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  Abstract  
Global demand for biocontrol products is forecast to rise, and their use will likely make it easier to adopt 
sustainable agriculture practices. In sustainable agriculture, the use of new biocontrol agents is essential for 
developing an efficient crop-protection plan. Many plant diseases have natural enemies among the yeasts that 
inhabit a wide variety of environmental niches. Yeasts can swiftly colonize plant surfaces, use a wide variety of 
nutrients, tolerate a broad temperature range, and create no toxic metabolites, all without negatively impacting 
the final food products. This means they have the potential to serve as an effective biocontrol agent. This 
document provides a concise overview of yeast's biological properties and capabilities. The protective strategies 
yeasts use against plants are also discussed. Some of these mechanisms include the release of volatile organic 
chemicals, the synthesis of lethal poisons, the battle for limited resources, the synthesis of lytic enzymes, the 
development of plant immunity, and mycoparasitism. Additionally, examples of yeasts employed for pre- and 
post-harvest biocontrol are offered, and the underlying processes by which yeasts interact with their plant hosts 
are outlined. The benefits and drawbacks of yeast-based goods are outlined, as well as a list of commercially 
accessible yeast-based products. 
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INTRODUCTION 
Biopesticides and biofertilizers, often known as 
"microbial-based" pesticides or fertilizers, are 
projected to play a larger role in agricultural operations 
throughout the globe as part of a drive to adopt 
sustainable agriculture policy. By improving crop 
nutrition and acting as biopesticides, several microbial 
strains have the potential to increase plant production 
[1]. Yeasts are included because of their direct and 
indirect effects on pathogenic bacteria. Pathogenic 
bacteria may have an adverse effect on crops at any 
time, including before, during, and after harvest. As a 
result of plant infections, yields and quality of crops are 
drastically reduced, and they may no longer be suitable 
for human use. A health danger may also be posed by 

infected goods. Chemical plant-protection products are 
often utilized in modern, intensive farming. However, 
organic farmers are not allowed to utilize any methods 
that include the application of chemicals to their crops. 
There are also potential drawbacks to using pesticides, 
such as the development of resistance in pests to the 
active ingredients. 
For both ethical and environmental reasons, today's 
conscientious shoppers are more likely than ever to 
choose organically cultivated foods. Yeasts and other 
microorganisms used in biopesticides may contribute 
to the production of such goods. The introduction of 
novel biocontrol agents into the biopesticide market is 
still necessary to provide an efficient crop-protection 
strategy in sustainable agriculture. We still need to 
learn more about and implement hostile yeasts into 
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practice as a possible biocontrol agent. Yeast is a 
promising microorganism for use as an antagonist 
against plant pathogens because it satisfies all the 
requirements for such a role, including rapid 
colonization of the plant surface, component 
utilization, temperature tolerance, metabolites 
production which are no harmful, and effects on the 
final food product detrimental absence. It's clear that 
they're actively metabolizing. They are successful in 
many environments because of the ways in which they 
influence other microorganisms, such as by lowering 
the number of phytopathogens. To determine which 
yeast species and strains have the potential to be 
utilized as biofungicides, it is sufficient to cultivate 
them and collect their metabolites. Yeasts ferment 
sugars into carbon dioxide and water in an aerobic 
environment, whereas in an anaerobic environment, 
alcohol is produced. Their colonies are made up of 
individual cells that might be spherical, elliptical, oval, 
or cylindrical. The species, cultural context, and 
colony's age all have a role in determining their size 
and form. The length and breadth of the cells normally 
fall between 3 and 10 m and 2 and 7 m, respectively. 
They have both asexual (vegetative) and sexual modes 
of reproduction (sexually). In order for yeast to initiate 
its initial form of asexual reproduction—budding—
specific parameters must be met, such as a warm 
temperature and an abundance of food. Candida, 
Saccharomyces, Pichia, and Rhodotorula are all fungi 
that reproduce in this manner. The bud cells are 
miniature versions of the parent cells. The cells may 
break out from the parent cell to produce a new 
organism or merge with it to form a pseudomycelium, 
as seen in the genus Candida. Fission is the second kind 
of asexual reproduction. The cell develops by 
extending itself in one direction, and the offspring are 
exact replicas of the parent. Schizosaccharomyces is 
known for reproducing in this manner. Yeasts go 
through sporulation when they are under stress, as 
when they don't have enough food. In each species of 
yeast, the spores take on a distinct form. Asexual 
reproduction results in the formation of diploids when 
haploid spores successfully mate. 
A lower rate of horizontal gene transfer is seen in these 
organisms due to the complexity of their genome 
architecture when compared to other fungus. In 
addition, the absence of plasmids in most yeast species 
(with the exception of several S. cerevisiae strains) 
eliminates the potential danger posed by plasmid-based 
pathogenicity and toxin production genes. 
 

Yeasts Bioactivity Mechanisms 
Unlike bacteria and filamentous fungus, yeasts' 
impacts on plants and their diseases are not as well 
documented. They aid in the development and defense 

of agricultural plants in both direct and indirect ways. 
Both as biostimulants to promote growth and as 
biopesticides to control the spread of disease, they are 
beneficial to plants. For yeasts to be effectively used as 
plant-protection agents, it is necessary to have a firm 
grasp of the methods through which they communicate 
with plants and plant diseases. 
VOCs are byproducts of the main and secondary 
metabolism of microorganisms such fungus, bacteria, 
and yeast [2]. They help other microbes develop or 
keep them in check, depending on the species [3], and 
they communicate between cells [4]. These have a high 
vapor pressure at ambient temperature and are 
insoluble in water despite their tiny size (often < 300 
Da). No direct interaction between the biocontrol agent 
and the pathogen is required. In recent research, the 
volatilome's function has been outlined. Sporidiobolus 
pararoseus Fell & Tallman [5], Candida sake [6], 
Hanseniaspora [7], Wickerhamomyces anomalus (E.C. 
Hansen) Kurtzman, Mucor pulcherrima, 
Aureobasidium pullulans, and Saccharomyces 
cerevisiae [8,9] are only few of the species that create 
volatile organic compounds. They have been shown to 
be effective in inhibiting the development of harmful 
microorganisms including Botrytis cinerea and 
Colletotrichum acutatum.  
All bacteria, including plant diseases, compete with 
yeasts for food and habitat [21,22]. As its principal 
method of action, this mechanism is crucial for 
safeguarding plant goods in storage, such as fruit 
storage [21], and in the natural environment, where 
supplies may be scarce. Yeasts are able to block the 
pathogen's mycelial development and spore formation 
because they grow quickly and intensely, producing a 
biofilm on the plants surface. This biofilm is a 
membrane of linked microorganisms that may be 
considered as a consortium or a single organism. 
Yeasts can colonize plant surfaces, particularly in 
damaged places where diseases may more easily get 
access to released nutritional substrates [23]. In order 
to increase their biomass, yeasts consume available 
nutrients, leaving less for disease-causing 
microorganisms to use. Individual yeast cells adhere to 
the surface of the plant during biofilm development, 
creating a network of intercellular bridges and hyphae 
or pseudohyphae [24,25]. 
Another well-studied process is the synthesis of lytic 
enzymes by the yeast upon coming into contact with 
the pathogen. Necrotrophs are an especially good 
match for this mechanism [33]. Enzymes including 
chitinases, glucanases, lipases, and proteases may all 
be secreted by yeasts. Secreted chitinases are beneficial 
for biocontrol agents because they facilitate the 
effective breakdown of the cell wall of plant diseases. 
Candida, Metschnikowia, Meyerozyma, Pichia, and 
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Saccharomyces are only few of the yeast genera where 
this action has been shown [34–37]. Furthermore, by 
digesting chitin and generating chitooligosaccharides, 
chitinases may promote natural plant immunological 
responses [38]. Lipases are enzymes that function on 
substrates that are insoluble in water. The yeasts 
Candida and Cryptococcus have been shown to have 
them [39,40]. Fungal cells rely on beta-glucans for 
adhesion and toxin tolerance in the cell wall. 
Proteases play a crucial role in competitive processes, 
although their synthesis by yeast has not been well 
researched. Candida oleophila Montrocher's protease 
secretion was characterized by Bar-Shimon et al. [34], 
while that of Metschnikowia, Pichia, and 
Wickerhamomyces was described by Pretscher et al. 
[45]. Yeasts may also boost a plant's defense 
mechanism naturally [46]. The presence of microbes, 
including diseases, may be detected and dealt with by 
the plant's own immune system. This resistance is 
produced everywhere throughout the body. By 
increasing the synthesis and activity of molecules such 
phytoalexins [47], chitinase and -1,3-glucanase [48], 
and peroxidase [49], yeasts may trigger the systemic 
defense of plants against a wide variety of diseases. 
The vital plant defense mechanism of mycoparasitism 
is very seldom discussed. Yeast's ability to cling to and 
perforate the fungus's cell wall is a key aspect of this 
process because it causes the cell cycle to be arrested, 
which in turn alters the fungus's shape and reduces its 
turgor. Glucanase and other enzyme secretion are 
associated with this process (described above).  
 

Plant Hosts and Yeasts Interaction with 
each other  
Yeasts in the soil are beneficial to plant root 
development [57-59] and are concentrated in the 
rhizosphere [54-56]. Colonizing yeasts, especially 
those on the surface of leaves [62-64], boost plant 
development [60,61]. Making plant nutrients (such 
nitrogen, phosphorous, and potassium) accessible for 
plants may be the mechanism for promoting plant 
development [65]. They also play a crucial role in 
regulating plant development and physiology by 
secreting hormones including auxins and cytokinins 
[66]. Yeasts also help plants endure physiological 
stress better [67]. 
Plants' access to nutrients is improved with the help of 
yeasts. Reduced plant output may be attributed, in part, 
to insufficient nitrogen (N) availability [68]. Bacteria 
are one kind of microbe that plants often employ to get 
nitrogen [67]. However, this capacity is shared by 
certain yeast species. Significant contributions are 
made by the yeast-produced enzyme 1-
aminocyclopropane-1-carboxylase (ACC), which 
catalyzes the release of significant quantities of 

ammonia and so sets in motion a microbe-mediated 
nitrogen-acquisition mechanism in plants [70]. 
Deaminases may be produced by a number of yeasts, 
including Candida tropicalis and several species of 
Cryptococcus [71]. Denitrification, the process by 
which nitrate is reduced to nitrogen or nitrite in 
between anaerobic respiration and converted to 
physiologically usable forms for plants [72-74], is 
facilitated by other yeasts. Phosphorus (P) is second 
only to nitrogen as a vital plant nutrient [75]. Crop 
yields might be drastically impacted by its 
inadequacies. Microbes may use either organic or 
inorganic forms of this element to make it accessible to 
plants [76]. The Rhodotorula genus, for example, 
offers dissolved phosphorus by reducing the pH of the 
water [77-79]. Other examples are the Ca3(PO4)-
dissolving bacteria C. tropicalis and Lachancea 
thermotolerans (Filippov) Kurtzman. Also, some soil-
dwelling organisms produce citric acid to break down 
inorganic phosphorus complexes [69]. Potassium (K), 
the third most important macronutrient for plants, is 
essential for a variety of functions, including plant 
development [70]. Most of this element in soil is bound 
up in insoluble mineral complexes, therefore the 
microorganism's involvement in unlocking it is crucial 
[80]. 
The presence of microbes may improve the availability 
of other nutrients for plants. The formation of organic 
acids in the rhizosphere is often to blame for this 
phenomenon. Some yeasts, including S. cerevisiae and 
Williopsis californica (Lodder) Kurtzman, Robnett, 
and Basehoar-Power, have been found to oxidize sulfur 
and other nutrients [83–85]. 
Phytohormones are plant growth hormones that yeast 
may produce. Auxins, which include the heterocyclic 
chemical component indole [86] (conjugated benzene 
and pyrrole rings) govern several critical plant 
activities [87]. According to X.Z. Liu, F.Y. Bai, M. 
Groenew, and B. Boekhout, Rhodosporidiobolus 
fluvialis (Fell, Kurtzman, Tallman & J.D. Buck) Wang, 
Q.M., Bai, F.Y., Groenew, M., and Boekhout, B. 
Yeasts such as Candida maltosa and P. kudriavzevii 
Komag., Nakase & Katsuya [58,66,70,88]. The 
cytokinins are a class of phytohormones that may be 
produced by yeast. There is significant evidence that 
they influence plant cell division. Sporobolomyces 
roseus Kluyver & C. B. Niel, Mucor pulcherrima, and 
Acremonium pullulans are all examples of such 
organisms [89]. Also present are yeasts that generate 
gibberellic acid, a plant growth stimulator that has been 
shown to hasten germination [90]. 
Reduced crop yields, even by more than half, may be 
attributed to abiotic stress [91]. Fortunately, 
microorganisms like yeasts help alleviate this stress by 
preventing the negative consequences of high 
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temperatures [92,93], prolonged periods of drought 
[94,95], high salinity [96,97], and the presence of 
heavy metals [84]. In response to abiotic stress, plants 
often release the hormone ethylene [98-100]. This plant 
regulator is quite powerful, with a wide range of 
effective concentrations. When a plant is being grown, 
its output affects every step of growth [101]. Extremely 
high concentrations of ethylene, however, have been 
shown to be deleterious to plant growth [102,103]. 
Plant development is stimulated by ethylene, although 
a deaminase enzyme found in bacterial cytoplasm 
helps keep levels low [104]. It has been reported that 
certain yeasts can inhibit ethylene production and 
stimulate plant growth. These yeasts include Candida 
tropicalis, Pichia rugulosa, Pichia antarctica, 
Aspergillus pullulans, Dothideomycetes sp., 
Cryptococcus sp., Rhizophagus paludigenum, and 
Trichoderma globosus [58,67,105,106]. 
 

Use of Yeast for Postharvest Protection 
Products now on the market provide for biological 
management of postharvest illnesses. Products based 
on beneficial organisms, the efficacy of which is very 
context-dependent, are still few. Some 30%-50% of the 
fruit never reaches the customer due to spoilage during 
storage [113]. Fungal infections include Alternaria, 
Botrytis, Colletotrichum, Fusarium, Monilia, 
Penicillium, and Rhizopus are responsible for a 
significant portion of crop losses. In the modern period, 
with its expanding population and limited natural 
resources, reducing these losses is crucial [114]. 
Although microorganism-based agents, such yeast, 
show promise for avoiding such losses, there is 
currently a dearth of them on the market. Research into 
such biological agents seems to be crucial in light of 
the rising awareness and desire among consumers for 
high-quality items preserved by natural means. 
Strawberries, tomatoes, grapes, kiwis, mangoes, pears, 
and apples have all been named as examples of foods 
that may be preserved using yeast-based treatments. 
Kowalska et al. [115] conducted two tests to assess the 
efficacy of the yeast species Cryptococcus albidus in 
preventing Botrytis cinerea infection in strawberries 
after harvest. After 10 days of storage, the proportion 
of damaged fruit rose. B. cinerea is a major fruit-
storage pathogen. R. glutinis[116], Hanseniaspora 
opuntiae Cade, Poot, Raspor, & M.T. Sm [117], A. 
pullulans[118,119], and L. thermotolerans and M. 
pulcherrima[120] have all been shown to be effective 
against grey mold. Additional research showed that 
chitin extracted from S. cerevisiae cell walls was 
efficient in preventing apple decay during storage 
[121]. Scheffersomyces spartinae (Ahearn, Yarrow, & 
Meyers) Kurtzman & M. Suzuki and Candida 
pseudolambica M.T. Sm. & Poot have both been 

shown to be beneficial in apple protection via studies 
on the impacts of yeasts recovered from sea sediments 
[122]. 
Losses in fruit storage may also be brought on by the 
fungus species Aspergillus. Tryfinopoulou et al. [123] 
investigated and found that Rhodotorula, 
Metschnikowia, Saccharomyces, and Pichia yeasts 
were all efficient against Aspergillus. The antagonistic 
action of S. pararoseus against Aspergillus niger Tiegh 
was reported by Li et al. Candida nivariensis (Alcoba-
Flórez, Méndez-lv., Cano, Guarro, Pérez-Roth & 
Arévalo) was reported to be effective against 
Aspergillus flavus Link by Jaibangyang et al. [125]. In 
addition to molds and mildews, penicillium is another 
potential problem in storage. M. pulcherrima was 
shown by Assaf et al. [126] to be efficacious against 
four different strains of P. expansum, reducing illness 
symptoms in humans. Candida sake (Saito & Oda) van 
Uden & H.R. Buckley, isolated from the Arctic 
environment, was shown to be effective against P. 
expansum by Alvarez et al. [127]. An increased 
immune response to Penicillium digitatum was 
reported by Hershkovitz et al. [128], while the cell wall 
of Rhodosporidium paludigenum (Fell & Tallman) 
Q.M. Wang, F.Y. Bai, M. Groenew. & Boekhout was 
shown to do the same by Sun et al. [121]. 
 

Products Available for Crop-Protection 
as Yeast-Based Worldwide 
Currently, there are a number of yeast-based 
bioproducts and a yeast-cell-wall-derived bioproduct 
registered on a global scale (Table 3). Germinated cells 
of A. pullulans may be found in fungicides like 
Blossom Protect (a bactericide and fungicide) and 
fungicides like Botector and BoniProtect (strains DSM 
14940 and DSM 14941). Blossom Protect may be used 
in cold storage facilities and apple orchards to prevent 
the spread of fire blight, bitter rot, grey mold, damp and 
brown rot, and anthracnose. Grapevines, strawberries, 
and other fruits are protected against grey mold with 
the help of Botector. To prevent the spread of Pezicula 
sp., Nectria sp., B. cinerea, Monilinia fructigena 
Honey, and P. expansum, orchards utilize BoniProtect. 
The fungicide Julietta, which contains the LAS02 
strain of S. cerevisiae, is used to protect strawberries 
and tomatoes against grey mold in protected 
environments like greenhouses and cold frames. The 
yeast C. oleophila found in Nexy is effective against 
grey and blue mold that may develop on apples and 
pears during storage. Postharvest deterioration in some 
fruits and berries caused by Botrytis and Monilinia spp. 
may be prevented with the use of Noli, which contains 
the Metschnikowia fructicola strain NRRL Y-27328 
KM1110 WDG. Plants like grapevines, lettuce, 
tomatoes, strawberries, and cucumbers may be 
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protected against powdery mildew and grey mold with 
the help of Romeo, a product containing cerewisan and 
whose major constituent is the cell walls of S. 
cerevisiae. 
Increased commercial availability of yeast-based 
products, frequently in combination with other 
microorganisms and plant extracts, are also accessible 
as plant growth and development enhancers. In contrast 
to plant protection products, agricultural fertilizers are 
not subject to the same level of scrutiny about their 
fitness for use in agriculture. Likewise, it's not easy to 
construct a list of such commercial items that are 
accessible in many nations. 
 

Prospects 
The usage of agrichemicals may be reduced or 
eliminated entirely and plant quality improved by 
including microbial agents into plant protection. 
However, there are stringent standards that must be met 
by biological plant protection agents. They must be 
very effective in preventing the spread of disease-
causing organisms. Both in vitro and in planta 
investigations are time-consuming and costly, making 
development and execution a lengthy process. In 
theory, they should have a low cost per unit of biomass 
produced, but in practice, the production process is 
often tedious and resource-heavy. To enable the 
microorganisms' survival, a suitable carrier (such 
lignite dust) must be utilized. Their usefulness and 
viability depend on correct formulation. Yeasts, like 
other biocontrol agents, may be made more effective 
and last longer with the help of the correct carrier, one 
that is efficient, biodegradable, and nonpolluting. At 
the moment, solid (peat, powder, and granules) and 
liquid carriers are employed for biopesticides. It is also 
essential that, regardless of manufacturing size, the 
antagonistic qualities shown in the lab be maintained. 
Keeping their antagonistic characteristics and ensuring 
consistent performance throughout a wide range of 
environmental conditions is another challenge. The 
bacteria' compatibility with the plant is also crucial. 
The number of yeast strains showing antagonistic 
action against plant diseases in laboratory trials is far 
larger than those put into practice for a variety of 
reasons, including the difficulties already mentioned. 
Systemic biocontrol techniques that take into account 
beneficial microorganisms, crops, pests, and 
agricultural practices are needed to address these 
challenges [129]. Biocontrol approaches and tactics 
need adjustments to the present productive structure, 
which includes technological production systems, 
regulations, and markets [130]. 
Despite these obstacles, there is a pressing need for the 
research, development, and commercialization of 
biological organic crop protectants and yield 

enhancers. As was previously indicated, yeasts are 
ecologically benign and may take part in the 
bioremediation method [131]. Moreover, they can be 
employed as biocontrol agents against plant infections. 
Rhodotorula mucilaginosa was utilized to get rid of 
neonicotinoid pesticides and thiacloprid [72], while 
Rhodotorula glutinis and Rhodotorula rubra were 
demonstrated to decompose organophosphorus 
chlorpyrifos [132]. In addition to granulovirus, which 
enhances larval mortality and ensures improved 
protection of the apple tree against apple fruit invasion 
by Cydia pomonella [135], genetically engineered 
yeast strains M. pulcherrima, Cryptococcus tephrensis 
and A. pullulans may lower pest populations [133,134]. 
In field trials with cotton, tomato, and maize, a 
modified Yarrowia liplytica yeast successfully 
eradicated Helicoverpa armigera by producing the 
pest's sexual pheromone [136-138]. 
 

Conclusions 
Effective, long-lasting, and ecologically benign, 
biological control using microorganisms [139]. 
Successful use of it may lessen the need for chemical 
fungicides, which have a major negative impact on 
human health and the environment [140]. As the need 
for biological plant-protection agents grows, more 
study into the topic is warranted; this is especially true 
when considering the fact that living microorganisms 
require specific environmental conditions in order to 
survive after application; as such, the strategy of 
treatments based on living yeasts or substances 
produced by them must be developed in tandem with 
the technology of production for these biological 
products [141,142]. 
Yeasts have significant protective capabilities and have 
been recognized for a while, so the prospects for 
utilising them are highly intriguing. The molecular 
connection between the plant pathogen and the yeast 
cell that triggers the plant's defensive response is still 
the subject of active research. In response to abiotic 
stressors, plants release the hormone abscisic acid 
(ABA). Numerous gene duplications encoding 
homologous signaling components are required for the 
efficient operation of the intricate ABA signaling 
system. Among the various functions of 
phytohormones is abscisic acid's (ABA) ability to 
boost a plant's resilience to a variety of abiotic 
stressors. The function of this complex and the highly 
multiplexed main signaling channel are being studied 
using yeast as a reconstitution system. More research 
is required to determine whether of the newly 
developed models from the reconstructed ABA signal 
transduction pathway in yeast are reflective of the 
signaling pathways found in plants. As with 
nanocompounds [143], maybe isolating molecules and 
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getting to work on them can aid in the development of 
new protective revolutionary bioproducts. 
Nanocompounds with a low environmental impact, 
which are occasionally mixed with bioinoculants, have 
been shown to be an effective replacement for chemical 
fertilizers in environmentally friendly farming 
[144,145]. Creating nanotechnology using yeast 
compounds for application in plant defense is a new 
and exciting task. 
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