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Abstract  

 

   We present a compact and general derivation of the generalized Bloch-Wangsness-
Redfield kinetic equations for  systems with the static spin Hamiltonian utilizing the concept of 
the Liouville space. We show that the assumptions of short correlation times and large heat 
capacity of the lattice are sufficient to derive the kinetic equations without the use of perturbation 
theory for the spin-lattice interaction operator. The perturbation theory is only applied for 
calculation of the kinetic coefficients, for which we obtain general and compact expressions. We 
argue that kinetic equations for the density matrix elements are not essential for derivation of the 
generalized Bloch-Wangsness-Redfield equations for the expectation values of any set of 
physical quantities, and the latter may be obtained directly under the weak assumptions of 
mutual orthogonality and completeness. We show that existence of a unity operator in the 
algebra of spin operators is a necessary condition for convergence of the spin subsystem to 
thermodynamic equilibrium with the temperature equal to that of the lattice. Finally, as an 
application of the general theory, we discuss some features of spin relaxation in heterogeneous 
systems for I=1/2. 
 
Keywords: Bloch-Wangsness-Redfield kinetic equations, spin-relaxation. 

 

 

1. Introduction. 
Derivation of kinetic equations for spin subsystem that interacts with a “lattice” in 

thermodynamically equilibrium state is a major problem in the theory of magnetic resonance in 

particular and is of considerable interest for the general theory of nonequilibrium processes. 

For the first time this problem was considered by Bloch, Wangsness, Redfield [1-4]. 

Subsequent development and analysis of the theory called afterwards as a Bloch – Wangsness – 

Redfield theory (BWR) are reviewed in a number of works (see for example [5-12]). 

The best results are obtained when one uses an approximation of short correlation times for a 

case of free relaxation of spin subsystem when it interacts with a lattice having large heart 

capacity. One should feel incompleteness even in this case.  

In all known works the kinetic equations have been derived starting from the perturbation 

theory for the spin-lattice interaction operator. More over the kinetic equations for the elements 

of nonequlibrium spin density matrix play a central role. The kinetic coefficients obtained appear 

to be bulky and explicitly “noninvariant”. 
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Further basing on this kinetic equation one must perform additional transformation in order 

to obtain the generalized Bloch equations for the expectation values of physical quantities. 

A proof of thermodynamic equilibrium establishing in spin subsystem with the temperature 

equal to  the lattice temperature seems for  us to be uncompleted. In general case the proof comes 

to nothing than to demonstrate that the equilibrium density matrix is a stationary solution of 

corresponding kinetic equations. However the stationary solution being only single one is not 

obvious at least because that the kinetic coefficients are bulky.  

So it is not quite clear if the limitary distribution would be always the thermodynamic 

equilibrium. Actually an answer to this question was obtained only for a case of high 

temperature approximation (see [5], where this question has been discussed most openly), 

although the kinetic equations by themselves have been deduced for arbitrary temperature. 

In the present work we will show that an assumption about short correlation times and large 

heat capacity is so strong that enables one to derive the kinetic equations without using the 

perturbation theory for spin-lattice interaction operator. The perturbation theory is applied only 

on a stage of calculating the kinetic coefficients. 

The kinetic equations for the density matrix elements do not play the main role and direct 

derivation of the generalized Bloch equations for the expectation values of any set of physical 

quantities is possible answering only a weak condition of mutual orthogonality and completeness 

as well. The structure of kinetic coefficients is both general and “invariant”. The kinetic 

equations for the density matrix elements appear to be only particular case of the general 

equations presented in a spatial operator basis.   

The proof of the thermodynamic equilibrium established in spin subsystem has been 

performed in a simple general way and appears to be a mathematical consequence of existing a 

unity operator in the algebra of spin variables and nondegenerasy of the matrix of kinetic 

coefficients.  

 

2. Derivation of the kinetic equations: approximation of short correlation 

times. 
         

         Let the small Latin letters indicate the spin operators. A set of all spin operators ˆˆ ˆ, , ...a b c

( )R S forms an operator algebra (see, for example [11]), in other words, it has properties of a 

vector space, where a vector multiplying operation is determined. The operation of scalar 

production in  ( )R S is defined by the relation: 
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(ˆˆ sa b Tr a b∗= )ˆˆ ,                                                                                                         (1)               

where b̂  denotes the spin operator considered as a vector of b̂ ( )R S , â represents the 

hermitian conjugate operator to , â ( )...sTr denotes the trace operation over spin variables. After 

the operation ˆâ b has been introduced, ( )R S becomes the normalized operator algebra and in 

particular case it posses all features of the Hermitian space. In physics this circumstance is 

indicated by term “Liouville space” or Liouville formalism.   

 Let choose an orthogonal basis  in 0 1ˆ ˆ, ,...a a ( )R S space. Then every spin operator can be 

expressed as: 

b̂

ˆ ˆn n
n

b x=∑ a ,                                                                                                                     (2a)               

where  

( )
( )

ˆˆ ˆˆ

ˆ ˆ ˆ ˆ
s nn

n
n n s n n

Tr a ba b
x

a a Tr a a

∗

∗
= =                                                                                                 (2b)               

and  

ˆ ˆ ˆ ˆn k nk n na a a aδ= .                                                                                                         (2c) 

The numbers nx are the coordinates of operator in the basis  Further we consider 

that the basis vector 

b̂ 0 1ˆ ˆ, ,...a a

0â a≡ 0ˆ

I

.

is equal to a unity operator, i.e. 

0â = .                                                                                                                                  (3)  

From the orthogonality condition (2c) it follows that the operators have zero trace: 1 2ˆ ˆ, ,..a a

( )ˆ ˆ 0n s nI a Tr a= =

ˆ

.                                                                                                            (4)   

The Hamiltonian of the  whole system “spin + lattice” can be presented in a standard way: 

0
ˆ ˆ ˆ ˆ ˆ

s LH H V H H V= + = + + ,                                                                                                (5)               

where ˆ
sH is the spin Hamiltonian describing a spectrum of magnetic resonance;  

ˆ
LH is the Hamiltonian of the lattice degrees of freedom,  

0
ˆ ˆ ˆ

s LH H H= + , 

V̂ is the Hamiltonian of the spin-lattice interaction. 

The density matrix (or the statistical operator) of all system satisfy to the von Neumann 

equation:  

( ) ( )ˆˆ ˆ;i t H t
t
ρ ρ∂ ⎡= ⎣∂

⎤⎦ .                                                                                                      (6)    
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In order to simplify the subsequent calculations we rewrite the von Neumann equation (6) 

in terms of the Liouville superoperator:  

   ( ) ( )ˆˆ ˆHi t L
t
ρ ρ∂

=
∂

t ,                                                                                                         (7)               

where Liouville operator can be defined by a relation: 

1ˆ ˆˆ ;HL H ˆρ ρ⎡≡ ⎣ ⎤⎦ .                                                                                                                (7a)      

The Liouville operator is the linear one acting in the algebra of all “usual” operators of the 

“spin + lattice”   system. Sometimes such operators are called as a “superoperator” in order to 

stress this fact.     

The total Hamiltonian Ĥ , given by the expression (5), is time independent, therefore a 

formal solution of eq. (7) is: 

( ) ( ) 0
ˆˆ t S t ˆρ ρ=  ,                                                                                                                   (8)      

with ( ) { }ˆ ˆexp HS t iL t= − -an evolution superoperator of all system and 0ρ̂ is an initial value of the 

density matrix of all system.  

Note, that we are treating dynamics both lattice and  spin systems quantum mechanically, 

the lattice variables are operators and does not depend from time in the Shcrodinger 

representation, the spin Hamiltonian is assumed being static, i.e. no actions  of external time 

dependent magnetic fields.      

The evolution superoperator satisfies to the following equation: 

( ) ( )ˆ ˆ
H

d S t iL S t
dt

= − ˆ ,                                                                                                             (9)               

with the initial condition given by ( )ˆ 0S I= .  

Let us to consider the n-th basal spin operator . Knowing the state of system and the 

density matrix 

ˆna

( )ˆ tρ one can calculate the expectation value of physical quantity  at a moment 

of time t : 

ˆna

( ) ( )( ˆˆ ˆn na t Tr a tρ= ) ,                                                                                                       (10)               

where the trace operation is preformed over the all degrees of freedom, i.e. over spin and lattice 

variables.  

Then we perform differentiation of both parts of the equation: 

( ) ( )1 ˆ ˆˆ ˆn n H
d a t Tr a L t
dt i

ρ⎛= ⎜
⎝ ⎠

⎞
⎟ .                                                                                          (11)       

By replacing the operator ˆ
HL on the conjugate one in eq. (11) we can transform it to: 
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( ) ( ) ( )( ˆ ˆˆ ˆn H n
d a t Tr iL a t
dt

ρ= ) .                                                                                         (12)               

Let us consider an interval of the time tΔ . For the superoperator of evolution ( )Ŝ t t+ Δ the 

relation 

( ) ( ) ( )ˆ ˆS t t S t S t+ Δ = Δ ˆ                                                                                                       (13)               

is obvious. 

Further, in accordance with the expansion of the basic Hamiltonian given by eq. (5), the 

Liouville superoperator ˆ
HL can be expressed in similar way: 

0
ˆ ˆ ˆ ˆ ˆ ˆ

H V s LL L L L L L= + = + + V ,                                                                                               (14)               

where ˆ ˆ ˆ, ,s L VL L L are the contributions induced by the Hamiltonians   correspondingly.  ˆ ˆ ˆ, ,s LH H V

After substituting the expression (14) into eq. (12) and using the fact as to be merely 

spin operator, so that , we can transforms it in a form: 

ˆna

ˆ ˆ 0L nL a =

( ) ( ) ( )( ) ( ) ( )( )0
ˆˆ ˆˆˆ ˆ ˆn s n V n

d a t Tr iL a t Tr iL a S t
dt

ˆρ ρ= +  .                                                     (15)    

The superoperator  ˆ
sL acts only on spin variables, so that the operator ˆ ˆs nL a belongs to the 

spin subspace of the Liouville space of the “spin + lattice” system. In accordance with the 

equations (2a) and (2b) we can expand into a series: 

ˆ ˆ ˆs n n
k

k kL a iω=∑ a ,                                                                                                              (16)               

the numbers  

( )
( )

( )
( )

**

2*

ˆˆ ˆ ˆ;ˆ ˆ 1
ˆ ˆ ˆ ˆ

s k s ns k s n
nk

s k k s k k

Tr a H aTr a L a

Tr a a Tr a a
ω

*

⎡ ⎤⎣ ⎦= =                                                                         (16a)               

form the frequency matrix.  

Using eq. (16) we can transform eq. (15) to: 

( ) ( ) ( ) ( )( )0
ˆˆ ˆˆ ˆ ˆn nk k V n

k

d a t i a t Tr iL a S t
dt

ω ρ= +∑ .                                                            (17)            

To get the kinetic equations from relation (16) we have to give them closed form, i.e. to 

express the second relaxation term in them as some function of observable expectation values 

( )ˆna t . With this aid let us rewrite the expression (17) for the moment of time t :        t+Δ

( ) ( ) ( ) ( )( )0
ˆˆ ˆˆ ˆ ˆn nk k V n

k

d a t t i a t t Tr iL a S t t
dt

ω ρ+ Δ = + Δ + + Δ∑ .                                     (18)               

It will be convenient to assign a special symbol to the second term in equation (18): 
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( ) ( ) ( )( ) ( ) ( ) ( )( )0
ˆˆ ˆˆˆ ˆn V n V n

ˆ ˆA t t Tr iL a S t t Tr iL a S t tρ+ Δ = + Δ = Δ ρ .                                     (19)               

Let consider an equality:                                                                

( ) ( )ˆ ˆ ˆˆ( ) ( ) (1 ) (S t t S t S t tˆ )ρ α α ρΔ ≡ − Δ Δ ,                                                                        (20)              

where 1α a positive number. 

Further we will consider situations, when the heat capacity of the lattice is larger than that 

of spin subsystem. If the lattice characteristic correlation time 0τ is shorter, than the characteristic 

spin-relaxation time sτ , we can  find tΔ and α satisfying to 

0s t tτ αΔ Δ τ .                                                                                                          (21)     

During the time interval tαΔ in accordance with (21) both spin subsystem and lattice 

evolve actually independently. The Gibbs equilibrium distribution is establishing relative to the 

lattice degrees of freedom. Since the heart capacity of the lattice is much larger than the spin 

subsystem we can neglect by a time dependence of lattice temperature. Therefore we can 

transform the expression (20) to the following: 

( )ˆ ˆˆ ˆ( ) ( ) (1 ) ( ) eqˆs LS t t S t t tρ α ρ α ρΔ ≡ − Δ + Δ ,                                                                     (22)               

where is purely spin density matrix, ( )ˆs tρ

ˆ eq
Lρ is the Gibbs equilibrium density matrix of lattice.               

Taking into account, that 1α , we have: 

( )ˆˆ ( ) ( ) eqˆ ˆs Lt t S t tρ ρ ρ+ Δ ≡ Δ                                                                                             (23)               

with accuracy of order α . 

Replacing in eq. (19) the superoperator ( )Ŝ tΔ on the conjugate one leads to: 

( ) ( ) ( )(( *ˆ ˆˆ ˆ ˆeq
n s L ))V nA t t Tr t S t iL aρ ρ+ Δ = Δ .                                                                       (24) 

Then we define a new operator that is purely spin: 

( ) ( )( )( )*ˆ ˆ ˆˆ ˆeq
n L L V nA t Tr S t iL aρΔ = Δ ,                                                                                   (25)               

where denotes the trace operation over the lattice variables.               

An obvious relation takes place   

LTr

( ) ( ) (( ))ˆˆn s s nA t t Tr t A tρ+ Δ = Δ .                                                                                        (26)       

Note that operators form a basis in algebra of spin operators. The same behaviors they 

display   after transformation to the interaction representation, the Dirac representation, at the 

moment of time . We define these new operators 

ˆka

tΔ ( )ˆ
ka t  by the following expression: 
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( ) ( )* 0 0
0

ˆ ˆˆ ˆ ˆ ˆexp exp

ˆ ˆ
ˆexp exp

k k k

s s
k

H t H ta t S t a i a i

H t H ti a i

⎧ ⎫ ⎧ ⎫Δ Δ⎪ ⎪ ⎪ ⎪Δ = Δ ≡ − =⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

⎧ ⎫ ⎧ ⎫Δ Δ⎪ ⎪ ⎪ ⎪−⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

,                                                  (27)               

where superoperator defines the transfer into the interaction representation.  ( )*
0Ŝ tΔ

Note  that the superoperator ( )0Ŝ tΔ conjugated to ( )*
0Ŝ tΔ describes the evolution 

superoperator induced by the Hamiltonian 0
ˆ ˆ ˆ

s LH H H= + . 

The operator in accordance with the definition (25) is purely spin operator. 

Therefore we can represent it as the linear combination of basis of vectors

( )ˆ
nA tΔ

( ) ( )0 1
ˆ ˆ, ,a t a t ...

)ˆ

: 

( ) ( ) (ˆ
n nk k

k
A t w t aΔ = Δ Δ∑ t ,                                                                                            (28)               

where ( )
( )( )

( )
*

*

ˆ ˆ

ˆ ˆ
s k n

nk
s k k

Tr a A t
w t

Tr a a

Δ
Δ = .                                                                                               (29) 

After substitution relation (25) for the operator ( )ˆ
nA tΔ into eq. (29) and replacing the 

superoperator ( )*
0Ŝ tΔ by the conjugate one and taking into account that the equilibrium density 

matrix of the lattice isn’t change after action of the superoperator ( )*
0Ŝ tΔ , we can get: 

( )
( )

0
ˆ ˆˆ ˆˆ ˆ( )( ( ) ( )

( )
ˆ ˆ

eq
V n k L

nk
s k k

Tr iL a S t S t a
w t

Tr a a

ρ∗ ∗

∗

Δ Δ
Δ =

)

)

)

)

.                                                                 (30) 

Note that in the nominator of eq. (30) Tr operation is performed over all the spin and lattice 

degrees of freedom of the system whereas in the dominator this operation concerns only spin 

variables.  

Consider an equality:  

( ) ( ) ( ) (*
2 1 0 2 2 1 0 1

ˆˆ ˆ ˆ;VS t t S t S t t S t− = ,                                                                                    (31)               

where the evolution superoperator  describes the evolution of density matrix in the time 

interval from up to in the interaction representation. 

( 2 1
ˆ ;VS t t

1t 2t

The evolution superoperator is determined by Dyson chronological exponent: ( 2 1
ˆ ;VS t t
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( ) ( )
2

1

2 1
ˆ ˆˆ; exp

t

V
t

S t t T i L dV τ τ
⎧ ⎫⎪= −⎨
⎪ ⎪⎩ ⎭
∫

⎪
⎬

V

 ,                                                                                  (32)               

where the Liouville superoperator is produced by the operator ( ) ( )*
0

ˆ ˆ ˆV Sτ τ= of the spin-lattice 

relaxation in the Dirac representation.     

Let us rewrite equation (31) for the moments of time 2 0t = and                        1t = −Δt

)ˆ  ,                                                                                             (33)              

where we are using the equality 

( ) ( ) (*
0

ˆˆ 0;VS t S t S tΔ = −Δ Δ

( ) ( )*
0 0

ˆ ˆS t S t−Δ = Δ . 

Substituting the equality (33) in eq. (30) we get: 

( )
( ) ( )( )

( )

*

*

ˆˆ ˆˆ ˆ0;

ˆ ˆ

eq
V n V k L

nk
s k k

Tr iL a S t a
w t

Tr a a

ρ⎡ ⎤−Δ⎢ ⎥⎣ ⎦Δ = .                                                                      (34) 

Then using symmetry of the equation (7) relatively a  time translation operation , we can 

transform eq. (34) to 

( )
( ) ( )( )

( )

*

*

ˆˆ ˆˆ ˆ;0

ˆ ˆ

eq
V n V k L

nk
s k k

Tr iL a S t a
w t

Tr a a

ρ⎡ ⎤Δ⎢ ⎥⎣ ⎦Δ =  .                                                                        (35) 

The superoperator can be expressed as  (ˆ ;0VS tΔ )

0 0

1ˆ ˆ ˆ( ;0) ( ;0) ( ) ( ;0)
t t

V V V
dS t I d S I d L S
d i

ˆ
Vτ τ τ τ

τ

Δ Δ

Δ = + = +∫ ∫ τ

0

0

.                                        (36) 

The spin-lattice interaction operator always can be chosen in such a way that 

ˆ ˆ( )eq
L LTr V ρ = .                                                                                                                (37) 

Indeed if , it would be by construction a purely spin dependent operator and can 

be included in the spin Hamiltonian 

ˆ ˆ( )eq
L LTr V ρ ≠

ˆ
sH  and instead  the Hamiltonian one can use everywhere 

it’s fluctuating part 

V̂

( )ˆ ˆ ˆ ˆ eq
L LV V Tr Vδ ρ= − .  

Substituting eq. (36) into (35) and using eq. (37) yields for after simple 

transformations: 

( )nkw tΔ

( )
( )

0

ˆˆˆ ˆˆ ˆ( )( ( ) ( ;0) )
( )

ˆ ˆ

t
ea

V n V V k L

nk
s k k

Tr L a L S a d
w t

Spur a a

τ τ ρ
Δ

∗

∗
Δ =

∫ τ
.                                                         (38) 
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The superoperator ˆ ( ;0)VS τ  from eq. (38) contains the oscillating spin variables with the 

characteristic frequency 0ω and the lattice functions depending on time. After Tr  operation being 

performed, the equilibrium lattice correlation functions arise and they are changing during a 

characteristic correlation time 0τ . Suppose that the spin system obeys to the condition of short 

correlation times 
1

0 0min{ , }Sτ ω τ−>> ,                                                                                                          (39)        

where Sτ is a typical time of spin relaxation. Then the time interval tΔ can be chosen to follow a 

condition  
1

0 0min{ ; }S tτ ω τ−>> Δ >> .                                                                                               (40) 

If one expands the superoperator ˆ ( ;0)VS τ from (38) in Tailor’s series by ˆ ( )VL τ  and 

perform integration over time, he finds the terms practically independent on  and the terms 

proportional to ( , where , as well. Let us to call a sum of the former terms as a regular 

part of eq. (38) and a sum of the latter as a singular part of this expression. The regular part of 

eq. (38) is connected with decaying lattice correlation functions appearing after performing 

operation. The regular part can be estimated to be of 

tΔ

)ntΔ 1n ≥

Tr 1
Sτ
− over the order of magnitude. 

The singular part corresponds to the non decaying correlation functions, which containing 

in eq. (38) in terms of order and higher. In typical situations the reasonable estimation of the 

singular part is of order of magnitude 

4V̂
2

Stτ −Δ . If it is true, we can neglect by singular part of eq. 

(38) in comparison with its regular part taking into account relation (40). So eq. (38) can be 

rewritten 

( )
( )

Re0

ˆˆˆ ˆˆ ˆ( )( ( ) ( ) )

ˆ ˆ

ea
V n V V k L

g
nk

s k k

Tr L a L S a d
w

Tr a a

τ τ ρ
∞

∗

∗
=
∫ τ

,                                                       (41)    

where the index denotes, that only the regular part of the integral must be under 

consideration.   

Re g

Note, that  appearance of divergent (or singular) terms  in contributions of perturbation 

theory  in terms higher than second order is an usual situation for all systems with infinitely 

(macroscopically) large degrees  of freedom. A regularization procedure any time is necessary in 

that cases, the quantum field theory is most known example. In our case the divergence, if one 

would formally treat the expression (41), appear due to upper limit of integration. Actually in the 

expression (41) instead infinity in upper limit of integration should be  with a 1
nkwε − 1ε . In 
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this case no divergent terms in the expression (41), which can consider as a transcendental 

equation for the kinetic coefficient . If there exist it’s solution for  nkw 1ε , which dependence 

from ε is negligible, then the approximation of short correlation times is correct.   

In this connection we have to mention the papers by Aminov [13,14], in which the 

contributions from the terms of order to the kinetic coefficients were given a detailed scrutiny 

for the case  of the spin-lattice relaxation in solids. Some results of this works appeared to be    

proof that the contribution of the singular part must be excluded. 

4V̂

In general case, strictly speaking, a definition of the short correlation time approach 

includes the existence of the time interval tΔ , that answers to the condition (40), and negligible 

contribution of the singular part in comparison with that of the regular part, as well. So our 

assumption preceding eq. (41) must be considered as to be purely heuristic character that makes 

our definition of the short correlation time approach reasonable. If discussed assumptions are not 

satisfied, the kinetic equations describing  evolution of spin variables  can not be properly 

approximated by ordinary differential equations of first order and would have essentially integro-

differential character. The memory function formalism, based on projection operator technique is 

more adequate.  

Returning to derivation of kinetic equations we transfer formula (18) by means of eq. (19), 

(25), (35) to 

( ) ( ) ( ) ( )( )0
ˆ ˆˆ ˆn nk k nk s

k k

d a t t i a t t w Tr S t a t
dt

ω ρ+ Δ = + Δ + Δ∑ ∑ ˆk s

Δ

.                                  (42)  

Then since inequality (40) a following relation is valid 

0
ˆ ˆˆ ˆ ˆ( ) ( ) ( ) ( ) ( )S S SS t t S t t t tρ ρ ρΔ ≅ Δ = + .                                                                        (43)  

Note that the approximate equality is true within the order of magnitude 0 / 1sτ τ . 

At last we can replace the operator 0
ˆ ( )S t∗ Δ in eq. (42) by the conjugate one and then after 

using approximation (43) and redenoting the value t t+ Δ as we find that  t

ˆ ˆ( ) ( ) ( )n nk k nk k
k k

d a t i a t w a t
dt

ω< >= < > + <∑ ∑ ˆ >

> eq

.                                                       (44) 

In fact we already derived the kinetic equations for the expectation value of basal operators 

 . Let us show that the equilibrium values ˆ ( )na t< ˆ ˆ( )n na t a< >=< >  the stationary solutions 

of eq. (44). Firs of all note that the equilibrium density matrix of the hole system does not change 

itself under the influence of the evolution superoperator ( )Ŝ t  
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ˆ ˆ ˆ ˆ ˆ( ) eq eq
eq eq S LS t ρ ρ ρ ρ= ≅ .                                                                                   (45)        

where {1 ˆˆ expeq
S

S

H
Z

ρ = − }Sβ is the equilibrium density matrix of spin subsystem.  

Then acting on both sides of the eq. (45) by the superoperator we have *
0

ˆ ( )S t

( ) ( )*
0

ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) eq eq eq eq
eq V eq V S L S LS t S t S t S tρ ρ ρ ρ ρ= ρ

.

.                                                     (45a) 

The set of operators forms a basis in the space 0 1 2ˆ ˆ ˆ, , ,..a a a∗ ∗ ∗ ( )R S as the set 

does. The spin equilibrium density matrix can be represented as a linear 

combination  

0 1 2ˆ ˆ ˆ, , ,...a a a

ˆ
ˆ ˆ

ˆ ˆ( )
k eqeq

S
k s k k

a
a

Tr a a
ρ ∗

∗

< >
=∑ k .                                                                                                      (46)  

Differentiating both parts of eq. (45a) over time yields the result  

ˆˆ ˆ ˆ( ) ( ) 0eq eq
V V S LL t S t ρ ρ .                                                                                                     (47) 

Note, that the eq. (47) gives correct results for the expectation values of spin variables, with 

accuracy of order V̂β , where 1/ Bk Tβ =  is inverse temperature, V̂ is  norm of the  spin-

lattice Hamiltonian. This can bee found using Kubo-Tomita decomposition for the operator 

( ){ } ({ )}ˆ ˆ ˆ ˆ ˆexp exps L s LH H H H Vβ β+ − + +  containing in a hidden way in right sids of the eqs. 

(45) and (45a). Therefore our derivation at this stages needs rather week assumption about high 

temperature approximation relatively the spin-lattice relaxation Hamiltonian, i.e. 1Vβ . 

  In principle, mentioned corrections can be systematically taken into account by 

introducing  effective temperature dependent and time independent spin, lattice and spin-lattice 

interaction  Hamiltonians defined by the following relations correspondingly: 

( )( )
( )( )

*

*

* *

ˆ ˆln

ˆ ˆln

ˆ ˆ ˆ ˆ ˆ ˆ

eq
s B Q

eq
L B s

s L s L

H k T Tr

H k T Tr

H H V H H V

ρ

ρ

≡ −

≡ −

+ + ≡ + + *

.                                                                                           (47a)  

Actually discussed corrections have mainly an academic interest, because for any known 

situation  ˆ 1Vβ  even at temperatures, when the approximation of short correlation times 

starts to be incorrect due to a slow motions of the lattice, for example for transverse relaxation. 

For the longitudinal relaxation, i.e. the spin-lattice relaxation, the BRW equations applicable 

even at small temperatures, if the spin-lattice interaction Hamiltonian is smaller  than the spin 
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Hamiltonian, i.e. ˆ ˆ
sV H  and heat capacity of the lattice is much larger, than heat capacity of  

the spin-system. In this situations we can consider  a commutative subalgebra created only by 

operators of z-projections of spin vectors. All another spin degrees of freedom can be  included 

in an extended lattice. A role of short correlation time  in this case is playing inverse resonance 

frequency 1
0ω
− . 

Note also, that if the operator of the spin-lattice relaxation commute with the Hamiltonian 

of all system, i.e. , then the expression (47) is exact, therefore all 

mentioned corrections connected with nonsecular part of the Hamiltonian . It is  is  oscillating 

and fast time dependent in at the interaction representation, what is a general reason, why 

mentioned corrections can not be large when an approximation of short correlation times is 

correct.     

ˆ ˆ ˆ ˆ ˆ; ; L sV H V H H⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦ 0=

V̂

Now one should remember that operator is equal to unity operator . i.e. 0â 0â I= . 

Inserting the expansion (46) into relation (47) and gathering all terms with in the right-hand 

part one find that  

1k ≥

10 0

ˆˆ ˆˆ( ) ( ) ˆˆ ˆˆ( ) ( )
ˆ ˆ ˆ ˆ( ) ( )

eq
k eq eqV V L

V V k L
ks s k k

aL t S t L t S t a
Spur a a Spur a a

ρ ρ∗∗ ∗
≥

< >
= −∑ .                                                    (48) 

Then we single out the terms with in each sum in eq. (44) and by means of the relation 

(48) transform them to  

0â

1

ˆ ˆ ˆ( ) ( ) ( ( ) )n nk k nk k k
k k

d a t i a t w a t a
dt

ω
≥

< >= < > + < > − < >∑ ∑ ˆ eq

eq

.                                  (49) 

It is obvious that the equilibrium values ˆ ˆ( )n na t a< >=< > belong to a kernel of the 

frequency matrix nkω , i.e. ˆ 0nk k eq
k

aω < > =∑ . For this purpose it is necessary to use relations 

(16a), (46) and commutativity of the spin Hamiltonian with ˆ
SH ˆ eq

Sρ . Note also, that 0 0kω ≡ , 

because , see eq. (16a) .  0â = I

Thus we can transform the eq. (49) to 

ˆ ˆ( ) ( )( ( ) )n nk nk k
k

d a t i w a t a
dt

ω< >= + < > − < >∑ ˆk eq

>

eq

.                                                     (50) 

For the first of equations (50) reduces to the identity . For all other these 

equations describe free relaxation of expectation values of spin operators . It is evident 

that the equilibrium values  form the stationary solution of  kinetic equations 

(50). Uniqueness of solutions reduces to a problem about undegeneracy of the whole matrix of 

0n = 0 0≡ n

ˆ ( )na t<

( )n na t a< >=< >
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kinetic coefficients nk nki wω + , where . The problem about existing the limiting values 

 is closely connected with sign of real part of the eigenvalues of the matrix 

1n ≥

ˆlim ( )nt
a t

→∞
< >

nk nki wω + . Let us denote the mentioned eigenvalues as nλ . So if the spin-lattice relaxation 

operator is such that V̂ Re( ) 0nλ <  for all , the limiting distribution exist for all initial 

conditions and it is the Gibbs equilibrium distribution. If the matrix of kinetic coefficients is 

degenerate, this means that spin-lattice relaxation Hamiltonian does not properly mix spin and 

lattice degrees of freedom, therefore the spin subsystem starting from arbitrary initial state 

should not evolve in course dynamical evolution to equilibrium state with temperature of the 

lattice. 

1n ≥

V̂

When , in the case of multiparticle spin-lattice relaxation the kinetic coefficients 

describe the cross-relaxation transitions of spin-diffusion type, of course, if and are the 

operators relating to different spins. In general case the kinetic coefficients  defined by 

relations (41) are complex. Therefore the imaginary part 

n k≠

nkw ˆna ˆka

nkw

Im nλ  eigenvalues of the matrix 

nk nki wω +  differs from the eigenvalues of the frequency matrix nkiω . This difference is due to 

dynamical shift of the resonance frequencies influenced by spin-lattice relaxation. 

Subsequent calculations of kinetic coefficients can be performed by applying the 

perturbation theory for computation the evolution of superoperator  

nkw

2

1 1 2 2 1 1
0 0 0 0

ˆ ˆ ˆ ˆ ˆˆ( ) exp ( ) 1 ( ) ( ) ( ) ...
tt t t

V V V V VS t T i L t dt i L t dt dt L t dt L t
⎧ ⎫

= − = − −⎨ ⎬
⎩ ⎭
∫ ∫ ∫ ∫ + .                  (51) 

In zero approximation: ˆ ( )VS t I= . Using the definition of and the relation (7a) we 

obtain from eq. (41) 

ˆ ( )VL t

( )
( )

*

0
2

ˆˆ ˆˆ ˆ[ ; ][ ( ); ]
1

ˆ ˆ

ea
n k

nk
s k k

dtTr V a V t a
w

Tr a a

ρ
∞

∗
=

∫ L

.                                                                           (52) 

This result takes into account the contributions to the kinetic coefficients arising in the 

perturbation theory of the second order for the spin-lattice operator . In this case the 

expression (52) does not contains  the singular part mentioned above. In the case of spin-lattice 

relaxation in solids it is just the same as one takes into account both one phonon and multi-

phonon processes of first order. 

nkw

V̂

Considerations of next terms of the expansion (51) that give non-zero contribution to is 

equivalent to the study of the multi-phonon processes of higher order [13,14] . The singular 

nkw
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terms raised  in this case in eq. (38) due to multi-phonon processes connected with the 

“resonant” phonons. Aminov showed [13,14] by a direct calculations that in the approximation 

of short correlation times the singular terms must be excluded from kinetic coefficients. In brief 

the physical essence is that the regular terms are connected with virtual multi-phonon processes, 

but the singular terms are connected with real multi-phonon processes. So the singular terms are 

reducible and they are taken into account in the structure of kinetic equations by the regular 

terms of lower order over the spin-lattice interaction .   V̂

In the case of NMR relaxation in liquids expression (52) is a compact mathematical 

reformulation of the Bloch-Wangsness-Redfield theory. 

 

3. Simplest illustration. 

Let us consider relaxation of a spin 1
2

I =  in an effective molecular  magnetic field. The 

spin operators 0 1 2 3
ˆ ˆˆ ˆ ˆ ˆ, , , ˆ

x ya I a I a I a I= = = = z can be chosen as basal operators. The Hamiltonian 

of the spin-lattice interaction of a spin  with an effective molecular magnetic field  is 

{ }ˆ ( )iV H rγ ∗= − ⋅ I ,                                                                                                        (53) 

where { }( iH r∗ ) is the effective molecular field, depending on spacing between the particles of  

lattice, γ is the gyromagnetic ratio. 

We can express the spin Hamiltonian in a way 

0
ˆ z

SH Îω= ,                                                                                                                     (54) 

where 0ω is the resonance frequency. 

After performing elementary Tr operations we obtain according to eq. (52) 

2

0

{ ( ) (0) ( ) (0)nk k n nkeq eq
w dt H t H H t Hγ δ

∞
∗ ∗= −∫ },                                                    (55) 

where  

0 0

0 0

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

x x

y x

z z

H t Cos tH t Sin tH t

H t Sin tH t Cos tH t

H t H t

ω ω

ω ω

∗ ∗

∗ ∗

∗ ∗

⎫= + y

y

∗

∗
⎪⎪= − + ⎬
⎪

= ⎪⎭

,                                                                        (56)    

and the brackets denote the averaging over the equilibrium density matrix of lattice ... eq< > ˆ eq
Lρ . 

Note that the time dependence of equilibrium correlation functions that are the components of 
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the effective magnetic field { }( ( ) ) ( )iH r t H t∗ ≡ ∗ is caused by transition to the interaction 

representation with the Hamiltonian  0
ˆ ˆ ˆ

s LH H H= + . 

The terms including ( )0cos tω correspond to the relaxation processes and the terms with 

( 0sin t )ω  describe the dynamical shift of the resonance frequency. In the simplest isotropic case, 

when  

1( ) (0) ( ) (0)
3 eqH t H H t Hα β αβδ∗ ∗ ∗ ∗< >= < > ,                                                                  (57)             

the standard results are obtained: kinetic of spin relaxation is characterized by two relaxation 

times and : 1T 2T

( )2
33 0

1 0

1 2 ( ) (0)
3 eq

w dt cos t H t H
T

γ ω
∞

∗ ∗= − = ∫ ,                                                            (58) 

2
11 22

2 10

1 1 ( ) (0)
3 2eq

w w dt H t H
T T

γ
∞

∗ ∗= − = − = +∫
1 1

.                                                    (59) 

If the time dependent correlation function ( ) (0)
eq

H t H∗ ∗  is monotonically decaying and 

for any resonance frequencies   

2 1

1 1
T T

≥ .                                                                                                                              (60) 

The dynamical shift of resonance frequency is 

( )2
0 12 0

0

1 sin ( ) (0)
3 eq

w dt t H t Hω γ ω
∞

∗ ∗Δ = − = − ∫ .                                                             (61) 

The equations (50) coincide with classical Bloch equations [5-8]. If we are deal with 

enough complex system, for examples, liquids in porous system, membranes, liquid crystals and 

so on, the correlation matrix  ( ) (0)H t Hα β
∗ ∗< >  can appear to be nonscalar. The kinetic 

equations (50) describe a time evolution of three different spin  components. In general case here 

At low resonance frequencies, in a general case, here  can be three independent relaxation modes 

and become possible situations, when inequality (60) is incorrect, i.e. 
2 1

1 1
T T

< .  

Now let us consider a proof that all known relations of the BWR theory appear to be a 

particular case of eq. (50) when the approximation (52) is used for kinetic coefficients . We 

denote the whole set of quantum numbers of spin subsystem as 

nkw

ν . It is obvious that the spin 
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operators '
ˆ 'Pνν ν ν≡ ,    forms a basis in the space of spin operators. So we can consider 

operators 'P̂νν as the operators , holding that indicates double index ˆna n 'νν .  

The kinetic equations (50) appear to be the equations for the evolution of matrix elements 

of spin density matrix in the laboratory frame. Then, if one presents the operator as a sum of 

products of spin and lattice operators,  the commutations in relation (52) can be performed in 

evident way and the trace operation can be expressed as a sum of corresponding matrix elements. 

Comparison of bulky and noninvariant expressions with results of the BWR theory convinced 

that they are identical. 

V̂

In recent paper [15] it was shown that Redfield [4] and Torrey [16] approaches for treating 

of magnetic-field induced spin relaxation are identical. This conclusion  automatically follow 

from our  general derivation of the kinetic equations (52), which did not use any specific forms 

for a propagator describing  spatial  displacements of the spin. An experimental importance of 

this mechanism relaxation was recently demonstrated in paper [17]. 

 

4. Conclussion. 
Both  equations (50) and (41) give a general and complete solution of the problem of 

constructing the kinetic equations and calculating the kinetic coefficients for spin variables in the 

approximation of short correlation times and large heat capacity of the lattice. The expansion in 

the Liouville superoperator  series (51) caused by the Hamiltonian spin-lattice interaction 

in the Dirac representation allow to calculate the kinetic coefficients with necessary 

accuracy. In particular, obtained  kinetic equations  can be applied for describing relaxation of 

multi-spin system relaxation. The eq. (50) involves all contributions of the second order over the 

spin-lattice interaction Hamiltonian and represents a new invariant and compact mathematical 

reformulating the BWR theory  convenient for performing specific calculations (compare, for 

example, discussions of BWR theory in papers  [12, 18-21] and it’s interesting applications).  

ˆ ( )VL t

nkw

V̂
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