ECOLOGIA BALKANICA

2014, Vol. 6, Issue 2

December 2014

pp. 67-74

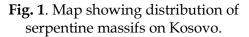
Rare and Endangered Geophyte Plant Species in Serpentine of Kosovo

Naim Berisha, Fadil Millaku*, Elez Krasniqi, Bekim Gashi

Faculty of Mathematics and Natural Sciences, Department of Biology, University of Pristina, KOSOVO * Corresponding author: fadil.millaku@uni-pr.edu

Abstract. Our study documents information on rarity, geographical distribution, taxonomy and conservation status of 11 geophyte species in serpentine soils of Kosovo, already included in the Red Book of Vascular Flora of Kosovo. Kosovo's serpentine vegetation represents a diversity that yet has not been sufficiently explored. Large serpentine complexes are found in the northern Kosovo but also southern part of the country is rich in serpentines, therefore in endemics. Serpentine rocks and soils are characterized by low level of principal plant nutrients (N, P, K, Ca) and exceptionally high levels of Mg and Fe. Serpentines play particular importance for flora of the country due to their richness in endemic plant species. The following 11 plant species have been studied: *Aristolochia merxmuelleri, Colchicum hungaricum, Crocus flavus, Crocus kosaninii, Epimedium alpinum, Gentiana punctata, Gladiolus illyricus, Lilium albanicum, Paeonia peregrina, Tulipa gesneriana and Tulipa kosovarica.* Five out of eleven studied geophytes fall within Critically Endangered IUCN based threat category and five out of eleven are local endemics. *Aristolochia merxmuelleri* and Tulipa kosovarica are steno-endemic plant species that are found exclusively in serpentine soils. Information in our database should prove to be valuable to efforts in ecology, floristics, biosystematics, conservation and land management.

Key words: Kosovo, rare, serpentine, IUCN, geophyte.


Introduction

Serpentine soils deriving from ultramafic rocks release toxic heavy metals into the environment (HERATH et al., 2014). That is why plants growing in these soils experience reduced growth due to phytotoxicity of these metals. Serpentine soils are often shallow, rocky and vulnerable to drought. As a result of extreme physical and chemical conditions, serpentine soils support a high proportion of endemic plant species that are adapted to their harsh environment (KAZAKOU et al., 2008; VICIC et al., 2014). Serpentine soils itself represent a suitable model system for

studying plant adaptation, speciation as well as species interactions (ANACKER, 2014). In the other hand geophyte plant species bear their perennating buds below the surface of the soil, being thus far more resistant to drought and the stressful environment of the serpentine soils. It is well known that Mediterranean basin has remarkable plant diversity (COWLING et al., 1996) and in particular the presence of geophytes in large numbers in this area have long been noted (RAUNKIAER, 1934). Serpentine soils cover minor surfaces in the global level, comprising less than 1% of the earth's surface (COLEMAN & JOVE, 1992). Large

areas of Balkan Peninsula are covered by serpentine substrate, more than any other European part. More than 300 endemic taxa (species and subspecies) occur on serpentine in the Balkans (STEVANOVIC et al., 2003). In the territory of Kosovo there have been found serpentine rocks (Fig. 1) which are very rich, from the aspects of flora and vegetation (REXHEPI, 1985; KRASNIQI & MILLAKU, 2007). Serpetine soils flora and vegetation in Kosovo has been investigated by many researchers so far, such as: BLECIC & KRASNIQI (1971), KRASNIQI (1972, 1987), HUNDOZI (1987), REXHEPI (1979, 1982a,b, 1997, 2000), REXHEPI & MILLAKU (1996), KRASNIQI & MILLAKU (2004), MILLAKU et al. (2007, 2011), PRODANOVIC et al. (2012). Plant taxa that inhabit serpentine soils and rocks known as serpentinophytes. are Additionally, according to VICIC et al. (2014) serpentine plant species have developed variety of physiological adaptations, one of them being selective heavy metal, Ca and Mg uptake and its translocation to the leaves. As described in variety of studies, serpentine soils have properties that are highly disadvantageous for most plants. As a crucial factor on plant survival on serpentine soils is considered the tolerance on heavy metals, especially to Ni. Also another known strategy of plants to cope with high levels of heavy metals is hyper accumulation (KAZAKOU et al., 2008). There are however still some questions unclear to this date in regard to serpentine endemics and the existing competition level in serpentine soils (MOORE & ELMENDORF, 2011). Traits at a species level indicate however that endemics are typically slowgrowing stress tolerators, rather than fast growing competitive dominants (ANACKER & HARRISON, 2012; FERNANDEZ-GOING et al., 2012), in addition the stress tolerance traits of endemic species are consistent with a tradeoff of competitive abilities for serpentine tolerance traits, by which drought adaptation may come at the cost of fast growth rate (GRIME et al., 2008). So far, variety of serpentine endemism studies has revealed much about the nature of plant endemism in general. In particular, serpentine research has highlighted the role of geology as a major environmental determinant of endemism through direct effects on topography and soil properties and indirect effects on habitat availability, degree of spatial isolation as well as microclimate (ANACKER, 2014).

Materials and Methods

On the basis of material collected during the field work on the serpentines of Kosovo (2011-2013), we selected a group of plants significant to these sites that were additionally geophytes and rare plant species. Identification of collected plants was made according to Flora of Serbia (JOSIFOVIĆ, 1972, 1973; SARIĆ & DIKLIĆ, 1986), Flora of Albania (VANGJELI *et al.*, 2000), Flora Europaea (TUTIN *et al.*, 1964, 1967, 1976) while the nomenclature used was according to the databases of the Plant List (theplantlist.org).

For each species, while in the field we have filled up information forms with all the necessary data for assessment of threat category. In the same time we have taken plant samples and mount them in herbaria, based on standard measures (all of them are recorded, labeled and placed in the Herbaria of

the Faculty of Natural Sciences, University of Prishtina). We have taken photographs of the investigated plant species, recorded the GPS coordinates, counted the number of mature individuals, the main threats were recorded, we have measured the Area of Occupancy (AOO), the habitat type was noted, the geological - pedological composition, the altitude, as well as habitat degradation scale. Extent of Occurrence (EOO) was calculated later on, based on the compiled maps from the UTM coordinates. In order to assess the threat category of each species, we have been based in an explicit spatial approach, allowing insertion of certain obscurities in the entry data (IUCN 2012, MACE et al., 2008).

Based on possessed data, we have given a preliminary assessment, according to IUCN Red List and Criteria. Finally, the threat category has been given based on the software-program RAMAS - Red List Professional (AKÇAKAYA & ROOT, 2007). RAMAS Red List implements the IUCN criteria for classifying species into threat categories but in the meantime it allows for explicit incorporation of uncertainties in the input data. In other words, input data, such as the number of mature individuals, can be specified either as a number, or as a range of numbers, or a range of numbers plus a best estimate (MILLAKU *et al.*, 2013).

Results and Discussion

From 11 geophyte plant species that have been analyzed, we have the following results in regard to their IUCN based threat category in Kosovo: Aristolochia merxmuelleri Greuter & E.Mayer, Colchicium hungaricum Crocus flavus Watson., Janka, Tulipa kosovarica Shuka, L. Tan, K. & Krasniqi, E., and Tulipa gesneriana L. all belong to the "Critically Endangered (CR)" threat category (Fig. 2). This is mainly as a result of low number of mature individuals found in the corresponding habitats. We have two geophyte plant species categorized as "Endangered (EN)": Crocus kosanini Pulevic and Fritillaria messanensis subsp. gracilis (Ebel) Rix. their area of occupancy was less than 300 km² (Fig. 3). Other two geophyte

plant species: Epimedium alpinum L. and Paeonia peregrina Mill. have been categorized as "Vulnerable (VU)" due to the fact that a decrease in the number of mature individuals has been noticed as a result of human settlements and activities (Fig. 4). While two last geophyte species that we have investigated: Gentiana punctata L and Lilium albanicum Griseb. have been categorized as "Least Concern (LC)" due to the fact that they are abundant at the given moment, though they can be threatened in the near future (Fig. 5). serpentine soils As derive from

As serpentine soils derive from ultramaphic rocks formed from hydrative and metamorphic transformation of rocks from the earth's mantle (CHIARUCCI *et al.*, 2007), they do give rise to an unusual and sparse plant associations that are tolerant to extreme soil conditions, including lack of essential plant nutrients (as nitrogen, potassium and phosphorous) (FRAZELL *et. al*, 2009). There are plenty of known examples of serpentine soils and distinctive ecologic plant communities associated with them (ALEXANDER *et al.*, 2007).

In our study, we have analyzed eleven geophyte plant species that are found in serpentine soils, with few exceptions being found also in calcareous or silicate substrate (Table 1) and tried to correlate their scarcity, their life form and therefore their threat status to their habitat soils. As known, plants growing in these soils must tolerate calcium deficiency, drought, poor-quality soils, exposure to heavy metals and full sun. Geophytes in the other hand have their underground storage organs, chiefly for storing water and energy (carbohydrates) enabling them to survive in these extreme environment conditions. Out of 11 studied geophyte plant species five are Balkan endemics and one is stenoendemic (Tulipa kosovarica Shuka, L. Tan, K. & Krasniqi, E.). While, regarding their conservation status, from these eleven investigated geophytes we have five "Critically Endangered (CR)", two "Endangered (EN)" geophyte plant species, two "Vulnerable (VU)" geophyte plant species and two geophyte plant

species that have been categorized as "Least Concern (LC)" due to the fact that they are widespread and we have abundant data on their situation.

Pop. code	Species	Locality(ies) name	Altitude (m)	Geographical substrate	Ecological conditions of species habitat
001	Colchicum hungaricum Janka	Gadime, Guranë	650 up to 700	Serpentine, Calcareous	Limited dispersal area and very low number of mature individuals.
002	Crocus flavus Watson	Guranë	692	Serpentine	Very low number of mature individuals.
003	Aristolochia merxmuelleri Greuter & E.Mayer	Mirushe	470	Serpentine	One population with limited dispersal area.
004	Tulipa gesneriana L.	Krevenik	583	Serpentine	One population with limited dispersal area.
005	<i>Tulipa kosovarica</i> Shuka L, Tan K, Krasniqi E.	Mirushe, Llapushnik, Guriq	650 up to 900	Serpentine	Three populations with very low no. of mature individuals.
006	<i>Crocus kosaninii</i> Pulevic	Kaçanik, Brezovice, Blinaje, Guranë	600 up to 2000	Serpentine	Extreme limited dispersal areal in four populations.
007	Fritillaria messanensis subsp. gracilis Rix.	Lumëbardh i Pz., Vrellë, Syne, Rusoli, Maja e Vjellakut, Gryka e Rugovës	440 up to 1900	Serpentine, Calcareous	Each of 3 bigger populations in Kosovo is characterized with low no. of mature individuals.
008	Lilium albanicum Griseb.	34 localities in Albanian Alps of Kosovo and Sharri Mountains	684 up to 2479	Serpentine, Calcareous	Despite of distribution, its populations are always characterized with low. no. of mature individuals.
009	Gentiana punctata L.	31 localities in Albanian Alps of Kosovo & Sharri Mt.	1000 up to 2445	Serpentine, Silicate	Species populations are widely distributet. Stable.
010	Paeonia peregrina Mill.	Gllarevë, Gërmi, Gazimestan	570 up to 765	Serpentine, Calcareous	Species is characterized with stable populations though their habitats are subject of human activity.
011	Epimedium alpinum L.	Bokat e Morinës	500 up to 1100	Serpentine	Limited dispersal area.

Table 1. Species distribution and correlating data.

Fig. 2 – Critically endangered (CR) plant species. 1. Colchicum hungaricum Janka., 2. Crocus flavus Watson, 3. Aristolochia merxmuelleri Greuter & E. Mayer, 4. Tulipa gesneriana L., 5. Tulipa kosovarica Shuka L, Tan K, Krasniqi E.

Fig. 3 - Endangered (EN) plant species. 1. Crocus kosaninii Pulevic.,2. Fritillaria messanensis subsp. gracilis Rix.

Rare and Endangered Geophyte Plant Species in Serpentine of Kosovo

Fig. 4 - Vulnerable (VU) plant species. 1. Paeonia peregrina Mill. 2. Epimedium alpinum L.

Fig. 5 - Least Concern (LC) plant species. 1. Lilium albanicum Griseb., 2. Gentiana punctata L.

References

- AKÇAKAYA H.R., W.T. ROOT. 2007. *RAMAS* red list: spatial and temporal data analysis for threatened species classification under uncertainity (version 3.0 Professional). Applied Biomathematics, Setauket, New York, USA.
- ALEXANDER E., R. COLEMAN, T. KEELER-WOLF, S. HARRISON. 2007. Serpentine Geoecology of Western North America: Geology, Soils, and Vegetation, New

York: Oxford University Press. ISBN 0-19-516508-X.

- ANACKER B.L., S.P. HARRISON. 2012. Climate and the evolution of serpentine endemism in California. - *Evolutionary Ecology*, 26: 1011–1023.
- ANACKER B.L. 2014. The nature of serpentine endemism. - *American Journal of Botany*, Online first. doi: 10.3732/ajb.1300349
- BLECIC V., F. KRASNIQI. 1971. Zajednica endemicnog sibljaka forzicije i krtusca

(Polygalo forsythietum europaeae) u jugozapadnoj Srbiji. - Glas. Repub. Zav. Zas. Prirod. Muz., Titograd, 4: 35-40.

- CHIARUCCI A., A.J.M. BAKER. 2007. Advances in the ecology of serpentine soils. - *Plant Soil*, 293: 1-2. doi:10.1007/s11104-007-9268-7
- COLEMAN R., C. JOVE. 1992. Geologic origin of serpentinites. - In: Baker A.J.M., J. Proctor, R.D. Reeves (Eds.).*The vegetation of ultramafic (serpentine) soils.* Intercept Ltd, Andover, U.K. pp. 1-18.
- COWLING R.M., P.W. RUNDEL, B.B. LAMONT, M.K. ARROYO, M. ARIANOUTSOU. 1996. Plant diversity in mediterranean-climate regions. -*Trends in Ecology and Evolution*, 11: 362-366.
- FERNANDEZ-GOING B.M., B.L. ANACKER, S.P. HARRISON. 2012. Temporal variability in California grasslands: Soil type and species functional traits mediate response to precipitation. - *Ecology*, 93: 2104–2114.
- FRAZELL J., R. ELKINS, A. TOBY O'GEN, R. REYNOLDS, N. GENTRY. 2009. Trees and shrubs for Northern California Serpentine Landscapes. ANR 8400 Publication, University of California, US.
- GRIME J.P., J.D. FRIDLEY, A.P. ASKEW, K. THOMPSON, J.G. HODGSON, C.R. BENNETT. 2008. Longterm resistance to simulated climate change in an infertile grassland. - *Proceedings of the National Academy of Sciences*, 105: 10028-10032.
- HERATH I., P. KUMARATHILAKA, A. NAVARATNE, N. RAJAKARUNA, M. VITHANAGE. 2014. Immobilization and phytotoxicity reduction of heavy metals in serpentine soil using biochar. - *Journal of Soils and Sediments*, Online first. doi: 10.1007/s11368-014-0967-4
- HUNDOZI B. 1987. Salvio-Scorzoneretum villosae. - *Buletini i punimeve shkencore*, FSHMN. 10: 132-138.
- IUCN. 2012. Guidelines for Application of IUCN Red List Criteria at Regional and National Levels: Version 4.0. Gland,

Switzerland and Cambridge, UK: IUCN. iii + 41p.

- KAZAKOU E., P.G. DIMITRAKOPOULOS, A.J.M.
 BAKER, R.D. REEVES, A.Y. TROUMBIS.
 2008. Hypotheses, mechanisms and trade-offs of tolerance and adaptation to serpentine soils: from species to ecosystem level. *Biological Reviews*, 83: 495-508 doi: 10.1111/j.1469-185X.2008.00051.x
- KRASNIQI E., F. MILLAKU. 2004. Aster albanicus Deg., përhapja në Shqipëri e Kosovë, vitaliteti ekologjik dhe vendëndodhje të reja në territorin e Kosovës. - Studime Biologjike, 9: 120-125.
- KRASNIQI E., F. MILLAKU. 2007. The association Hyperico-Euphorbietum glabriflorae Rexhepi 1978 in the serpentine terrains of Drenica Mountain. - *Hacquetia*, 6(2): 183-193.
- KRASNIQI F. 1972. *Sumska vegetacija brdskog regiona Kosova.* Zajednica Naucnih Ustanova Kosova. Studije. 27. Pristina, 133 p.
- KRASNIQI F. 1987. Endemics in flora of Kosovo and the problem of their protection. ANU BiH. Posebna izdanja. - Odjeljenje Prirodnih i Matematicnih Nauka. Sarajevo, 14: 119-124.
- MACE G.M., N.J. COLLAR, K.J. GATSON, C. HILTON-TAYLOR, H.R. AKÇAKAYA, N. LEADER-WILLIAMS, E.J. MILNER-GULLAND, S.N. STUART. 2008. Quantification of extinction risk: IUCN's system for classifying threatened species. - Conservation *Biology*, doi: 1523-1739.2008.01044.x
- MILLAKU F., F. REXHEPI, E. KRASNIQI, Q. PAJAZITAJ, XH. MALA, N. BERISHA. 2013. Libri i Kuq i Florës Vaskulare të Republikës së Kosovës – MMPH, Prishtinë. 5 p.
- MILLAKU F., P. HEISELMAYER, F. REXHEPI, E. KRASNIQI, C. EICHBERGER, A. HAZIRI. 2007. Endemic, stenoendemic and relict plants in Serpentines of Kosova. - *Sauteria*, 16: 149-162.

Rare and Endangered Geophyte Plant Species in Serpentine of Kosovo

- MILLAKU F., E. KRASNIQI, F. REXHEPI. 2011. The association *Stipeto-Convolvuletum Compacti* Ass. nova in Kosovo. -*Hacquetia*, 10(2): 137-147.
- MOORE K.A., S.C. ELMENDORF. 2011. Plant competition and facilitation in systems with strong environmental gradients. In S.P. Harrison, N. Rajakaruna (Eds.), Serpentine: *The evolution and ecology of a model system*, University of California Press, Berkeley, California, USA. pp. 223–236.
- PRODANOVIC D., Z. KRIVOSEJ, L. AMIDZIC. 2012. Ecological features of steppe flora on the Ibar valley serpentine, Northern Kosovo. - Natura Montenegrina, 11(3): 405-424.
- RAUNKIAER C. 1934. *The life forms of plants.* Oxford, Clarendon Press.
- REXHEPI F., F. MILLAKU. 1996. Gjinia potentilla L. në Ballkan. - Buletini i FSHMN'së, 11: 161-168.
- REXHEPI F. 1979. Kontribut për njohjen e florës së serpentineve në Kosovë. -*Bioteknika*, 1(2): 53-70.
- REXHEPI F. 1982a. Vegjetacioni i Kosovës dikur dhe sot. *Përparimi*, 2:229-259.
- REXHEPI F. 1982b. Vegjetacioni i Kosovës dikur dhe sot. *Përparimi*, 3:383-422.
- REXHEPI F. 1985. Mbrojtja e florës dhe vegjetacionit në serpentinet e Kosovës. *- Natyra e Kosovës,* 5: 61-72.
- REXHEPI F. 1985. Mbrojtja e florës dhe vegjetacionit në serpentinet e Kosovës. *Natyra e Kosovës*, 5: 61-72.
- REXHEPI F. 1997. Mediterranean, Submediterranean and Illyric floristic elements in the Kosovo's flora (Yugoslavia). - *Bocconea*, 5(2): 451-456.

- REXHEPI F. 2000. *Bimët endemike të Kosovës*. UP, Prishtinë. 150 p.
- SARIC M., N. DIKLIC. 1986. *Flora SR Srbije X,* SANU, Beograd, Yugoslavia.
- STEVANOVIC V., K. TAN, G. ITRAOU. 2003. Distribution of the endemic Balkan flora on serpentine I. - obligate serpentine endemics. - *Plant Systematic and Evolution*, 242: 149-170.
- THE PLANT LIST. 2013. Version 1. Available at: [www.theplantlist.org] (accessed 20th of September).
- VICIC D., M. STOILJKOVIC, N. BOJAT, M. SABOVLJEVIC, B. STEVANOVIC. 2014. Physiological tolerance mechanisms of serpentine toleran plants from Serbia. *Revue d'Ecologie (La Terre et la Vie)*, 69: 185-195.
- JOSIFOVIC M., L. STJEPANOVIC, M. JANKOVIC, B. GAJIC, M. KOJIC, N. DIKLIC. 1972. *Flora SR Srbije III*, SANU, Beograd, Yugoslavia.
- JOSIFOVIC M., L. STJEPANOVIC, M. JANKOVIC, B. GAJIC, M. KOJIC, N. DIKLIC. 1973. *Flora SR Srbije IV*, SANU, Beograd, Yugoslavia.

Received: 25.09.2014 Accepted: 18.12.2014