and 2-(3,4-dichlorophenyl)acetic acid

Proof instructions

Proof corrections should be returned by **8 February 2019**. After this period, the Editors reserve the right to publish your article with only the Managing Editor's corrections.

Please

(1) Read these proofs and assess whether any corrections are necessary.

(2) Check that any technical editing queries highlighted in **bold underlined** text have been answered.

(3) Send corrections by e-mail to **sc@iucr.org**. Please describe corrections using plain text, where possible, giving the line numbers indicated in the proof. Please do not make corrections to the pdf file electronically and please do not return the pdf file. If no corrections are required interval and please to the pdf file.

To purchase printed offprints, please complete the attached order form and return it by e-mail.

Please check the following details for your article

Synopsis: Reactions of 1,10-phenanthroline (phen) and 2-(3,4-dichlorophenyl)acetic acid (dcaH) with $M_n(CO_3)$ ($M = Li^I$, Na^I and Mg^{II}; n = 1 and 2) in MeOH yield the mononuclear lithium complex, the dinuclear sodium complex and the one-dimensional chain magnesium complex. In these complexes, phen binds *via* an N,N'-chelate pocket, while the deprotonated dca⁻ ligands coordinate either in a monodentate or bidentate fashion.

Abbreviated author list: Shah, S.R.; Shah, Z.; Ullah, N.; Hussain, J.; Al-Harrasi, R.; Khan, A.; Rawson, J.M.; Al-Harrasi, A.; Anwar, M.U.

Keywords: s-block metals; single-crystal X-ray diffraction; 1,10-phenanthroline; 2-(3,4-dichlorophenyl)acetic acid; bioactivity; crystal structure

Thumbnail image for contents page

Copyright: Transfer of copyright received.

How to cite your article in press

Your article has not yet been assigned page numbers, but may be cited using the doi:

Shah, S.R., Shah, Z., Ullah, N., Hussain, J., Al-Harrasi, R., Khan, A., Rawson, J.M., Al-Harrasi, A. & Anwar, M.U. (2019). Acta Cryst. C75, https://doi.org/.

You will be sent the full citation when your article is published and also given instructions on how to download an electronic reprint of your article.

Acta Cryst. (2019). C75

Files: c/ix3026/ix3026.3d c/ix3026/ix3026.sqml JX3026 FA IU-1911/43(1)2 1911/43(1)2 ()

Shah et al. • New Li^I, Na^I and Mg^{II} complexes

1 of 10

63

64

65

66

67

68

69

70

71 72

73

74

75 76

77

78

79

81

82

83

84

85

86

87

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

Syed Raza Shah,^{a,b} Zarbad Shah,^b Najeeb Ullah,^b Javid Hussain,^c Rashid Al-Harrasi,^a Ajmal Khan,^a Jeremy M. Rawson,^d Ahmed Al-Harrasi^a* and Muhammad U. Anwar^a*

anthroline and 2-(3,4-dichlorophenyl)acetic acid

^aNatural and Medical Sciences Research Centre, University of Nizwa, Birkat Almouz, Nizwa 616, Oman, ^bDepartment of Chemistry Bacha Khan University Charsadda KPK Pakistan ^cDepartment of Chemistry University of Nizwa Birkat Almouz, Nizwa 616, Oman, and ^dDepartment of Chemistry and Biochemistry, University of Windsor, Canada. *Correspondence e-mail: aharrasi@unizwa.edu.om, usman.anwar@unizwa.edu.om

Reactions of 1,10-phenanthroline (phen) and 2-(3,4-dichlorophenyl)acetic acid (dcaH) with $M_n(CO_3)$ ($M = Li^I$, Na^I and Mg^{II}; n = 1 and 2) in MeOH yield the mononuclear lithium complex aqua[2-(3,4-dichlorophenyl)acetato- κO](1,10phenanthroline- $\kappa^2 N, N'$)lithium(I), [Li(C₈H₅Cl₂O₂)(C₁₂H₈N₂)(H₂O)] or [Li(dca)-(phen)(H₂O)] (1), the dinuclear sodium complex di- μ -aqua-bis{[2-(3,4-dichlorophenyl)acetato- κO](1,10-phenanthroline- $\kappa^2 N N'$)sodium(I)}, [Na₂(C₈H₅Cl₂O₂)₂- $(C_{12}H_8N_2)_2(H_2O)_2$ or $[Na_2(dca)_2(phen)_2(H_2O)_2]$ (2), and the one-dimensional chain magnesium complex *catena*-poly[[[diaqua(1,10-phenanthroline- $\kappa^2 N, N'$)magnesium]- μ -2-(3,4-dichlorophenyl)acetato- $\kappa^2 O:O'$] 2-(3,4-dichlorophenyl)acetate monohydrate], {[Mg($C_8H_5Cl_2O_2$)($C_{12}H_8N_2$)(H_2O_2]($C_8H_5Cl_2O_2$)· H_2O }_n or $\{[Mg(dca)(phen)(H_2O)_2](dca)\cdot H_2O\}_n$ (3). In these complexes, phen binds via an N,N'-chelate pocket, while the deprotonated dca⁻ ligands coordinate either in a monodentate (in 1 and 2) or bidentate (in 3) fashion. The remaining coordination sites around the metal ions are occupied by water molecules in all three complexes. Complex 1 crystallizes in the triclinic space group P1 with one molecule in the asymmetric unit. The Li⁺ ion adopts a four-coordinated distorted seesaw geometry comprising an [N2O2] donor set. Complex 2 crystallizes in the triclinic space group $P\overline{1}$ with half a molecule in the asymmetric unit, in which the Na⁺ ion adopts a five-coordinated distorted spherical square-pyramidal geometry, with an $[N_2O_3]$ donor set. Complex 3 crystallizes in the orthorhombic space group $P2_12_12_1$, with one Mg²⁺ ion, one phen ligand, two dca⁻ ligands and three water molecules in the asymmetric unit. Both dcaH ligands are deprotonated, however, one dca⁻ anion is not coordinated, whereas the second dca⁻ anion coordinates in a bidentate fashion bridging two Mg²⁺ ions, resulting in a one-dimensional chain structure for 3. The Mg^{2+} ion adopts a distorted octahedral geometry, with an $[N_2O_4]$ donor set. Complexes 1-3 were evaluated against urease and α -glucosidase enzymes for their inhibition potential and were found to be inactive.

1. Introduction

A great deal of work in coordination chemistry has focused on the 'predictable self-assembly' of metal-organic architectures, which involves the design and/or selection of suitable ligands with well-defined coordination sites (Lehn, 2007). In this respect, the 1,10-phenanthroline (phen) ligand has a central position in coordination chemistry due to its predicable and rich coordination chemistry (Li et al., 2018). Phen offers an attractive N,N'-chelate pocket for metal ions in which the two N-donor atoms offer a rigid bidentate coordination environment. In addition to the N-donor sites, the aromaticity involving the σ/π -donor and π^* -acceptor orbitals enhances the

56 57 © 2019 International Union of Crystallography

Received 26 November 2018

Edited by D. R. Turner, University of Monash,

Keywords: s-block metals; single-crystal X-ray

diffraction: 1.10-phenanthroline: 2-(3.4-di-

chlorophenyl)acetic acid; bioactivity; crystal

CCDC references: 1881199: 1881198:

Supporting information: this article has supporting information a journals jucr.org/c

Accepted 24 January 2019

ISSN 2053-2296

cta

Australia

structure.

Table 1 115

148

149

Experimental details

	1	2	3
Crystal data			
Chemical formula	$[Li(C_8H_5Cl_2O_2)(C_{12}H_8N_2)(H_2O)]$	$\frac{[Na_{2}(C_{8}H_{5}Cl_{2}O_{2})_{2}(C_{12}H_{8}N_{2})_{2}}{(H_{2}O)_{2}]}$	$[Mg(C_8H_5Cl_2O_2)(C_{12}H_8N_2)-(H_2O_2)](C_8H_5Cl_2O_2)\cdot H_2O$
M _r	409.18	850.46	666.60
Crystal system, space group	Triclinic, $P\overline{1}$	Triclinic, $P\overline{1}$	Orthorhombic, $P2_12_12_1$
Temperature (K)	296	296	296
<i>a</i> , <i>b</i> , <i>c</i> (Å)	7.056 (2), 10.226 (5), 13.451 (5)	6.9518 (10), 10.8369 (16), 13.5077 (17)	8.3889 (4), 11.9459 (6), 29.1630 (15)
α, β, γ (°)	87.21 (2), 86.978 (13), 76.42 (2)	82.823 (6), 83.700 (6), 71.920 (7)	90, 90, 90
$V(\dot{A}^3)$	941.5 (7)	957.1 (2)	2922.5 (3)
Z	2	1	4
Radiation type	Μο Κα	Μο Κα	Μο Κα
$\mu \text{ (mm}^{-1})$	0.37	0.39	0.48
Crystal size (mm)	$0.32 \times 0.10 \times 0.10$	$0.45 \times 0.40 \times 0.20$	$0.45 \times 0.21 \times 0.10$
Data collection			
Diffractometer	Bruker APEXII CCD	Bruker APEXII CCD	Bruker APEXII CCD
Absorption correction	Multi-scan (SADABS; Bruker,	Multi-scan (SADABS; Bruker,	Multi-scan (SADABS; Bruker,
	2010)	2010)	2010)
T_{\min}, T_{\max}	0.591, 0.745	0.669, 0.745	0.516, 0.745
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	29466, 3827, 3197	29417, 3931, 3119	29717, 5875, 5186
R _{int}	0.033	0.038	0.042
$(\sin \theta / \lambda)_{\max} (\dot{A}^{-1})$	0.625	0.628	0.625
Refinement			
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.044, 0.128, 1.03	0.042, 0.123, 1.03	0.043, 0.095, 1.11
No. of reflections	3827	3931	5875
No. of parameters	259	259	397
No. of restraints	2	2	6
H-atom treatment	H atoms treated by a mixture of	H atoms treated by a mixture of	H atoms treated by a mixture of
_	refinement	refinement	refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.44, -0.44	0.29, -0.44	0.19, -0.30
Absolute structure	-	-	Flack x determined using 1954 quotients $[(I^+) - (I^-)]/$
			$[(I^+) + (I^-)]$ (Parsons <i>et al.</i> , 2013)
Absolute structure parameter	_	_	-0.02 (2)

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015) and SHELXTL (Sheldrick, 2008).

electronic interaction with the metal centres (Schöne et al., 150 2018). Phen is often employed with O-donor co-ligands and 151 has produced a range of structural topologies that includes 152 mononuclear (Buttery et al., 2006), polynuclear metal clusters 153 (Ma et al., 2004) and metal-organic frameworks (MOFs) 154 (Platero-Prats et al., 2012). Phen complexes have attracted the 155 continuous interest of coordination chemists, not only due to 156 their predictable chemistry, but also due to their potential 157 applications in the fields of electrochemistry (Happ et al., 2012; 158 Khake et al., 2018) and biology (Viganor et al., 2017). Much of 159 this effort has, however, focused on d- and f-block elements 160 rather than alkali/alkaline earth metals (s block), mainly due 161 to the inherent difficulties arising from these elements, i.e. 162 crystallization processes and unpredictable coordination 163 numbers/geometries. These metal salts play a vital role in organic/organometallic transformations, e.g. lithium-based 165 reagents are used in over 95% of natural product syntheses 166 (Xavier et al., 2004). 167

In these current studies, we have investigated the reactions 168 of phen and 2-(3,4-dichlorophenyl)acetic acid (dcaH) with 169 selected *s*-block elements. We chose the combination of these 170 two ligands for two main reasons, based on our interest in their 171

biological activity. Specifically, phen has predictable coordination chemistry and is a well-known enzyme inhibitor (McCann et al., 2012; Boumans et al., 1997; Sartorius et al., 1988). Conversely, the coordination chemistry of dcaH ligands is less well established with just three complexes containing dcaH reported in the Cambridge Structural Database (CSD, Version of 2018; Groom et al., 2016). Notably, two mononuclear copper complexes (Cui et al., 2011) were found to be urease active, whereas a tetranuclear tin complex (Saeed et al., 2010) showed some antibacterial and antifungal activity. As a continuation of our search for new potential α -glucosidase and urease inhibitors (Avula et al., 2018; Ur Rehman et al., 2018; Alam et al., 2019), we were interested in the bioactivities of alkali/alkaline earth complexes of phen/dcaH.

In this new study, we have investigated the reactions of phen and dcaH with selected s-block metals and describe the structures of the mononuclear complex aqua[2-(3,4-dichlorophenyl)acetato- κO](1,10-phenanthroline- $\kappa^2 N, N'$)lithium(I), [Li(dca)(phen)(H₂O)], **1**, the dinuclear complex di- μ -aquabis{[2-(3,4-dichlorophenyl)acetato- κO](1,10-phenanthroline- $\kappa^2 N, N'$ sodium(I)}, [Na₂(dca)₂(phen)₂(H₂O)₂], **2**, and the polymeric chain structure catena-poly[[[diaqua(1,10-phen-

Files: c/ix3026/ix3026.3d c/ix3026/ix3026.sqml JX3026 FA IU-1911/43(1)2 1911/43(1)2 ()

172

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

anthroline- $\kappa^2 N, N'$)magnesium]- μ -2-(3,4-dichlorophenyl)acetato- $\kappa^2 O:O'$] 2-(3,4-dichlorophenyl)acetate monohydrate], {[Mg(dca)(phen)(H₂O)₂](dca)·H₂O}_n, **3** (Fig. 1). The structures of **1**–**3** were analysed by single-crystal X-ray diffraction and a detailed description of their crystal structures described along with a *SHAPE* analysis (Version 2.1; Llunell *et al.*, 2013). The bulk compositions were confirmed by elemental analysis, IR spectroscopy and powder X-ray diffraction. *In vitro* urease and α -glucosidase enzyme inhibition studies were performed.

2. Experimental

Commercially available solvents and chemicals were used without further purification. All complexes were prepared under similar reaction conditions and crystals were obtained by slow evaporation from the mother solution.

2.1. Synthesis and crystallization

2.1.1. Preparation of [Li(dca)(phen)(H₂O)], 1. A solution of Li₂CO₃ (0.073 g, 1.0 mmol) and dcaH (0.205 g, 1.0 mmol) in MeOH (15 ml) was refluxed for 1 h, followed by the dropwise addition of a solution of phen (0.198 g, 1.0 mmol) in MeOH (2 ml). The resulting solution was stirred with gentle heating for 1 h. The solution was filtered and the filtrate left undisturbed at room temperature. Colourless crystals suitable for X-ray diffraction analysis formed within a week (yield: 0.308 g, 75%; m.p. 250–253 °C). FT–IR (cm⁻¹): $v_{OH} = 3668-3050$, $v_{C=O} = 1665$, $v_{C=C} = 1575$ (*s*), $v_{C=N} = 1514$. Analysis calculated (%) for C₂₀H₁₅Cl₂LiN₂O₃: C 58.71, H 3.69, N 6.85; found: C 58.36, H 3.55, N 6.83.

2.1.2. Preparation of $[Na_2(dca)_2(phen)_2(H_2O)_2]$, 2. A solution of Na_2CO_3 (0.106 g, 1.0 mmol) and dcaH (0.205 g, 1.0 mmol) in MeOH (15 ml) was refluxed for 1 h, followed by the dropwise addition of a solution of phen (0.198 g, 1.0 mmol) in MeOH (2 ml). The resulting solution was stirred with gentle heating for 1 h. The solution was then filtered and the filtrate left undisturbed at room temperature. Colourless crystals suitable for X-ray diffraction analysis appeared over a period of 10 d (yield: 0.423 g, 50%; m.p. 230 °C). FT–IR (cm⁻¹): v_{OH} = 3683–2740, $v_{C=O}$ = 1650 and 1510, $v_{C=N}$ = 1510. Analysis calculated (%) for $C_{40}H_{30}Cl_4N_4Na_2O_6$: C 56.49, H 3.56, N 6.59; found: C 56.33, H 3.66, N 6.58.

2.1.3. Preparation of {[Mg(dca)(phen)(H₂O)₂](dca)·H₂O]_n, 3. A solution of MgCO₃ (0.843 g, 1.0 mmol) and dcaH (0.410 g, 2.0 mmol) in MeOH (20 ml) was refluxed for 1 h, followed by the dropwise addition of a solution of phen (0.198 g, 1 mmol) in MeOH (2 ml). The resulting solution was stirred with gentle heating for 1 h, and was then filtered and the filtrate left undisturbed at room temperature. Colourless crystals suitable for X-ray diffraction analysis formed over a period of 10 d (yield: 0.412 g, 64%; m.p. 220–224 °C). FT–IR (cm⁻¹): $v_{OH} = 3683-2740$, $v_{C=O} = 1616$, $v_{C=N} = 1520$. Analysis calculated (%) for C₂₈H₂₄Cl₄MgN₂O₇: C 50.45, H 3.63, N 4.20; found: C 50.50, H 3.48, N 4.23.

2.2. X-ray crystallography

(1)

MeOH

Li2CO3

Crystal data, data collection and structure refinement details for 1–3 are summarized in Table 1. Single crystals were mounted on a MiTeGen loop with grease and examined on a Bruker D8 Venture APEX diffractometer equipped with a

OH₂

(2)

The synthetic routes to $[\text{Li}(\text{dca})(\text{phen})(\text{H}_2\text{O})]$ (1), $[\text{Na}_2(\text{dca})_2(\text{phen})_2(\text{H}_2\text{O})_2]$ (2) and $\{[\text{Mg}(\text{dca})(\text{phen})(\text{H}_2\text{O})_2](\text{dca})\cdot\text{H}_2\text{O}\}_n$ (3).

3 of 10

Acta Cryst. (2019). C75

Figure 1

H₂O

 H_2O

(3)

Na₂CO₂

MeOH

Files: c/jx3026/jx3026.3d c/jx3026./jx3026.sgml JX3026 FA IU-1911/43(1)2 1911/43(1)2 ()

MgCO₃

MeOH

Li1-O1	1.918 (4)	N1-C1	1.327 (3)
Li1-O3	1.950 (4)	N1-C12	1.357 (2)
Li1-N1	2.164 (4)	N2-C10	1.324 (3)
Li1-N2	2.132 (4)	N2-C11	1.359 (2)
C13-O1-Li1	140.53 (18)	C10-N2-Li1	128.55 (17)
C1-N1-Li1	129.77 (17)	C11-N2-Li1	113.78 (16)
C12-N1-Li1	112.75 (15)	C1-N1-C12	117.47 (18)

 3638 cm^{-1}) are due to the O-H stretching frequency, which is broadened due to hydrogen bonding. The carbonyl peaks fall in the range $1661-1665 \text{ cm}^{-1}$, in good agreement with literature examples (Deacon, 1980). The peaks in the range 1514- 1520 cm^{-1} reflect the presence of the heterocyclic phen C—N stretching in the complexes (Nevkov et al., 2006).

3.3. Description of the crystal structures

3.3.1. [Li(dca)(phen)(H₂O)], 1. The molecular structure of 1 is shown in Fig. 2 and selected interatomic distances and angles are listed in Table 2. The complex crystalizes in the triclinic space group $P\overline{1}$, with one phen ligand, a deprotonated dca⁻ anionic ligand, an Li⁺ cation and a coordinated water molecule in the asymmetric unit. The Li⁺ ion adopts a fourcoordinated geometry comprising an [N₂O₂] donor set. The bond angles around Li⁺ are in the range 78.02 (13)–146.7 (2) $^{\circ}$. The phen ligand adopts an N,N'-chelate mode through the N1 and N2 atoms, making a five-membered ring, with Li-N distances of 2.132 (4) and 2.164 (4) Å. The Li–N bond lengths lie within the normal observed range of 2.06–2.29 Å for related lithium complexes with phen ligands (Buttery et al., 2006). The Li $-O_{water}$ distance is 1.918 (4) Å, consistent with hydrated Li⁺ complexes reported by others (Buttery et al., 2006). The carboxylate group of the dca⁻ anion adopts a monodentate coordination mode [Li-O = 1.950 (4) Å]. Lithium complexes of phen with carboxylate as co-ligands are rare. A CSD search resulted in only one hit, where the Li⁺ coordination geometry is quite similar to that of 1 (Hundal et al., 1991). The uncoordinated dca⁻ carboxylate O atom (O2)

The molecular structure of $[Li(dca)(phen)(H_2O)]$ (1). Displacement ellipsoids are drawn at the 50% probability level.

Photon 100 CCD area detector at 296 (2) K using graphitemonochromated Mo K α radiation ($\lambda = 0.71073$ Å). The phen C atoms in complex 3 have slightly elongated displacement parameters suggesting some slight disorder, but this was insufficient to merit splitting and modelling the atomic positions over two sites. A powder X-ray diffraction (PXRD) scan was performed using a Bruker D8 Discover instrument operated at 40 kV with 2θ ranging from 5 to 40° . [see Note 2]

3. Results and discussion

3.1. Synthesis

363

364

365

366

367

368

369

370

371

372

374

375

376

377

378

379

380

381

382

387

391

397

Reactions of phen, dcaH and $M_n(CO_3)$ ($M = Li^I$, Na^I and Mg^{II} ; n = 1 and 2) in MeOH afforded the mononuclear Li complex, 1, the dinuclear Na complex, 2, and a 1D chain for the Mg complex, 3. All three complexes were characterized by single-crystal X-ray diffraction, elemental analysis, powder XRD and IR spectroscopy.

3.2. FT-IR

The IR spectra of complexes 1-3 are presented in Fig. S1 of the supporting information, where the broad peaks (2712-

4 of 10 Shah et al. • New Li¹, Na¹ and Mg¹¹ complexes 409

410

411

412

413

414

415

The crystal packing of 1, highlighting the centroid–centroid ($Cg \cdots Cg$) distances (black dotted lines).

forms hydrogen bonds with two water molecules, each of which is coordinated to neighbouring molecules $[O \cdots O] =$ 2.835 (4) and 2.841 (2) Å; $O-H \cdots O = 165$ (2) and 168 (2)° [see Note 1]], resulting in a supramolecular hydrogen-bonded chain parallel to the crystallographic *a* axis, with $Li \cdots O-Li$ and Li...Li separations of 3.108 (4) and 3.734 (7) Å, respec-tively (Fig. 3 and Fig. S2 in the supporting information). The structure exhibits intermolecular π - π stacking between phen ligands, with centroid–centroid $(Cg \cdots Cg)$ distances of 3.567 and 4.04 Å, while the $Cg \cdots Cg$ distance between dca⁻ rings is 3.940 Å (Fig. 4). The degree of distortion of the $[LiN_2O_2]$ coordination polyhedron with respect to an ideal four-coor-dinated polyhedron was calculated by the continuous shape measure (CshM) theory utilizing SHAPE software (Version 2.1; Llunell et al., 2013), which indicates that the distorted coordination geometry at lithium (Fig. 5) is close to an ideal seesaw (SS-4), with a value for the deviation from standard $C_{2\nu}$ symmetry of 3.86 (Table S1 in the supporting information). Four-coordinated lithium complexes are not uncommon and distorted geometries have been observed previously (Tacke et al., 2015).

Figure 5

The observed distorted polyhedron (black lines) and the ideal seesaw polyhedron (green lines) in 1. Colour codes: nitrogen blue, oxygen red and lithium pink. CshM = 3.862 (see Table S1 in the supporting information).

Acta Cryst. (2019). C75

Table 3 Selected geometric parameters (Å, °) for 2.

Na1-O1	2.3180 (17)	Na1-N2	2.4475 (19)
Na1-O3	2.3834 (17)	Na1-N1	2.4558 (18)
Na1-O3 ⁱ	2.4436 (16)	Na1-Na1 ⁱ	3.5438 (16)
O1-Na1-O3	101.40 (6)	O3 ⁱ -Na1-N1	141.12 (6)
O1-Na1-O3 ⁱ	87.33 (6)	N2-Na1-N1	67.72 (6)
O3-Na1-O3 ⁱ	85.54 (6)	O1-Na1-Na1 ⁱ	95.78 (5)
O1-Na1-N2	157.58 (7)	O3-Na1-Na1 ⁱ	43.43 (4)
O3-Na1-N2	101.02 (6)	O3 ⁱ -Na1-Na1 ⁱ	42.11 (4)
O3 ⁱ -Na1-N2	93.74 (6)	N2-Na1-Na1 ⁱ	99.99 (5)
O1-Na1-N1	97.83 (6)	N1-Na1-Na1 ⁱ	166.14 (6)
O3-Na1-N1	130.20 (6)	Na1-O3-Na1 ⁱ	94.46 (6)

Symmetry code: (i) -x + 1, -y, -z + 1.

3.3.2. [Na₂(dca)₂(phen)₂(H₂O)₂], 2. The molecular structure of 2 is shown in Fig. 6 and selected interatomic distances and angles are listed in Table 3. The complex crystallizes in the triclinic space group $P\overline{1}$ with half a molecule in the asymmetric unit. Two Na⁺ cations are charge-balanced by two deproton-

Figure 6

The molecular structure of $[Na_2(dca)_2(phen)_2(H_2O)_2]$ (2). Atoms marked with an asterisk (*) are generated by crystallographic inversion centre [symmetry code: (i) -x + 1, -y, -z + 1]. Displacement ellipsoids are drawn at the 50% probability level.

Figure 7 The hydrogen-bonded polymeric arrangement of 2.

ated dca⁻ ligands to satisfy the overall charge balance on the complex. Like complex 1, the dca⁻ ligands in 2 coordinate only through one of the carboxylate O atoms. Each Na⁺ ion is five-coordinated and adopts a distorted spherical squarepyramidal geometry (vide infra), with the O3 water atom occupying the axial position. The equatorial sites comprise two chelating phen N (N_{phen}) atoms (N1 and N2), a carboxylate O atom (O1) and the symmetry-related O3ⁱ water molecule [symmetry code: (i) -x + 1, -y, -z + 1]. The Na $-N_{phen}$ distances [2.4475 (19) and 2.4558 (18) Å] are consistent with

related pentacoordinated Na complexes (Zhang et al., 2004). The two crystallographically identical Na⁺ ions are connected to each other via two bridging water ligands [Na1-O3 = 2.3834 (17) Å and Na1-O3-Na1ⁱ = 94.47 (6)°], leading to an Na···Na separation of 3.544(1) Å. The uncoordinated carboxylate O atom forms hydrogen bonds with the water molecule coordinated to the Na⁺ ion of a neighbouring complex $[O \cdots O = 2.733 (2) \text{ and } 2.821 (2) \text{ Å}; O - H \cdots O =$ 160 (2) and 174 (2)° [see Note 1]], resulting in a one-dimensional supramolecular chain (Fig. 7). The structure is addi-

Figure 11

746

747

research papers

Shah et al. • New Li^I, Na^I and Mg^{II} complexes 7 of 10

Files: c/jx3026/jx3026.3d c/jx3026/jx3026.sgml JX3026 FA IU-1911/44(1)2 1911/43(1)2 ()

The oxygen-bridged polymer chain in 3. H atoms, lattice water molecules and dca⁻ ligands have been omitted for clarity.

information). atomic distances and angles are listed in Table 4. The complex

blue lines between the aromatic rings (cf. the interlayer separation in graphite of 3.354 Å; Earnshaw & Greenwood, 1986). The calculation of the degree of distortion of the [NaN₂O₅] coordination polyhedron with respect to an idealized five-coordinated polyhedron by CshM theory (vide supra) indicated that the arrangement is closest to spherical square pyramidal (SPY-5), with a deviation from ideal $C_{4\nu}$ symmetry of 3.09 (Fig. 9 and Table S2 in the supporting

3.3.3. { $[Mg(dca)(phen)(H_2O)_2](dca) \cdot H_2O$ }_n, 3. The molecular structure of 3 is shown in Fig. 10 and selected inter-

Figure 9

685

689

690

604

695

696

697

700

701

702

703

704

715

716

717

719

720

721

722

723

724

725

727

731

734

735

736

737

740

741

The observed polyhedron for 2 (black lines) and the ideal spherical square-pyramidal polyhedron (green lines). Colour codes: nitrogen blue, oxygen red and sodium yellow. CshM = 3.09 (see Table S2 in the supporting information).

Table 4 Selected geometric parameters (Å, °) for 3.

Mg1-O6	2.037 (3)	Mg1-O7	2.054 (3)
Mg1-O1	2.040 (3)	Mg1-N1	2.213 (3)
$Mg1-O2^{i}$	2.044 (3)	Mg1-N2	2.264 (3)
O6-Mg1-O1	102.91 (13)	O2 ⁱ -Mg1-N1	87.92 (11)
$O6-Mg1-O2^{i}$	89.87 (11)	O7-Mg1-N1	91.38 (12
$O1 - Mg1 - O2^i$	90.07 (12)	O6-Mg1-N2	92.01 (13
O6-Mg1-O7	89.95 (12)	O1-Mg1-N2	164.72 (13
O1-Mg1-O7	93.57 (12)	$O2^{i}-Mg1-N2$	86.70 (12)
$O2^i - Mg1 - O7$	176.30 (13)	O7 - Mg1 - N2	89.62 (13
O6-Mg1-N1	166.23 (14)	N1 - Mg1 - N2	74.29 (12)
01-Mg1-N1	90.68 (13)	0	

Symmetry code: (i) $x - \frac{1}{2}, -y + \frac{3}{2}, -z + 1$.

tionally stabilized by intermolecular π - π stacking between dca⁻ rings and between phen rings. The $Cg \cdots Cg$ distances between the peripheral aromatic rings and between the central aromatic rings in phen are 3.716 and 3.791 Å, respectively. The $Cg \cdots Cg$ distance between dca⁻ aromatic rings is

The observed polyhedron for 3 (black lines) and the ideal octahedral polyhedron (green lines). Colour codes: nitrogen blue, oxygen red and magnesium green. CshM = 0.641 (see Table S3 in the supporting information).

Figure 13

Figure 12 The crystal packing of 3, highlighting the centroid–centroid $(Cg \cdots Cg)$ distances (black dotted lines).

crystalizes in the orthorhombic space group $P2_12_12_1$, with one phen ligand, two dca⁻ anionic ligands, one Mg²⁺ ion and three water molecules in the asymmetric unit. One of the dcaanions and a water molecule are uncoordinated. The Mg²⁺ ion adopts a distorted [N₂O₄] octahedral geometry, with one phen ligand acting as an N₂ donor [Mg-N_{phen} = 2.213 (3) and 2.264 (3) Å] and one dca⁻ ligand adopting a 1,3-*O*:*O*'-bridging mode [Mg1-O2 = 2.044 (3) Å and Mg1-O1 = 2.040 (3) Å].The remaining two coordination sites are occupied by water molecules [Mg-O6 = 2.037 (3) Å and Mg-O7 = 2.054 (3) Å].The degree of distortion from ideal octahedral geometry of the Mg²⁺ ion is reflected in the cisoid [range 89.87 (11)- $90.07 (12)^{\circ}$ and transoid angles [range 164.72 (13)-166.23 (14)°]. The uncoordinated dca⁻ ligand forms hydrogen

bonds with the water coordinated to the Mg²⁺ ion $[O \cdots O =$ 2.660 (3) and 2.677 (4) Å; $O-H \cdots O = 169$ (4) and 174 (4)°, respectively [see Note 1]]. The bridging mode of the dcaligand results in a one-dimensional chain structure of 3 parallel to the crystallographic aaxis (Fig. 11). The uncoordinated dca⁻ ligands are also connected with each other via hydrogen bonding involving the water of crystallization $[O \cdots O = 2.799 (4) \text{ and } 2.931 (4) \text{ Å}; O - H \cdots O = 167 (4) \text{ and}$ 162 (4)° [see Note 1]] (Fig. S3 in the supporting information). The structure is additionally stabilized by $\pi - \pi$ and $C - Cl \cdots \pi$ interactions (Fig. 12). The calculation of the degree of distortion of the [MgN₂O₄] coordination polyhedron with respect to an idealized six-coordinated polyhedron using the CshM theory indicated that the arrangement is quite close to an ideal octahedron (OC-6), with a small deviation (0.641)from standard O_h symmetry (Fig. 13 and Table S3 in the supporting information).

The experimental powder diffraction patterns of complexes 1-3 (Figs. 14-16) are in good agreement with those calculated

8 of 10 Shah et al. • New Li¹, Na¹ and Mg¹¹ complexes

Files: c/ix3026/ix3026.3d c/ix3026/ix3026.sqml JX3026 FA IU-1911/44(1)2 1911/43(1)2 ()

Figure 15

The calculated (bottom) and observed (top) powder X-ray diffraction patterns of 2.

based on the single-crystal data. Small differences between the intensity profiles may be accounted for by the texture (preferred orientation) of the samples.

3.4. Urease and α -glucosidase enzyme inhibition

Phen is a well-known enzyme inhibitor (McCann et al., 2012; Boumans et al., 1997; Sartorius et al., 1988) and copper-dca complexes (Cui et al., 2011) were found to be urease active, whereas a tin-dca⁻ complex (Saeed et al., 2010) showed some antibacterial and antifungal activity (vide supra). As an extension of our search for new potential α -glucosidase and urease inhibitors (Avula et al., 2018; Ur Rehman et al., 2018; Arfan et al., 2010), we were interested in comparing the

bioactivities of alkali/alkaline earth complexes of phen/dcaH. Complexes 1-3 were evaluated in *in-vitro* assays against urease and α -glucosidase enzyme for inhibition studies using the literature-reported protocol (Choudhary et al., 2010; Arfan et al., 2010). The complexes were found to be inactive against both urease enzymes, as well as against α -glucosidase.

4. Conclusion

The syntheses and structures of a series of s-block complexes containing both 1,10-phenanthroline and 2-(3,4-dichlorophenyl)acetate have been described. In all three complexes, the phen ligand acts as a bidenate ligand, while the acetate

Acta Cryst. (2019). C75

1027 ligand coordinates in either a monodentate or a 1,3-bridging fashion. Complex 1 is a mononuclear complex in which the Li⁺ 1028 1029 ion adopts a four-coordinated distorted seesaw geometry. Complex 2 crystallizes as a dinuclear complex, where both Na⁺ 1030 ions adopts a five-coordinated distorted spherical square-1031 pyramidal geometry. Complex 3 is a one-dimensional chain 1032 structure where the metal ions adopt distorted octahedral 1033 geometries. In-vitro studies on complexes 1-3 showed no 1034 inhibition against urease and α -glucosidase enzymes. We are 1035 currently working on the antibiofilm potential of these 1036 compounds against methicillin-resistant Staphylococcus 1037 aureus and Klebseilla pneumonia, as well as evaluating their 1038 1039 mechanism by microscopy.

Acknowledgements

The authors would like to thank The Oman Research Council (TRC) for their generous support.

References

1041

1042

1043

1044

1045

1046

1047

- Alam, M., Khan, A., Wadood, A., Bashir, S., Aman, A., Farooq, U.,
 Khan, F. A., Mabood, F., Hussain, J., Samiullah & Al-Harrasi, A.
 (2019). S. Afr. J. Bot. 120, 247–252.
- Arfan, M., Ali, M., Ahmad, H., Anis, I., Khan, A., Choudhary, M. I. & Shah, M. R. (2010). *J. Enzym. Inhib. Med. Chem.* 25, 296–299.
- Avula, S. K., Khan, A., Rehman, N., Anwar, M. U., Al-Abri, Z.,
 Wadood, A., Riaz, M., Csuk, R. & Al-Harrasi, A. (2018). *Bioorg. Chem.* 81, 98–106.
- Boumans, H., van Gaalen, M. C. M., Grivell, L. A. & Berden, J. A. (1997). J. Biol. Chem. 272, 16753–16760.
 1056
- Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Buttery, J. H. N., Effendy, Koutsantonis, G. A., Mutrofin, S., Plackett,
 N. C., Skelton, B. W., Whitaker, C. R. & White, A. H. (2006). Z.
 Anorg. Allg. Chem. 632, 1829–1838.
- Choudhary, M. I., Shah, S. A. A., Atta-ur-Rahman Khan, S. & Khan, M. T. H. (2010). *Steroids*, **75**, 956–966.
- Cui, Y., Liu, Y., Chen, W. & Li, Y. (2011). J. Coord. Chem. 64, 3960–3968.
- 1064 Deacon, G. B. (1980). Coord. Chem. Rev. 33, 227–250.
- Earnshaw, N. N. & Greenwood, A. (1986). In *Chemistry of the Elements*, 1st ed. Oxford: Pergamon Press.
- Feng, J., Du, X., Liu, H., Sui, X., Zhang, C., Tang, Y. & Zhang, J. (2014). *Dalton Trans.* 43, 10930–10939. [Not cited. Remove?]
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta
 Cryst. B72, 171–179.
- Happ, B., Winter, A., Hager, M. D. & Schubert, U. S. (2012). Chem.
 Soc. Rev. 41, 2222–2255.
- Hundal, M. S., Sood, G., Kapoor, P. & Poonia, N. S. (1991). J.
 Crystallogr. Spectrosc. Res. 21, 395–398.
- Khake, S. M., Jain, J., Patel, U. N., Gonnade, R. G., Vanka, K. & Punji,
 B. (2018). Organometallics, 37, 2037–2045.
- Laviecambot, A., Cantuel, M., Leydet, Y., Jonusauskas, G., Bassani,
 D. & Mcclenaghan, N. D. (2008). Coord. Chem. Rev. 252, 2572– 2584. [Not cited. Remove?]
- 1077 Lehn, J.-M. (2007). Chem. Soc. Rev. 36, 151–160.
- Li, A., Turro, C. & Kodanko, J. J. (2018). Acc. Chem. Res. 51, 1415–
 1421.
- Llunell, M., Casanova, D., Cirera, J., Alemany, P. & Alvarez, S. (2013).
 SHAPE. Version 2.1. University of Barcelona and the Hebrew University of Jerusalem.
- Ma, C., Wang, W., Zhang, X., Chen, C., Liu, Q., Zhu, H., Liao, D. & Li,
 L. (2004). *Eur. J. Inorg. Chem.* pp. 3522–3532.

- McCann, M., Santos, A. L. S., da Silva, B. A., Romanos, M. T. V., Pyrrho, A. S., Devereux, M., Kavanagh, K., Fichtner, I. & Kellett, A. (2012). *Toxicol. Res.* **1**, 47–54.
- Neykov, M., van Almsick, T. & Dimitrov, G. (2006). Z. Anorg. Allg. Chem. 632, 1554–1559.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.
- Platero-Prats, A., de la Peña-O'Shea, V. A., Proserpio, D. M., Snejko, N., Gutiérrez-Puebla, E. & Monge, A. (2012). *J. Am. Chem. Soc.* 134, 4762–4771.
- Saeed, M. A., Rauf, M. K., Imtiaz-ud-din, Badshah, A., Akhtar, M. Z. & Mirza, B. (2010). *Turk. J. Chem.* **34**, 109–118.
- Sartorius, C., Dunn, M. G. & Zeppezauer, M. (1988). *Eur. J. Biochem.* **177**, 493–499.
- Scaltrito, D. V., Thompson, D. W., O'Callaghan, J. A. & Meyer, G. J. (2000). Coord. Chem. Rev. 208, 243–266. [Not cited. Remove?]
- Schöne, S., Radoske, T., März, J., Stumpf, T. & Ikeda-Ohno, A. (2018). *Inorg. Chem.* 57, 13318–13329.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Tacke, R., Kobelt, C., Baus, J. J., Bertermann, R. & Burschka, C. (2015). *Dalton Trans.* 44, 14959–14974.
- Ur Rehman, N., Khan, A., Al-Harrasi, A., Hussain, H., Wadood, A., Riaz, M. & Al-Abri, Z. (2018). *Bioorg. Chem.* **79**, 27–33.
- Viganor, L., Howe, O., McCarron, P., McCann, M. & Devereux, M. (2017). *Curr. Top. Med. Chem.* **17**, 1280–1302.
- Xavier, K. O., Smolensky, E., Kapon, M., Aucott, S. M., Woollins, J. D. & Eisen, M. S. (2004). *Eur. J. Inorg. Chem.* pp. 4795–4802.
- Zhang, B.-F., Xie, C.-Z., Wang, X.-Q., Shen, G.-Q. & Shen, D.-Z. (2004). Acta Cryst. E60, m1293–m1295.

FROM THE MAIN EDITORS

1. Please give the specifics of the H-bonding with atom names and symmetry operators. It would be best to provide CIF-format hydrogen-bond tables. These can be added to the article and then just referred to from the text. Also, the Li...O-Li interaction should have the specific labels and any symmetry codes given.

2. The treatment of hydrogen atoms should be described here. This should be done, but without using the specifics of SHELX restraints or constraints such as AFIX and DFIX. C-H or O-H distances should be quoted as should the treatment of the H-atom displacement parameters, such a U(H) = 1.2U.(eq)(C).

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

Files: c/jx3026/jx3026.3d c/jx3026/jx3026.sgml JX3026 FA IU-1911/44(1)2 1911/43(1)2 () JX3U26 PROOFS

¹ supporting information

- ² Crystal structure, shape analysis, and bioactivity of new Li¹, Na¹ and Mg¹¹
- ³ complexes with 1,10-phenanthroline and 2-(3,4-dichlorophenyl)acetic acid
- 4 Syed Raza Shah, Zarbad Shah, Najeeb Ullah, Javid Hussain, Rashid Al-Harrasi,* Ajmal Khan,
- ⁵ Jeremy M. Rawson, Ahmed Al-Harrasi and Muhammad U. Anwar*
- 6 Computing details
- 7 For all structures, data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT
- 8 (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure:
- 9 SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for
- 10 publication: SHELXTL (Sheldrick, 2008).
- Aqua[2-(3,4-dichlorophenyl)acetato- κO](1,10-phenanthroline- $\kappa^2 N$,N')lithium(I) (AN_Li_b_0m_a)
- 12 Crystal data
- Z = 2 $[Li(C_8H_5Cl_2O_2)(C_{12}H_8N_2)(H_2O)]$ 13 $M_r = 409.18$ F(000) = 42014 $D_{\rm x} = 1.443 {\rm Mg} {\rm m}^{-3}$ Triclinic, P1 15 a = 7.056 (2) Å Mo Ka radiation. $\lambda = 0.71073$ Å 16 b = 10.226 (5) ÅCell parameters from 8992 reflections 17 $\theta = 3.0-26.4^{\circ}$ 18 c = 13.451 (5) Å $\mu = 0.37 \text{ mm}^{-1}$ $\alpha = 87.21 \ (2)^{\circ}$ 19 T = 296 K $\beta = 86.978 \ (13)^{\circ}$ 20 $\gamma = 76.42 \ (2)^{\circ}$ Prism, colorless 21 V = 941.5 (7) Å³ $0.32 \times 0.10 \times 0.10$ mm 22 Data collection 23 Bruker APEXII CCD 3827 independent reflections 24 3197 reflections with $I > 2\sigma(I)$ diffractometer φ and ω scans $R_{\rm int} = 0.033$ 25 Absorption correction: multi-scan $\theta_{\text{max}} = 26.4^{\circ}, \ \theta_{\text{min}} = 3.0^{\circ}$ $h = -8 \rightarrow 8$ (SADABS; Bruker, 2010) $k = -12 \rightarrow 12$ $T_{\rm min} = 0.591, T_{\rm max} = 0.745$ 27 $l = -16 \rightarrow 16$ 29466 measured reflections 28 Refinement 29 Refinement on F^2 Hydrogen site location: mixed Least-squares matrix: full H atoms treated by a mixture of independent 31 $R[F^2 > 2\sigma(F^2)] = 0.044$ 32
 - In atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0637P)^2 + 0.5649P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.44 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.44 \text{ e } \text{Å}^{-3}$

 $wR(F^2) = 0.128$

3827 reflections

S = 1.03

36 259 parameters

2 restraints

33

34

35

38 Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

40	$Fractional\ atomic$	coordinates	and isotropic	or equivalent	isotropic	displacement	parameters	(\mathring{A}^2)
----	----------------------	-------------	---------------	---------------	-----------	--------------	------------	--------------------

41		x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
42	Cl1	0.42417 (11)	0.83941 (6)	-0.04450 (4)	0.0642 (2)
43	C12	-0.00534 (10)	0.80394 (8)	0.00756 (5)	0.0734 (2)
44	01	0.9135 (2)	0.43625 (15)	0.31886 (11)	0.0480 (4)
45	O2	0.5988 (2)	0.51587 (16)	0.35839 (10)	0.0492 (4)
46	O3	1.2490 (3)	0.47075 (17)	0.45196 (12)	0.0525 (4)
47	H3A	1.277 (4)	0.475 (3)	0.5101 (9)	0.063*
48	H3B	1.336 (3)	0.493 (3)	0.4178 (18)	0.063*
49	N1	1.1877 (2)	0.16122 (16)	0.34819 (12)	0.0385 (4)
50	N2	1.1291 (2)	0.20964 (15)	0.54463 (12)	0.0341 (3)
51	C1	1.2085 (4)	0.1363 (2)	0.25181 (16)	0.0513 (5)
52	H1	1.176828	0.208714	0.206344	0.062*
53	C2	1.2751 (4)	0.0077 (3)	0.21479 (18)	0.0564 (6)
54	H2	1.285669	-0.004676	0.146514	0.068*
55	C3	1.3247 (3)	-0.0996 (2)	0.28053 (18)	0.0507 (6)
56	H3	1.371415	-0.185925	0.257230	0.061*
57	C4	1.3048 (3)	-0.07914 (19)	0.38359 (16)	0.0373 (4)
58	C5	1.3533 (3)	-0.18614 (19)	0.45715 (19)	0.0458 (5)
59	Н5	1.401208	-0.273927	0.437027	0.055*
60	C6	1.3308 (3)	-0.1617 (2)	0.55499 (18)	0.0453 (5)
61	H6	1.365118	-0.232790	0.601357	0.054*
62	C7	1.2549 (3)	-0.02819 (19)	0.58897 (15)	0.0351 (4)
63	C8	1.2275 (3)	0.0026 (2)	0.69018 (16)	0.0481 (5)
64	H8	1.259113	-0.065244	0.739262	0.058*
65	C9	1.1543 (3)	0.1327 (3)	0.71580 (16)	0.0518 (5)
66	H9	1.136576	0.154414	0.782526	0.062*
67	C10	1.1061 (3)	0.2335 (2)	0.64093 (16)	0.0442 (5)
68	H10	1.055349	0.321598	0.659800	0.053*
69	C11	1.2042 (2)	0.08038 (17)	0.51855 (13)	0.0285 (4)
70	C12	1.2321 (2)	0.05443 (17)	0.41369 (14)	0.0300 (4)
71	C13	0.7370 (3)	0.46480 (17)	0.29992 (13)	0.0340 (4)
72	C14	0.6895 (3)	0.4312 (2)	0.19580 (15)	0.0472 (5)
73	H14A	0.802539	0.430821	0.151473	0.057*
74	H14B	0.668305	0.340659	0.198980	0.057*
75	C15	0.5147 (3)	0.52449 (19)	0.15057 (13)	0.0360 (4)
76	C16	0.3249 (3)	0.5126 (2)	0.17414 (15)	0.0442 (5)
77	H16	0.304035	0.445914	0.220043	0.053*
78	C17	0.1666 (3)	0.5981 (2)	0.13063 (16)	0.0479 (5)
79	H17	0.040880	0.588283	0.147095	0.058*
80	C18	0.1957 (3)	0.6986 (2)	0.06227 (14)	0.0414 (5)

81 C19	0.3828 (3)	0.71335 (19)	0.03927 (13)	0.0369 (4)
82 C20	0.5416 (3)	0.6266 (2)	0.08266 (14)	0.0382 (4)
83 H20	0.667061	0.636774	0.066162	0.046*
84 Li1	1.0846 (5)	0.3505 (3)	0.4211 (3)	0.0436 (8)

85 Atomic displacement parameters $(Å^2)$

86		U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
87	C11	0.0972 (5)	0.0556 (4)	0.0443 (3)	-0.0300 (3)	-0.0044 (3)	0.0129 (3)
88	Cl2	0.0581 (4)	0.0924 (5)	0.0540 (4)	0.0152 (3)	-0.0162 (3)	0.0057 (3)
89	01	0.0454 (8)	0.0467 (8)	0.0490 (9)	-0.0027 (6)	-0.0169 (7)	0.0015 (7)
90	O2	0.0505 (9)	0.0629 (10)	0.0339 (7)	-0.0104 (7)	-0.0034 (6)	-0.0113 (7)
91	O3	0.0636 (10)	0.0559 (9)	0.0484 (9)	-0.0328 (8)	-0.0240 (8)	0.0125 (7)
92	N1	0.0474 (9)	0.0325 (8)	0.0382 (9)	-0.0138 (7)	-0.0065 (7)	0.0022 (6)
93	N2	0.0355 (8)	0.0285 (8)	0.0389 (8)	-0.0086 (6)	-0.0027 (6)	-0.0013 (6)
94	C1	0.0676 (15)	0.0554 (13)	0.0367 (11)	-0.0260 (11)	-0.0044 (10)	0.0019 (9)
95	C2	0.0663 (15)	0.0681 (16)	0.0413 (12)	-0.0280 (12)	0.0056 (10)	-0.0142 (11)
96	C3	0.0467 (12)	0.0476 (12)	0.0610 (14)	-0.0155 (10)	0.0082 (10)	-0.0238 (11)
97	C4	0.0298 (9)	0.0307 (9)	0.0535 (12)	-0.0102 (7)	-0.0012 (8)	-0.0081 (8)
98	C5	0.0384 (10)	0.0237 (9)	0.0747 (15)	-0.0046 (8)	-0.0055 (10)	-0.0036 (9)
99	C6	0.0416 (11)	0.0282 (9)	0.0654 (14)	-0.0075 (8)	-0.0118 (10)	0.0131 (9)
100	C7	0.0286 (9)	0.0341 (9)	0.0438 (10)	-0.0106 (7)	-0.0069 (7)	0.0094 (8)
101	C8	0.0490 (12)	0.0528 (13)	0.0426 (11)	-0.0143 (10)	-0.0085 (9)	0.0157 (9)
102	C9	0.0559 (13)	0.0654 (15)	0.0355 (11)	-0.0173 (11)	-0.0002 (9)	-0.0009 (10)
103	C10	0.0454 (11)	0.0424 (11)	0.0446 (11)	-0.0095 (9)	0.0007 (9)	-0.0068 (9)
104	C11	0.0235 (8)	0.0259 (8)	0.0379 (9)	-0.0094 (6)	-0.0038 (7)	0.0023 (7)
105	C12	0.0261 (8)	0.0266 (8)	0.0393 (9)	-0.0097 (6)	-0.0035 (7)	-0.0009 (7)
106	C13	0.0451 (10)	0.0247 (8)	0.0326 (9)	-0.0077 (7)	-0.0101 (8)	0.0017 (7)
107	C14	0.0562 (13)	0.0442 (11)	0.0361 (10)	0.0024 (9)	-0.0129 (9)	-0.0098 (9)
108	C15	0.0448 (10)	0.0375 (10)	0.0259 (8)	-0.0075 (8)	-0.0078 (7)	-0.0074 (7)
109	C16	0.0550 (12)	0.0471 (11)	0.0344 (10)	-0.0203 (10)	-0.0028 (9)	0.0041 (8)
110	C17	0.0419 (11)	0.0651 (14)	0.0390 (11)	-0.0174 (10)	-0.0016 (9)	0.0004 (10)
111	C18	0.0421 (11)	0.0494 (11)	0.0293 (9)	-0.0020 (9)	-0.0079 (8)	-0.0037 (8)
112	C19	0.0512 (11)	0.0382 (10)	0.0225 (8)	-0.0120 (8)	-0.0036 (7)	-0.0020 (7)
113	C20	0.0420 (10)	0.0462 (11)	0.0299 (9)	-0.0156 (8)	-0.0037 (8)	-0.0068 (8)
114	Lil	0.053 (2)	0.0339 (17)	0.0472 (19)	-0.0144 (14)	-0.0205 (15)	0.0085 (14)

115 Geometric parameters (Å, °)

116	Lil—O1	1.918 (4)	C6—C7	1.432 (3)
117	Li1—O3	1.950 (4)	С6—Н6	0.9300
118	Li1—N1	2.164 (4)	C7—C8	1.405 (3)
119	Li1—N2	2.132 (4)	C7—C11	1.416 (2)
120	N1—C1	1.327 (3)	C8—C9	1.364 (3)
121	N1—C12	1.357 (2)	С8—Н8	0.9300
122	N2—C10	1.324 (3)	C9—C10	1.401 (3)
123	N2—C11	1.359 (2)	С9—Н9	0.9300
124	Cl1—C19	1.737 (2)	C10—H10	0.9300

125	Cl2—C18	1.741 (2)	C11—C12	1.443 (3)
126	O1—C13	1.248 (2)	C13—C14	1.531 (3)
127	O2—C13	1.250 (2)	C14—C15	1.507 (3)
128	O3—H3A	0.822 (10)	C14—H14A	0.9700
129	O3—H3B	0.815 (10)	C14—H14B	0.9700
130	C1—C2	1.395 (3)	C15—C16	1.392 (3)
131	C1—H1	0.9300	C15—C20	1.394 (3)
132	C2—C3	1.367 (4)	C16—C17	1.384 (3)
133	C2—H2	0.9300	C16—H16	0.9300
134	C3—C4	1.407 (3)	C17—C18	1.390 (3)
135	С3—Н3	0.9300	C17—H17	0.9300
136	C4—C12	1.413 (3)	C18—C19	1.381 (3)
137	C4—C5	1.431 (3)	C19—C20	1.391 (3)
138	C5—C6	1.346 (3)	C20—H20	0.9300
139	С5—Н5	0.9300		
140				
141	C13—O1—Li1	140.53 (18)	N2—C11—C7	123.19 (17)
142	C1—N1—Li1	129.77 (17)	N2-C11-C12	117.59 (15)
143	C12—N1—Li1	112.75 (15)	C7—C11—C12	119.23 (16)
144	C10—N2—Li1	128.55 (17)	N1-C12-C4	122.99 (18)
145	C11—N2—Li1	113.78 (16)	N1-C12-C11	117.75 (16)
146	C1—N1—C12	117.47 (18)	C4—C12—C11	119.26 (16)
147	Li1—O3—H3A	119 (2)	O1—C13—O2	125.84 (18)
148	Li1—O3—H3B	129 (2)	O1—C13—C14	115.85 (18)
149	H3A—O3—H3B	106 (3)	O2—C13—C14	118.30 (18)
150	C10—N2—C11	117.48 (17)	C15—C14—C13	115.93 (16)
151	N1—C1—C2	123.8 (2)	C15—C14—H14A	108.3
152	N1—C1—H1	118.1	C13—C14—H14A	108.3
153	C2—C1—H1	118.1	C15—C14—H14B	108.3
154	C3—C2—C1	118.9 (2)	C13—C14—H14B	108.3
155	C3—C2—H2	120.6	H14A—C14—H14B	107.4
156	C1—C2—H2	120.6	C16-C15-C20	118.15 (18)
157	C2—C3—C4	119.7 (2)	C16-C15-C14	122.23 (19)
158	С2—С3—Н3	120.1	C20-C15-C14	119.62 (19)
159	С4—С3—Н3	120.1	C17—C16—C15	121.32 (19)
160	C3—C4—C12	117.09 (19)	C17—C16—H16	119.3
161	C3—C4—C5	123.16 (19)	C15—C16—H16	119.3
162	C12—C4—C5	119.75 (18)	C16—C17—C18	119.9 (2)
163	C6—C5—C4	121.04 (18)	C16—C17—H17	120.0
164	С6—С5—Н5	119.5	C18—C17—H17	120.0
165	C4—C5—H5	119.5	C19—C18—C17	119.57 (19)
166	C5—C6—C7	121.15 (18)	C19—C18—Cl2	121.32 (17)
167	С5—С6—Н6	119.4	C17—C18—Cl2	119.12 (17)
168	С7—С6—Н6	119.4	C18—C19—C20	120.31 (18)
169	C8—C7—C11	117.05 (18)	C18—C19—Cl1	120.77 (16)
170	C8—C7—C6	123.39 (18)	C20—C19—Cl1	118.92 (16)
171	C11—C7—C6	119.55 (18)	C19—C20—C15	120.74 (18)
172	C9—C8—C7	119.44 (19)	С19—С20—Н20	119.6

173	С9—С8—Н8	120.3	C15—C20—H20	119.6
174	С7—С8—Н8	120.3	01—Li1—O3	108.37 (17)
175	C8—C9—C10	119.6 (2)	O1—Li1—N2	146.7 (2)
176	С8—С9—Н9	120.2	O3—Li1—N2	101.65 (16)
177	С10—С9—Н9	120.2	O1—Li1—N1	95.98 (16)
178	N2—C10—C9	123.3 (2)	O3—Li1—N1	124.7 (2)
179	N2—C10—H10	118.4	N2—Li1—N1	78.02 (13)
180	С9—С10—Н10	118.4		

181 Di- μ -aqua-bis{[2-(3,4-dichlorophenyl)acetato- κ O](1,10-phenanthroline- $\kappa^2 N, N'$)sodium(I)} (An_Na_b_0m_a)

182 Crystal do	ata
----------------	-----

183	$[Na_2(C_8H_5Cl_2O_2)_2(C_{12}H_8N_2)_2(H_2O)_2]$	Z = 1
184	$M_r = 850.46$	F(000) = 436
185	Triclinic, P1	$D_{\rm x} = 1.476 {\rm ~Mg} {\rm ~m}^{-3}$
186	a = 6.9518 (10) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
187	b = 10.8369 (16) Å	Cell parameters from 9990 reflections
188	c = 13.5077 (17) Å	$\theta = 3.1 - 26.4^{\circ}$
189	$\alpha = 82.823 \ (6)^{\circ}$	$\mu = 0.39 \text{ mm}^{-1}$
190	$\beta = 83.700 \ (6)^{\circ}$	T = 296 K
191	$\gamma = 71.920 \ (7)^{\circ}$	Plate, colorless
192	V = 957.1 (2) Å ³	$0.45\times0.40\times0.20\ mm$
193	Data collection	
194	Bruker APEXII CCD	3931 independent reflections
ТЭт	diffractometer	3119 reflections with $I > 2\sigma(I)$
195	φ and ω scans	$R_{\rm int} = 0.038$
196	Absorption correction: multi-scan	$\theta_{\text{max}} = 26.5^{\circ}, \ \theta_{\text{min}} = 3.1^{\circ}$
150	(SADABS; Bruker, 2010)	$h = -8 \rightarrow 8$
197	$T_{\min} = 0.669, T_{\max} = 0.745$	$k = -13 \rightarrow 13$
198	29417 measured reflections	$l = -16 \rightarrow 16$
199	Refinement	
200	Refinement on F^2	Hydrogen site location: mixed
200	Least-squares matrix: full	H atoms treated by a mixture of independent
201	$R[F^2 > 2\sigma(F^2)] = 0.042$	and constrained refinement
202	$wR(F^2) = 0.123$	$w = 1/[\sigma^2(F_2^2) + (0.0576P)^2 + 0.6986P]$
203	S = 1.03	where $P = (F_c^2 + 2F_c^2)/3$
204	3931 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
205	259 parameters	$\Delta \rho_{\rm max} = 0.29 \text{ e} \text{\AA}^{-3}$
200	2 restraints	$\Delta \rho_{\rm min} = -0.44 \text{ e} \text{\AA}^{-3}$
207	2 100/14/10	

- 208 Special details
- **Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

210 Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

211	_	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
212	Cl1	0.73690 (12)	0.33088 (8)	1.02936 (5)	0.0677 (2)
213	Cl2	1.19017 (13)	0.32639 (8)	0.96614 (5)	0.0672 (2)

214	Na1	0.44884 (12)	0.14776 (7)	0.55547 (6)	0.0361 (2)
215	01	0.6010(2)	0.05309 (16)	0.70211 (11)	0.0449 (4)
216	02	0.9153 (2)	-0.03743 (15)	0.64207 (11)	0.0413 (4)
217	03	0.2655 (2)	0.00151 (14)	0.53343 (11)	0.0346 (3)
218	H3A	0.207 (3)	0.018 (2)	0.4819 (12)	0.041*
219	H3B	0.179 (3)	-0.008 (2)	0.5767 (14)	0.041*
220	N1	0.3257 (3)	0.37406 (16)	0.59860 (12)	0.0330 (4)
221	N2	0.3647 (2)	0.30471 (16)	0.40809 (12)	0.0317 (4)
222	C1	0.3072 (4)	0.4094 (3)	0.69022 (18)	0.0484 (6)
223	H1	0.347749	0.344601	0.742320	0.058*
224	C2	0.2299 (4)	0.5391 (3)	0.7131 (2)	0.0601 (8)
225	H2	0.217555	0.559060	0.778982	0.072*
226	C3	0.1737 (4)	0.6346 (3)	0.6383 (2)	0.0558 (7)
227	H3	0.122959	0.721198	0.652161	0.067*
228	C4	0.1920 (3)	0.60284 (19)	0.53966 (19)	0.0410 (5)
229	C5	0.1372 (4)	0.6986 (2)	0.4573 (3)	0.0569 (7)
230	H5	0.087498	0.786278	0.468486	0.068*
231	C6	0.1561 (4)	0.6648 (2)	0.3641 (3)	0.0592 (8)
232	H6	0.118970	0.729497	0.311598	0.071*
233	C7	0.2322 (3)	0.5311 (2)	0.34337 (18)	0.0436 (5)
234	C8	0.2562 (4)	0.4910 (3)	0.2468 (2)	0.0609 (7)
235	H8	0.219631	0.552553	0.192310	0.073*
236	C9	0.3325 (4)	0.3629 (3)	0.23263 (19)	0.0596 (7)
237	Н9	0.349448	0.335885	0.168699	0.071*
238	C10	0.3850 (3)	0.2726 (2)	0.31511 (17)	0.0440 (5)
239	H10	0.437204	0.184806	0.304577	0.053*
240	C11	0.2892 (3)	0.43332 (18)	0.42262 (15)	0.0288 (4)
241	C12	0.2692 (3)	0.46939 (18)	0.52317 (15)	0.0292 (4)
242	C13	0.7807 (3)	-0.00943 (18)	0.71201 (14)	0.0295 (4)
243	C14	0.8441 (4)	-0.0577(2)	0.81847 (15)	0.0398 (5)
244	H14A	0.727192	-0.065924	0.861954	0.048*
245	H14B	0.944496	-0.142986	0.818607	0.048*
246	C15	0.9319 (3)	0.03660 (19)	0.85735 (13)	0.0325 (4)
247	C16	0.8132 (3)	0.1291 (2)	0.91919 (14)	0.0353 (4)
248	H16	0.679484	0.131581	0.938336	0.042*
249	C17	0.8921 (3)	0.2177 (2)	0.95257 (14)	0.0376 (5)
250	C18	1.0895 (3)	0.2160 (2)	0.92540 (15)	0.0391 (5)
251	C19	1.2095 (3)	0.1249 (2)	0.86338 (16)	0.0429 (5)
252	H19	1.342765	0.123290	0.843997	0.051*
253	C20	1.1304 (3)	0.0360 (2)	0.83028 (15)	0.0399 (5)
254	H20	1.212240	-0.025365	0.789021	0.048*

255 Atomic displacement parameters $(Å^2)$

256		U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
257	C11	0.0699 (5)	0.0735 (5)	0.0584 (4)	-0.0125 (4)	0.0097 (3)	-0.0377 (3)
258	Cl2	0.0903 (5)	0.0815 (5)	0.0521 (4)	-0.0536 (4)	-0.0108 (3)	-0.0127 (3)
259	Na1	0.0412 (5)	0.0245 (4)	0.0401 (4)	-0.0048 (3)	-0.0071 (3)	-0.0033 (3)

260	01	0.0378 (9)	0.0514 (9)	0.0371 (8)	-0.0009 (7)	-0.0036 (6)	-0.0041 (7)
261	O2	0.0356 (8)	0.0535 (9)	0.0332 (8)	-0.0106 (7)	0.0011 (6)	-0.0084 (7)
262	03	0.0301 (8)	0.0395 (8)	0.0339 (8)	-0.0093 (6)	-0.0027 (6)	-0.0054 (6)
263	N1	0.0339 (9)	0.0318 (9)	0.0351 (9)	-0.0114 (7)	-0.0005 (7)	-0.0076 (7)
264	N2	0.0304 (8)	0.0299 (8)	0.0365 (9)	-0.0103 (7)	-0.0012 (7)	-0.0074 (7)
265	C1	0.0522 (14)	0.0579 (15)	0.0414 (12)	-0.0238 (12)	0.0024 (10)	-0.0151 (11)
266	C2	0.0543 (15)	0.0766 (19)	0.0635 (17)	-0.0329 (14)	0.0169 (13)	-0.0446 (16)
267	C3	0.0355 (12)	0.0472 (14)	0.092 (2)	-0.0170 (11)	0.0159 (12)	-0.0423 (15)
268	C4	0.0203 (9)	0.0266 (10)	0.0772 (16)	-0.0069 (8)	0.0041 (9)	-0.0161 (10)
269	C5	0.0339 (12)	0.0219 (10)	0.109 (2)	-0.0024 (9)	-0.0054 (13)	-0.0005 (12)
270	C6	0.0442 (14)	0.0334 (12)	0.092 (2)	-0.0087 (11)	-0.0157 (14)	0.0242 (13)
271	C7	0.0305 (11)	0.0420 (12)	0.0558 (14)	-0.0132 (9)	-0.0092 (9)	0.0158 (10)
272	C8	0.0566 (16)	0.082 (2)	0.0448 (14)	-0.0292 (15)	-0.0163 (12)	0.0230 (13)
273	C9	0.0576 (16)	0.098 (2)	0.0334 (12)	-0.0392 (16)	-0.0029 (11)	-0.0061 (13)
274	C10	0.0432 (12)	0.0537 (14)	0.0421 (12)	-0.0219 (11)	0.0023 (10)	-0.0163 (10)
275	C11	0.0200 (9)	0.0265 (9)	0.0396 (10)	-0.0082 (7)	-0.0030 (7)	0.0014 (8)
276	C12	0.0181 (8)	0.0236 (9)	0.0464 (11)	-0.0071 (7)	0.0022 (8)	-0.0069 (8)
277	C13	0.0377 (11)	0.0259 (9)	0.0272 (9)	-0.0122 (8)	-0.0037 (8)	-0.0035 (7)
278	C14	0.0557 (13)	0.0357 (11)	0.0293 (10)	-0.0160 (10)	-0.0103 (9)	0.0040 (8)
279	C15	0.0410 (11)	0.0344 (10)	0.0210 (9)	-0.0096 (9)	-0.0087 (8)	0.0029 (7)
280	C16	0.0339 (10)	0.0447 (12)	0.0263 (9)	-0.0100 (9)	-0.0041 (8)	-0.0023 (8)
281	C17	0.0436 (12)	0.0423 (11)	0.0236 (9)	-0.0068 (9)	-0.0029 (8)	-0.0064 (8)
282	C18	0.0484 (13)	0.0468 (12)	0.0277 (10)	-0.0211 (10)	-0.0100 (9)	-0.0011 (9)
283	C19	0.0357 (11)	0.0573 (14)	0.0350 (11)	-0.0143 (10)	-0.0030 (9)	-0.0012 (10)
284	C20	0.0398 (12)	0.0420 (12)	0.0325 (11)	-0.0040 (9)	-0.0016 (9)	-0.0059 (9)

285 Geometric parameters (Å, °)

286	Na1—O1	2.3180 (17)	С5—Н5	0.9300
287	Na1—O3	2.3834 (17)	C6—C7	1.432 (4)
288	Na1—O3 ⁱ	2.4436 (16)	С6—Н6	0.9300
289	Na1—N2	2.4475 (19)	C7—C8	1.403 (4)
290	Na1—N1	2.4558 (18)	C7—C11	1.406 (3)
291	Na1—Na1 ⁱ	3.5438 (16)	C8—C9	1.353 (4)
292	Cl1—C17	1.730 (2)	C8—H8	0.9300
293	Cl2—C18	1.730 (2)	C9—C10	1.389 (4)
294	O1—C13	1.235 (2)	С9—Н9	0.9300
295	O2—C13	1.250 (2)	C10—H10	0.9300
296	O3—H3A	0.816 (10)	C11—C12	1.440 (3)
297	O3—H3B	0.813 (10)	C13—C14	1.531 (3)
298	N1	1.322 (3)	C14—C15	1.511 (3)
299	N1-C12	1.354 (3)	C14—H14A	0.9700
300	N2	1.326 (3)	C14—H14B	0.9700
301	N2—C11	1.359 (2)	C15—C20	1.387 (3)
302	C1—C2	1.401 (4)	C15—C16	1.389 (3)
303	C1—H1	0.9300	C16—C17	1.384 (3)
304	C2—C3	1.349 (4)	C16—H16	0.9300
305	С2—Н2	0.9300	C17—C18	1.376 (3)

306	C3—C4	1.400 (4)	C18—C19	1.384 (3)
307	С3—Н3	0.9300	C19—C20	1.386 (3)
308	C4—C12	1.415 (3)	C19—H19	0.9300
309	C4—C5	1.421 (4)	C20—H20	0.9300
310	C5—C6	1.336 (4)		
311				
312	O1—Na1—O3	101.40 (6)	C8—C7—C11	117.1 (2)
313	O1—Na1—O3 ⁱ	87.33 (6)	C8—C7—C6	123.5 (2)
314	O3—Na1—O3 ⁱ	85.54 (6)	C11—C7—C6	119.3 (2)
315	O1—Na1—N2	157.58 (7)	C9—C8—C7	120.2 (2)
316	O3—Na1—N2	101.02 (6)	С9—С8—Н8	119.9
317	O3 ⁱ —Na1—N2	93.74 (6)	С7—С8—Н8	119.9
318	O1—Na1—N1	97.83 (6)	C8—C9—C10	118.9 (2)
319	O3—Na1—N1	130.20 (6)	С8—С9—Н9	120.5
320	O3 ⁱ —Na1—N1	141.12 (6)	С10—С9—Н9	120.5
321	N2—Na1—N1	67.72 (6)	N2—C10—C9	123.5 (2)
322	O1—Na1—Na1 ⁱ	95.78 (5)	N2-C10-H10	118.2
323	O3—Na1—Na1 ⁱ	43.43 (4)	C9—C10—H10	118.2
324	O3 ⁱ —Na1—Na1 ⁱ	42.11 (4)	N2—C11—C7	122.4 (2)
325	N2—Na1—Na1 ⁱ	99.99 (5)	N2-C11-C12	118.20 (17)
326	N1—Na1—Na1 ⁱ	166.14 (6)	C7—C11—C12	119.39 (18)
327	C13—O1—Na1	128.00 (13)	N1—C12—C4	122.3 (2)
328	Na1—O3—Na1 ⁱ	94.46 (6)	N1-C12-C11	118.66 (16)
329	Na1—O3—H3A	114.5 (17)	C4—C12—C11	118.99 (19)
330	Na1 ⁱ —O3—H3A	87.9 (17)	O1—C13—O2	125.36 (18)
331	Na1—O3—H3B	118.6 (18)	O1—C13—C14	117.57 (18)
332	Na1 ⁱ —O3—H3B	134.0 (18)	O2—C13—C14	117.07 (18)
333	НЗА—ОЗ—НЗВ	104 (2)	C15—C14—C13	110.28 (16)
334	C1—N1—C12	117.66 (19)	C15—C14—H14A	109.6
335	C1—N1—Na1	124.80 (16)	C13—C14—H14A	109.6
336	C12—N1—Na1	117.52 (12)	C15—C14—H14B	109.6
337	C10—N2—C11	117.77 (19)	C13—C14—H14B	109.6
338	C10—N2—Na1	124.38 (15)	H14A—C14—H14B	108.1
339	C11—N2—Na1	117.84 (13)	C20—C15—C16	118.07 (19)
340	N1—C1—C2	123.6 (3)	C20—C15—C14	121.28 (19)
341	N1-C1-H1	118.2	C16—C15—C14	120.62 (19)
342	C2—C1—H1	118.2	C17—C16—C15	120.6 (2)
343	C3—C2—C1	119.0 (2)	C17—C16—H16	119.7
344	C3—C2—H2	120.5	C15—C16—H16	119.7
345	C1—C2—H2	120.5	C18—C17—C16	120.83 (19)
346	C2—C3—C4	119.8 (2)	C18—C17—C11	120.65 (17)
347	С2—С3—Н3	120.1	C16—C17—Cl1	118.52 (17)
348	С4—С3—Н3	120.1	C17—C18—C19	119.3 (2)
349	C3—C4—C12	117.6 (2)	C17—C18—Cl2	121.41 (17)
350	C3—C4—C5	122.6 (2)	C19—C18—Cl2	119.25 (18)
351	C12—C4—C5	119.8 (2)	C18—C19—C20	119.7 (2)
352	C6—C5—C4	121.1 (2)	C18—C19—H19	120.1
353	С6—С5—Н5	119.5	С20—С19—Н19	120.1

354	C4—C5—H5	119.5	C19—C20—C15	121.4 (2)
355	C5—C6—C7	121.4 (2)	С19—С20—Н20	119.3
356	С5—С6—Н6	119.3	С15—С20—Н20	119.3
357	С7—С6—Н6	119.3		

358 Symmetry code: (i) -x+1, -y, -z+1.

359 catena-Poly[[[diaqua(1,10-phenanthroline- $\kappa^2 N, N'$)magnesium]- μ -2-(3,4-dichlorophenyl)acetato- $\kappa^2 O:O'$] 2-(3,4-

360 dichlorophenyl)acetate monohydrate] (ANMGB_0m_a)

361 Crystal data

362	$[Mg(C_8H_5Cl_2O_2)(C_{12}H_8N_2)(H_2O)_2]$	F(000) = 1368
	$(C_8H_5Cl_2O_2)\cdot H_2O$	$D_{\rm x} = 1.515 {\rm ~Mg} {\rm ~m}^{-3}$
363	$M_r = 666.60$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
364	Orthorhombic, $P2_12_12_1$	Cell parameters from 9986 reflections
365	a = 8.3889 (4) Å	$\theta = 3.0-26.4^{\circ}$
366	b = 11.9459 (6) Å	$\mu=0.48~\mathrm{mm^{-1}}$
367	c = 29.1630 (15) Å	T = 296 K
368	V = 2922.5 (3) Å ³	Plate, colorless
369	Z = 4	$0.45 \times 0.21 \times 0.10 \text{ mm}$
370	Data collection	
371	Bruker APEXII CCD	5875 independent reflections
571	diffractometer	5186 reflections with $I > 2\sigma(I)$
372	φ and ω scans	$R_{\rm int} = 0.042$
373	Absorption correction: multi-scan	$\theta_{\text{max}} = 26.4^{\circ}, \ \theta_{\text{min}} = 3.0^{\circ}$
575	(SADABS; Bruker, 2010)	$h = -10 \rightarrow 10$
374	$T_{\min} = 0.516, T_{\max} = 0.745$	$k = -14 \rightarrow 12$
375	29717 measured reflections	<i>l</i> = −36→35
376	Refinement	
377	Refinement on F^2	H atoms treated by a mixture of independent
378	Least-squares matrix: full	and constrained refinement
379	$R[F^2 > 2\sigma(F^2)] = 0.043$	$w = 1/[\sigma^2(F_0^2) + (0.032P)^2 + 1.6964P]$
380	$wR(F^2) = 0.095$	where $P = (F_0^2 + 2F_c^2)/3$
381	S = 1.11	$(\Delta/\sigma)_{\rm max} = 0.001$
382	5875 reflections	$\Delta \rho_{\rm max} = 0.19 \text{ e} \text{ Å}^{-3}$
383	397 parameters	$\Delta \rho_{\rm min} = -0.30 \text{ e} \text{ Å}^{-3}$
384	6 restraints	Absolute structure: Flack x determined using
385	Hydrogen site location: mixed	1954 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons al., 2013)
		Absolute structure parameter: -0.02 (2)

386 Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

388 Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

389		x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
390	Mg1	0.74975 (13)	0.61684 (9)	0.47862 (4)	0.0267 (2)
391	N1	0.9037 (4)	0.6149 (3)	0.41702 (11)	0.0365 (7)

et

392	01	0.9217 (3)	0.6992 (2)	0.51478 (9)	0.0385 (6)
393	C11	1.54405 (14)	0.55375 (12)	0.66319 (5)	0.0633 (3)
394	C1	1.0494 (5)	0.6545 (4)	0.41426 (18)	0.0530 (12)
395	H1	1.099013	0.679111	0.440952	0.064*
396	C2	1.1337 (7)	0.6614 (5)	0.3727 (2)	0.0780 (19)
397	H2	1.236266	0.690840	0.371965	0.094*
398	N2	0.6022 (4)	0.5362 (3)	0.42262 (11)	0.0369 (7)
399	O2	1.1607 (3)	0.7335 (2)	0.54372 (9)	0.0357 (6)
400	C12	1.4063 (2)	0.67185 (14)	0.75186 (5)	0.0790 (5)
401	C13	0.15576 (17)	0.37562 (13)	0.73575 (4)	0.0663 (4)
402	03	0.6602 (4)	0.3036 (2)	0.54131 (11)	0.0493 (7)
403	C3	1.0631 (8)	0.6243 (5)	0.3337 (2)	0.082 (2)
404	Н3	1.117209	0.629134	0.305907	0.099*
405	Cl4	-0.16156 (14)	0.37371 (13)	0.67738 (5)	0.0699 (4)
406	O4	0.4435 (3)	0.4096 (2)	0.55004 (10)	0.0419 (6)
407	C4	0.9097 (7)	0.5789 (4)	0.33488 (16)	0.0610 (14)
408	C5	0.8254 (11)	0.5346 (5)	0.29550 (17)	0.084 (2)
409	Н5	0.875538	0.534589	0.267065	0.101*
410	05	1.1543 (4)	0.4146 (3)	0.49366 (11)	0.0479 (7)
411	H5A	1.171 (6)	0.351 (2)	0.4841 (16)	0.057*
412	H5B	1.222 (5)	0.418 (4)	0.5141 (12)	0.057*
413	C6	0.6766 (11)	0.4933 (5)	0.29891 (18)	0.080(2)
414	H6	0.626427	0.465292	0.272900	0.096*
415	06	0.5677 (3)	0.6048 (2)	0.52461 (10)	0.0398 (6)
416	H6A	0.534 (5)	0.547 (2)	0.5358 (14)	0.048*
417	H6B	0.499 (4)	0.652 (3)	0.5197 (15)	0.048*
418	C7	0.5954 (7)	0.4920 (4)	0.34131 (15)	0.0577 (14)
419	07	0.8298 (3)	0.4614 (2)	0.49807 (10)	0.0392 (6)
420	H7A	0.9266 (18)	0.452 (4)	0.4979 (15)	0.047*
421	H7B	0.780 (5)	0.416 (3)	0.5129 (13)	0.047*
422	C8	0.4402 (8)	0.4523 (4)	0.3470 (2)	0.0694 (16)
423	H8	0.384505	0.424534	0.321840	0.083*
424	C9	0.3702 (7)	0.4541 (4)	0.3887 (2)	0.0673 (15)
425	Н9	0.267073	0.427043	0.392538	0.081*
426	C10	0.4546 (5)	0.4969 (4)	0.42594 (17)	0.0522 (11)
427	H10	0.405179	0.497982	0.454485	0.063*
428	C11	0.6733 (5)	0.5346 (3)	0.38090 (13)	0.0367 (9)
429	C12	0.8325 (6)	0.5775 (3)	0.37770 (13)	0.0402 (9)
430	C13	1.0286 (4)	0.6864 (3)	0.54477 (12)	0.0290 (7)
431	C14	0.9945 (5)	0.6065 (4)	0.58447 (13)	0.0408 (9)
432	H14A	0.883664	0.614531	0.593312	0.049*
433	H14B	1.009482	0.530295	0.573815	0.049*
434	C15	1.0973 (4)	0.6245 (3)	0.62627 (12)	0.0336 (8)
435	C16	1.0394 (5)	0.6754 (4)	0.66536 (14)	0.0457 (10)
436	H16	0.934188	0.699894	0.666065	0.055*
437	C17	1.1349 (6)	0.6905 (4)	0.70345 (14)	0.0538 (12)
438	H17	1.093717	0.725093	0.729441	0.065*
439	C18	1.2902 (5)	0.6546 (4)	0.70310 (14)	0.0465 (11)

440	C19	1.3500 (5)	0.6034 (3)	0.66423 (14)	0.0404 (9)
441	C20	1.2544 (5)	0.5880 (3)	0.62600 (13)	0.0351 (8)
442	H20	1.295637	0.553031	0.600080	0.042*
443	C21	0.5252 (5)	0.3253 (3)	0.55813 (13)	0.0352 (8)
444	C22	0.4613 (5)	0.2369 (3)	0.59174 (16)	0.0479 (11)
445	H22A	0.448975	0.166578	0.575469	0.057*
446	H22B	0.539763	0.225382	0.615715	0.057*
447	C24	0.0211 (5)	0.2985 (4)	0.60812 (14)	0.0434 (10)
448	H24	-0.072029	0.297885	0.590816	0.052*
449	C23	0.0185 (5)	0.3335 (3)	0.65342 (14)	0.0386 (9)
450	C26	0.3042 (4)	0.2669 (3)	0.61370 (14)	0.0351 (9)
451	C27	0.1555 (5)	0.3334 (3)	0.67863 (13)	0.0386 (9)
452	C28	0.2987 (5)	0.3005 (3)	0.65896 (14)	0.0379 (9)
453	H28	0.391555	0.301079	0.676383	0.045*
454	C25	0.1641 (6)	0.2645 (3)	0.58899 (13)	0.0423 (9)
455	H25	0.165698	0.239476	0.558795	0.051*

456 Atomic displacement parameters $(Å^2)$

$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7		U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1 $0.0324 (16)$ $0.0279 (16)$ $0.0491 (19)$ $0.0050 (14)$ $0.0122 (14)$ $0.0064 (14)$ 01 $0.0354 (14)$ $0.0318 (14)$ $0.0483 (15)$ $-0.0068 (11)$ $-0.0164 (12)$ $0.0089 (12)$ C11 $0.0390 (6)$ $0.0676 (8)$ $0.0833 (9)$ $0.0155 (6)$ $-0.0107 (6)$ $0.0032 (6)$ c1 $0.035 (2)$ $0.040 (2)$ $0.084 (3)$ $0.0020 (19)$ $0.021 (2)$ $0.006 (2)$ c2 $0.053 (3)$ $0.062 (3)$ $0.119 (5)$ $0.014 (3)$ $0.049 (4)$ $0.029 (3)$ N2 $0.0324 (17)$ $0.0345 (17)$ $0.0437 (18)$ $0.0013 (14)$ $-0.0041 (14)$ $0.0000 (14)$ c2 $0.0279 (13)$ $0.0329 (13)$ $0.0463 (14)$ $-0.0072 (12)$ $-0.0067 (12)$ $0.0130 (11)$ c12 $0.0955 (11)$ $0.0839 (10)$ $0.576 (7)$ $0.0175 (8)$ $-0.0370 (7)$ $-0.0105 (7)$ c13 $0.0697 (8)$ $0.0861 (9)$ $0.0433 (6)$ $-0.0050 (8)$ $0.0050 (6)$ $-0.0119 (6)$ c3 $0.090 (4)$ $0.087 (15)$ $0.077 (4)$ $0.031 (4)$ $0.052 (4)$ $0.029 (3)$ c14 $0.0393 (6)$ $0.087 (19)$ $0.0832 (9)$ $0.0180 (7)$ $0.0161 (6)$ $0.0076 (7)$ c4 $0.0367 (15)$ $0.027 (14)$ $0.035 (2)$ $0.030 (3)$ $0.027 (3)$ $0.013 (2)$ c5 $0.148 (7)$ $0.074 (4)$ $0.031 (2)$ $0.0094 (13)$ $0.0089 (12)$ c4 $0.085 (4)$ $0.050 (3)$ $0.049 (3)$ $0.030 (3)$ $0.027 (3)$ $0.013 (2)$	8	Mg1	0.0224 (5)	0.0244 (6)	0.0333 (6)	-0.0004 (5)	0.0015 (5)	0.0023 (5)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	N1	0.0324 (16)	0.0279 (16)	0.0491 (19)	0.0050 (14)	0.0122 (14)	0.0064 (14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$)	01	0.0354 (14)	0.0318 (14)	0.0483 (15)	-0.0068 (11)	-0.0164 (12)	0.0089 (12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	Cl1	0.0390 (6)	0.0676 (8)	0.0833 (9)	0.0155 (6)	-0.0107 (6)	0.0032 (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	C1	0.035 (2)	0.040 (2)	0.084 (3)	0.0020 (19)	0.021 (2)	0.006 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	C2	0.053 (3)	0.062 (3)	0.119 (5)	0.014 (3)	0.049 (4)	0.029(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	N2	0.0324 (17)	0.0345 (17)	0.0437 (18)	0.0013 (14)	-0.0041 (14)	0.0000 (14)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	O2	0.0279 (13)	0.0329 (13)	0.0463 (14)	-0.0072 (12)	-0.0067 (12)	0.0130 (11)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ò	Cl2	0.0955 (11)	0.0839 (10)	0.0576 (7)	0.0175 (8)	-0.0370 (7)	-0.0105 (7)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7	C13	0.0697 (8)	0.0861 (9)	0.0433 (6)	-0.0050 (8)	0.0050 (6)	-0.0119 (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8	O3	0.0368 (16)	0.0370 (15)	0.074 (2)	-0.0009 (14)	0.0198 (15)	0.0066 (14)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$)	C3	0.090 (4)	0.080 (4)	0.077 (4)	0.031 (4)	0.052 (4)	0.029 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$)	Cl4	0.0393 (6)	0.0871 (9)	0.0832 (9)	0.0180 (7)	0.0161 (6)	0.0076 (7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	O4	0.0367 (15)	0.0297 (14)	0.0592 (17)	-0.0010 (12)	0.0094 (13)	0.0089 (12)
C5 $0.148(7)$ $0.074(4)$ $0.031(2)$ $0.056(5)$ $0.015(4)$ $0.004(2)$ $C5$ $0.0343(16)$ $0.0431(16)$ $0.066(2)$ $0.0036(14)$ $-0.0050(14)$ $0.0015(15)$ $C6$ $0.136(6)$ $0.062(4)$ $0.041(3)$ $0.041(4)$ $-0.017(4)$ $-0.008(2)$ $C6$ $0.0416(16)$ $0.0282(14)$ $0.0496(16)$ $0.0068(12)$ $0.0166(13)$ $0.0102(12)$ $C7$ $0.093(4)$ $0.035(2)$ $0.045(2)$ $0.027(3)$ $-0.022(2)$ $-0.0044(19)$ $C7$ $0.0267(13)$ $0.0284(14)$ $0.0624(17)$ $0.0009(12)$ $0.0034(13)$ $0.0110(12)$ $C8$ $0.084(4)$ $0.041(3)$ $0.082(4)$ $0.006(3)$ $-0.049(3)$ $-0.007(3)$ $C9$ $0.057(3)$ $0.048(3)$ $0.097(4)$ $-0.004(2)$ $-0.033(3)$ $-0.001(3)$ $C10$ $0.041(2)$ $0.050(3)$ $0.066(3)$ $-0.004(2)$ $-0.009(2)$ $0.000(2)$ $C11$ $0.049(2)$ $0.0239(18)$ $0.037(2)$ $0.0141(18)$ $-0.0069(18)$ $0.0015(15)$ $C12$ $0.0307(19)$ $0.0209(17)$ $0.0355(18)$ $0.0004(15)$ $-0.0047(17)$ $0.0107(18)$	2	C4	0.085 (4)	0.050(3)	0.049 (3)	0.030 (3)	0.027 (3)	0.013 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	C5	0.148 (7)	0.074 (4)	0.031 (2)	0.056 (5)	0.015 (4)	0.004 (2)
6 $C6$ $0.136(6)$ $0.062(4)$ $0.041(3)$ $0.041(4)$ $-0.017(4)$ $-0.008(2)$ 6 $0.0416(16)$ $0.0282(14)$ $0.0496(16)$ $0.0068(12)$ $0.0166(13)$ $0.0102(12)$ 7 $C7$ $0.093(4)$ $0.035(2)$ $0.045(2)$ $0.027(3)$ $-0.022(2)$ $-0.0044(19)$ 6 $O7$ $0.0267(13)$ $0.0284(14)$ $0.0624(17)$ $0.0009(12)$ $0.0034(13)$ $0.0110(12)$ 6 $0.084(4)$ $0.041(3)$ $0.082(4)$ $0.006(3)$ $-0.049(3)$ $-0.007(3)$ $C9$ $0.057(3)$ $0.048(3)$ $0.097(4)$ $-0.004(2)$ $-0.009(2)$ $0.000(2)$ $C10$ $0.041(2)$ $0.050(3)$ $0.066(3)$ $-0.004(2)$ $-0.009(2)$ $0.000(2)$ $C11$ $0.049(2)$ $0.0239(18)$ $0.037(2)$ $0.0141(18)$ $-0.0069(18)$ $0.0015(15)$ $C12$ $0.0307(19)$ $0.0209(17)$ $0.0355(18)$ $0.0004(15)$ $-0.0020(16)$ $0.0004(14)$ $C14$ $0.040(2)$ $0.039(2)$ $0.044(2)$ $-0.0130(18)$ $-0.0047(17)$ $0.0107(18)$	4	05	0.0343 (16)	0.0431 (16)	0.066 (2)	0.0036 (14)	-0.0050 (14)	0.0015 (15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5	C6	0.136 (6)	0.062 (4)	0.041 (3)	0.041 (4)	-0.017 (4)	-0.008(2)
C7 0.093 (4) 0.035 (2) 0.045 (2) 0.027 (3) -0.022 (2) -0.0044 (19) C7 0.0267 (13) 0.0284 (14) 0.0624 (17) 0.0009 (12) 0.0034 (13) 0.0110 (12) C8 0.084 (4) 0.041 (3) 0.082 (4) 0.006 (3) -0.049 (3) -0.007 (3) C9 0.057 (3) 0.048 (3) 0.097 (4) -0.004 (2) -0.033 (3) -0.001 (3) C10 0.041 (2) 0.050 (3) 0.066 (3) -0.004 (2) -0.009 (2) 0.000 (2) C11 0.049 (2) 0.0239 (18) 0.037 (2) 0.0141 (18) -0.0069 (18) 0.0015 (15) C12 0.058 (3) 0.0239 (18) 0.039 (2) 0.0165 (19) 0.011 (2) 0.0077 (15) C13 0.0307 (19) 0.0209 (17) 0.0355 (18) 0.0004 (15) -0.0020 (16) 0.0004 (14) C14 0.040 (2) 0.039 (2) 0.044 (2) -0.0130 (18) -0.0047 (17) 0.0107 (18)	ŝ	O6	0.0416 (16)	0.0282 (14)	0.0496 (16)	0.0068 (12)	0.0166 (13)	0.0102 (12)
6 07 0.0267 (13) 0.0284 (14) 0.0624 (17) 0.0009 (12) 0.0034 (13) 0.0110 (12) 7 0.084 (4) 0.041 (3) 0.082 (4) 0.006 (3) -0.049 (3) -0.007 (3) 7 0.057 (3) 0.048 (3) 0.097 (4) -0.004 (2) -0.033 (3) -0.001 (3) 7 0.041 (2) 0.050 (3) 0.066 (3) -0.004 (2) -0.009 (2) 0.000 (2) 7 0.049 (2) 0.0243 (18) 0.037 (2) 0.0141 (18) -0.0069 (18) 0.0015 (15) 7 0.12 0.058 (3) 0.0239 (18) 0.039 (2) 0.0165 (19) 0.011 (2) 0.0077 (15) 8 C13 0.0307 (19) 0.0209 (17) 0.0355 (18) 0.0004 (15) -0.0020 (16) 0.0004 (14) 8 C14 0.040 (2) 0.039 (2) 0.044 (2) -0.0130 (18) -0.0047 (17) 0.0107 (18)	7	C7	0.093 (4)	0.035 (2)	0.045 (2)	0.027 (3)	-0.022 (2)	-0.0044 (19)
C8 0.084 (4) 0.041 (3) 0.082 (4) 0.006 (3) -0.049 (3) -0.007 (3) C9 0.057 (3) 0.048 (3) 0.097 (4) -0.004 (2) -0.033 (3) -0.001 (3) C10 0.041 (2) 0.050 (3) 0.066 (3) -0.004 (2) -0.009 (2) 0.000 (2) C11 0.049 (2) 0.0243 (18) 0.037 (2) 0.0141 (18) -0.0069 (18) 0.0015 (15) C12 0.058 (3) 0.0239 (18) 0.039 (2) 0.0165 (19) 0.011 (2) 0.0077 (15) C13 0.0307 (19) 0.0209 (17) 0.0355 (18) 0.0004 (15) -0.0020 (16) 0.0004 (14) C14 0.040 (2) 0.039 (2) 0.044 (2) -0.0130 (18) -0.0047 (17) 0.0107 (18)	3	O7	0.0267 (13)	0.0284 (14)	0.0624 (17)	0.0009 (12)	0.0034 (13)	0.0110 (12)
C9 0.057 (3) 0.048 (3) 0.097 (4) -0.004 (2) -0.033 (3) -0.001 (3) C10 0.041 (2) 0.050 (3) 0.066 (3) -0.004 (2) -0.009 (2) 0.000 (2) C11 0.049 (2) 0.0243 (18) 0.037 (2) 0.0141 (18) -0.0069 (18) 0.0015 (15) C12 0.058 (3) 0.0239 (18) 0.039 (2) 0.0165 (19) 0.011 (2) 0.0077 (15) C13 0.0307 (19) 0.0209 (17) 0.0355 (18) 0.0004 (15) -0.0020 (16) 0.0004 (14) C14 0.040 (2) 0.039 (2) 0.044 (2) -0.0130 (18) -0.0047 (17) 0.0107 (18))	C8	0.084 (4)	0.041 (3)	0.082 (4)	0.006 (3)	-0.049 (3)	-0.007 (3)
C10 0.041 (2) 0.050 (3) 0.066 (3) -0.004 (2) -0.009 (2) 0.000 (2) C11 0.049 (2) 0.0243 (18) 0.037 (2) 0.0141 (18) -0.0069 (18) 0.0015 (15) C12 0.058 (3) 0.0239 (18) 0.039 (2) 0.0165 (19) 0.011 (2) 0.0077 (15) C13 0.0307 (19) 0.0209 (17) 0.0355 (18) 0.0004 (15) -0.0020 (16) 0.0004 (14) C14 0.040 (2) 0.039 (2) 0.044 (2) -0.0130 (18) -0.0047 (17) 0.0107 (18))	C9	0.057 (3)	0.048 (3)	0.097 (4)	-0.004 (2)	-0.033 (3)	-0.001 (3)
2 C11 0.049 (2) 0.0243 (18) 0.037 (2) 0.0141 (18) -0.0069 (18) 0.0015 (15) 4 C12 0.058 (3) 0.0239 (18) 0.039 (2) 0.0165 (19) 0.011 (2) 0.0077 (15) 4 C13 0.0307 (19) 0.0209 (17) 0.0355 (18) 0.0004 (15) -0.0020 (16) 0.0004 (14) 4 C14 0.040 (2) 0.039 (2) 0.044 (2) -0.0130 (18) -0.0047 (17) 0.0107 (18)		C10	0.041 (2)	0.050 (3)	0.066 (3)	-0.004 (2)	-0.009 (2)	0.000(2)
C12 0.058 (3) 0.0239 (18) 0.039 (2) 0.0165 (19) 0.011 (2) 0.0077 (15) C13 0.0307 (19) 0.0209 (17) 0.0355 (18) 0.0004 (15) -0.0020 (16) 0.0004 (14) C14 0.040 (2) 0.039 (2) 0.044 (2) -0.0130 (18) -0.0047 (17) 0.0107 (18)	2	C11	0.049 (2)	0.0243 (18)	0.037 (2)	0.0141 (18)	-0.0069 (18)	0.0015 (15)
C13 0.0307 (19) 0.0209 (17) 0.0355 (18) 0.0004 (15) -0.0020 (16) 0.0004 (14) C14 0.040 (2) 0.039 (2) 0.044 (2) -0.0130 (18) -0.0047 (17) 0.0107 (18)	3	C12	0.058 (3)	0.0239 (18)	0.039 (2)	0.0165 (19)	0.011 (2)	0.0077 (15)
C140.040 (2)0.039 (2)0.044 (2)-0.0130 (18)-0.0047 (17)0.0107 (18)	1	C13	0.0307 (19)	0.0209 (17)	0.0355 (18)	0.0004 (15)	-0.0020 (16)	0.0004 (14)
	,	C14	0.040 (2)	0.039 (2)	0.044 (2)	-0.0130 (18)	-0.0047 (17)	0.0107 (18)

486	C15	0.0352 (19)	0.0263 (18)	0.0393 (19)	-0.0034 (17)	-0.0025 (15)	0.0086 (16)
487	C16	0.041 (2)	0.050(2)	0.045 (2)	0.017 (2)	0.0015 (19)	0.0063 (19)
488	C17	0.068 (3)	0.054 (3)	0.039 (2)	0.020 (2)	0.003 (2)	-0.003 (2)
489	C18	0.058 (3)	0.042 (2)	0.040 (2)	0.008 (2)	-0.0133 (19)	0.0016 (18)
490	C19	0.039 (2)	0.033 (2)	0.050 (2)	0.0084 (18)	-0.0059 (19)	0.0059 (17)
491	C20	0.039 (2)	0.0276 (18)	0.039 (2)	0.0016 (17)	0.0013 (17)	0.0012 (15)
492	C21	0.035 (2)	0.028 (2)	0.042 (2)	-0.0031 (17)	0.0055 (17)	0.0000 (16)
493	C22	0.049 (3)	0.032 (2)	0.063 (3)	0.007 (2)	0.019 (2)	0.012 (2)
494	C24	0.040 (2)	0.042 (2)	0.048 (2)	-0.0087 (19)	-0.0048 (19)	0.0126 (19)
495	C23	0.035 (2)	0.034 (2)	0.047 (2)	0.0030 (17)	0.0057 (17)	0.0075 (17)
496	C26	0.034 (2)	0.0256 (18)	0.046 (2)	-0.0005 (16)	0.0087 (17)	0.0077 (16)
497	C27	0.043 (2)	0.036 (2)	0.0369 (19)	-0.0023 (18)	0.0060 (18)	0.0029 (16)
498	C28	0.032 (2)	0.035 (2)	0.046 (2)	0.0009 (16)	-0.0006 (17)	0.0082 (17)
499	C25	0.052 (2)	0.038 (2)	0.036 (2)	-0.008 (2)	0.008 (2)	0.0029 (17)

500 Geometric parameters (Å, °)

501	Mg1—O6	2.037 (3)	C7—C11	1.421 (6)
502	Mg1—O1	2.040 (3)	O7—H7A	0.820 (14)
503	Mg1—O2 ⁱ	2.044 (3)	O7—H7B	0.815 (14)
504	Mg1—O7	2.054 (3)	C8—C9	1.352 (8)
505	Mg1—N1	2.213 (3)	C8—H8	0.9300
506	Mg1—N2	2.264 (3)	C9—C10	1.394 (7)
507	N1—C1	1.313 (5)	С9—Н9	0.9300
508	N1—C12	1.368 (5)	C10—H10	0.9300
509	O1—C13	1.262 (4)	C11—C12	1.434 (6)
510	Cl1—C19	1.732 (4)	C13—C14	1.528 (5)
511	C1—C2	1.405 (7)	C14—C15	1.509 (5)
512	C1—H1	0.9300	C14—H14A	0.9700
513	C2—C3	1.358 (9)	C14—H14B	0.9700
514	C2—H2	0.9300	C15—C16	1.380 (6)
515	N2	1.328 (6)	C15—C20	1.389 (5)
516	N2	1.355 (5)	C16—C17	1.382 (6)
517	O2—C13	1.243 (4)	C16—H16	0.9300
518	Cl2—C18	1.736 (4)	C17—C18	1.371 (7)
519	Cl3—C27	1.741 (4)	С17—Н17	0.9300
520	O3—C21	1.261 (5)	C18—C19	1.383 (6)
521	C3—C4	1.397 (9)	C19—C20	1.386 (5)
522	С3—Н3	0.9300	C20—H20	0.9300
523	Cl4—C23	1.732 (4)	C21—C22	1.537 (5)
524	O4—C21	1.241 (5)	C22—C26	1.509 (6)
525	C4—C12	1.407 (6)	C22—H22A	0.9700
526	C4—C5	1.449 (9)	C22—H22B	0.9700
527	C5—C6	1.345 (10)	C24—C25	1.384 (6)
528	С5—Н5	0.9300	C24—C23	1.386 (6)
529	O5—H5A	0.826 (14)	C24—H24	0.9300
530	O5—H5B	0.822 (14)	C23—C27	1.364 (6)
531	C6—C7	1.412 (8)	C26—C25	1.379 (6)

532	С6—Н6	0.9300	C26—C28	1.380 (6)
533	O6—H6A	0.817 (14)	C27—C28	1.388 (6)
534	O6—H6B	0.817 (13)	C28—H28	0.9300
535	C7—C8	1.395 (8)	С25—Н25	0.9300
536				
537	O6—Mg1—O1	102.91 (13)	N2-C11-C7	122.2 (4)
538	O6—Mg1—O2 ⁱ	89.87 (11)	N2-C11-C12	117.6 (3)
539	O1-Mg1-O2 ⁱ	90.07 (12)	C7—C11—C12	120.2 (4)
540	O6—Mg1—O7	89.95 (12)	N1-C12-C4	122.6 (5)
541	O1—Mg1—O7	93.57 (12)	N1-C12-C11	118.0 (3)
542	O2 ⁱ —Mg1—O7	176.30 (13)	C4—C12—C11	119.4 (4)
543	O6—Mg1—N1	166.23 (14)	O2—C13—O1	124.2 (3)
544	O1—Mg1—N1	90.68 (13)	O2—C13—C14	117.9 (3)
545	O2 ⁱ —Mg1—N1	87.92 (11)	O1—C13—C14	117.9 (3)
546	O7—Mg1—N1	91.38 (12)	C15—C14—C13	114.6 (3)
547	O6—Mg1—N2	92.01 (13)	C15—C14—H14A	108.6
548	O1—Mg1—N2	164.72 (13)	C13—C14—H14A	108.6
549	O2 ⁱ —Mg1—N2	86.70 (12)	C15—C14—H14B	108.6
550	O7—Mg1—N2	89.62 (13)	C13—C14—H14B	108.6
551	N1—Mg1—N2	74.29 (12)	H14A—C14—H14B	107.6
552	C1—N1—C12	118.2 (4)	C16—C15—C20	118.5 (4)
553	C1—N1—Mg1	126.1 (3)	C16—C15—C14	121.9 (4)
554	C12—N1—Mg1	115.4 (3)	C20-C15-C14	119.5 (4)
555	C13—O1—Mg1	143.3 (2)	C15—C16—C17	121.1 (4)
556	N1-C1-C2	122.8 (5)	С15—С16—Н16	119.4
557	N1-C1-H1	118.6	С17—С16—Н16	119.4
558	C2-C1-H1	118.6	C18—C17—C16	120.3 (4)
559	C3—C2—C1	119.0 (5)	С18—С17—Н17	119.9
560	С3—С2—Н2	120.5	С16—С17—Н17	119.9
561	C1—C2—H2	120.5	C17—C18—C19	119.3 (4)
562	C10—N2—C11	118.1 (4)	C17—C18—Cl2	119.3 (3)
563	C10—N2—Mg1	127.4 (3)	C19—C18—Cl2	121.3 (3)
564	C11—N2—Mg1	114.4 (3)	C18—C19—C20	120.5 (4)
565	C13—O2—Mg1 ⁱⁱ	136.9 (2)	C18—C19—Cl1	120.5 (3)
566	C2—C3—C4	120.5 (5)	C20—C19—Cl1	119.0 (3)
567	С2—С3—Н3	119.8	C19—C20—C15	120.2 (4)
568	С4—С3—Н3	119.8	C19—C20—H20	119.9
569	C3—C4—C12	116.8 (5)	C15—C20—H20	119.9
570	C3—C4—C5	124.8 (6)	O4—C21—O3	126.1 (4)
571	C12—C4—C5	118.3 (6)	O4—C21—C22	119.1 (3)
572	C6—C5—C4	121.9 (5)	O3—C21—C22	114.8 (3)
573	С6—С5—Н5	119.1	C26—C22—C21	114.3 (3)
574	C4—C5—H5	119.1	C26—C22—H22A	108.7
575	H5A—O5—H5B	100 (5)	C21—C22—H22A	108.7
576	C5—C6—C7	121.1 (6)	C26—C22—H22B	108.7
577	С5—С6—Н6	119.4	C21—C22—H22B	108.7
578	С7—С6—Н6	119.4	H22A—C22—H22B	107.6
579	Mg1—O6—H6A	126 (3)	C25—C24—C23	119.1 (4)

580	Mg1—O6—H6B	112 (3)	C25—C24—H24	120.4
581	H6A—O6—H6B	114 (5)	C23—C24—H24	120.4
582	C8—C7—C6	123.9 (6)	C27—C23—C24	120.0 (4)
583	C8—C7—C11	117.0 (5)	C27—C23—C14	121.2 (3)
584	C6—C7—C11	119.1 (6)	C24—C23—Cl4	118.8 (3)
585	Mg1—O7—H7A	117 (3)	C25—C26—C28	118.5 (4)
586	Mg1—O7—H7B	126 (3)	C25—C26—C22	121.2 (4)
587	H7A—O7—H7B	115 (5)	C28—C26—C22	120.3 (4)
588	C9—C8—C7	120.4 (5)	C23—C27—C28	120.4 (3)
589	С9—С8—Н8	119.8	C23—C27—Cl3	121.1 (3)
590	С7—С8—Н8	119.8	C28—C27—C13	118.4 (3)
591	C8—C9—C10	119.1 (5)	C26—C28—C27	120.4 (4)
592	С8—С9—Н9	120.4	C26—C28—H28	119.8
593	С10—С9—Н9	120.4	С27—С28—Н28	119.8
594	N2-C10-C9	123.2 (5)	C26—C25—C24	121.5 (4)
595	N2-C10-H10	118.4	C26—C25—H25	119.3
596	С9—С10—Н10	118.4	C24—C25—H25	119.3

597 Symmetry codes: (i) x-1/2, -y+3/2, -z+1; (ii) x+1/2, -y+3/2, -z+1.

⁵⁹⁸ other supporting information

- The following files will be made available to readers when your article is published. Unless otherwise stated, these files
- $_{600}$ $\,$ will be the same as those submitted during the review process.
- 601 Crystal structure: contains datablocks global, AN_Li_b_0m_a, An_Na_b_0m_a, ANMGB_0m_a. jx3026sup1.cif
- $_{602} \quad Structure\ factors:\ contains\ datablock\ AN_Li_b_0m_a.\ jx3026AN_Li_b_0m_asup2.hkl$
- 603 Structure factors: contains datablock An_Na_b_0m_a. jx3026An_Na_b_0m_asup3.hkl
- 604 Structure factors: contains datablock ANMGB_0m_a. jx3026ANMGB_0m_asup4.hkl

Article No.: C190139-JX3026

YOU WILL AUTOMATICALLY BE SENT DETAILS OF HOW TO DOWNLOAD AN ELECTRONIC REPRINT OF YOUR PAPER, FREE OF CHARGE. PRINTED REPRINTS MAY BE PURCHASED USING THIS FORM.

Please scan your order and send to sc@iucr.org

INTERNATIONAL UNION OF CRYSTALLOGRAPHY

5 Abbey Square Chester CH1 2HU, England.

VAT No. GB 161 9034 76

 Title of article acid
 Crystal structure, shape analysis and bioactivity of new Li^I, Na^I and Mg^{II} complexes with 1,10-phenanthroline and 2-(3,4-dichlorophenyl)acetic acid

 Name Ahmed Al-Harrasi

 Address Natural and Medical Sciences Research Centre, University of Nizwa, Birkat Almouz, Nizwa 616, Oman

 ${\hbox{\tt E-mail address (for electronic reprints)}} \quad {\hbox{\tt aharrasi@unizwa.edu.om,usman.anwar@unizwa.edu.om}}$

OPEN ACCESS

IUCr journals offer authors the chance to make their articles open access on **Crystallography Journals Online**. For full details of our open-access policy, see http://journals.iucr.org/services/openaccess.html. For authors in European Union countries, VAT will be added to the open-access charge.

If you wish to make your article open access please go to http://shop.iucr.org/iucrshop/viewitem/openaccess/?code=JX3026 The charge for making an article open access is **1400 United States dollars**.

DIGITAL PRINTED REPRINTS

I wish to order paid reprints

These reprints will be sent to the address given above. If the above address or e-mail address is not correct, please indicate an alternative:

PAYMENT (REPRINTS ONLY)

Charge for reprints USD

	An official purchase order made out to INTERNA	TIONAL UNION OF CRYSTALLOGRAPHY	is enclosed	will follow
	Purchase order No.			
	Please invoice me	-		
	I wish to pay by credit card			
EU au	thors only: VAT No:			

OPEN ACCESS

The charge for making an article open access is 1400 United States dollars. For authors in European Union countries, VAT will be added to the open-access charge.

A paper may be made open access at any time after the proof stage on receipt of the appropriate payment. This includes all back articles on **Crystallography Journals Online**. For further details, please contact support@iucr.org. Likewise, organizations wishing to sponsor open-access publication of a series of articles or complete journal issues should contact support@iucr.org.

DIGITAL PRINTED REPRINTS

An electronic reprint is supplied free of charge.

Printed reprints without limit of number may be purchased at the prices given in the table below. The requirements of all joint authors, if any, and of their laboratories should be included in a single order, specifically ordered on the form overleaf. All orders for reprints must be submitted promptly.

Prices for reprints are given below in United States dollars and include postage.

		Size of paper (in printed pages)				
Number of reprints required	1–2	3–4	5–8	9–16	Additional 8's	
50	184	268	372	560	246	
100	278	402	556	842	370	
150	368	534	740	1122	490	
200	456	664	920	1400	610	
Additional 50's	86	128	178	276	116	

PAYMENT AND ORDERING

Open-access fees should be paid at http://shop.iucr.org/iucrshop/viewitem/openaccess/?code=JX3026

Official purchase orders should be made out to INTERNATIONAL UNION OF CRYSTALLOGRAPHY.

Orders should be returned by email to sc@iucr.org

ENQUIRIES

Enquiries concerning reprints should be sent to support@iucr.org.