Nadja Rüger

Nadja Rüger
  • PhD
  • German Centre for Integrative Biodiversity Research

About

100
Publications
100,216
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
11,542
Citations

Publications

Publications (100)
Article
Full-text available
All species must partition resources among the processes that underly growth, survival, and reproduction. The resulting demographic trade‐offs constrain the range of viable life‐history strategies and are hypothesized to promote local coexistence. Tropical forests pose ideal systems to study demographic trade‐offs as they have a high diversity of c...
Article
Full-text available
Replicating existing models and their key results not only adds credibility to the original work, it also allows modellers to start model development from an existing approach rather than from scratch. New theory can then be developed by changing the assumptions or scenarios tested, or by carrying out more in-depth analysis of the model. However, m...
Chapter
Full-text available
A principal goal for the 50-ha plot on Barro Colorado Island has been to understand demographic variability across the entire community of tree species. Early work used a gap-shade dichotomy, but both recent improvements in statistical methods have quantified the response of growth, survival, and recruitment to light across the entire community. Th...
Article
Full-text available
Soil is central to the complex interplay among biodiversity, climate, and society. This paper examines the interconnectedness of soil biodiversity, climate change, and societal impacts, emphasizing the urgent need for integrated solutions. Human‐induced biodiversity loss and climate change intensify environmental degradation, threatening human well...
Preprint
Full-text available
How can we meet economic objectives of timber harvesting while maintaining the functioning of diverse forest ecosystems? Existing forest models that address this type of question are often complex, data-intensive, challenging to couple with economic optimization models, or can not easily be generalised for uneven-aged mixed-species forests. Here, w...
Article
Full-text available
Climate extremes are on the rise. Impacts of extreme climate and weather events on ecosystem services and ultimately human well‐being can be partially attenuated by the organismic, structural, and functional diversity of the affected land surface. However, the ongoing transformation of terrestrial ecosystems through intensified exploitation and man...
Article
Full-text available
Secondary tropical forests play an increasingly important role in carbon budgets and biodiversity conservation. Understanding successional trajectories is therefore imperative for guiding forest restoration and climate change mitigation efforts. Forest succession is driven by the demographic strategies—combinations of growth, mortality and recruitm...
Preprint
Intraspecific variability (IV) has been proposed as a new track to explain species coexistence. Previous studies generally assumed that IV results from intrinsic differences between conspecifics that widen species’ fundamental niches and blur differences among species, thus impeding stable coexistence, but also slowing down the rate of competitive...
Article
Full-text available
Both tree size and life history variation drive forest structure and dynamics, but little is known about how life history frequency changes with size. We used a scaling framework to quantify ontogenetic size variation and assessed patterns of abundance, richness, productivity and light interception across life history strategies from >114,000 trees...
Article
Full-text available
The core principle shared by most theories and models of succession is that, following a major disturbance, plant–environment feedback dynamics drive a directional change in the plant community. The most commonly studied feedback loops are those in which the regrowth of the plant community causes changes to the abiotic (e.g. soil nutrients) or biot...
Article
Full-text available
Understanding the mechanisms underlying diversity–productivity relationships (DPRs) is crucial to mitigating the effects of forest biodiversity loss. Tree–tree interactions in diverse communities are fundamental in driving growth rates, potentially shaping the emergent DPRs, yet remain poorly explored. Here, using data from a large‐scale forest bio...
Preprint
Full-text available
Climate extremes are on the rise. Impacts of extreme climate and weather events on ecosystem services and ultimately human well-being can be partially attenuated by the organismic, structural, and functional diversity of the affected land surface. However, the ongoing transformation of terrestrial ecosystems through intensified exploitation and man...
Preprint
Full-text available
The core principle shared by most theories and models of succession is that plant-environment (PE) feedback dynamics drive a directional change in the plant community, following a major disturbance. The most commonly studied feedback loops are those in which the regrowth of the plant community causes changes to the biotic (e.g., dispersers) or abio...
Preprint
Full-text available
Secondary tropical forests play an increasingly important role for carbon budgets and biodiversity conservation. Understanding successional trajectories is therefore imperative for guiding forest restoration and climate change mitigation efforts. Forest succession is driven by the demographic strategies (combinations of growth, mortality and recrui...
Article
Full-text available
Aim Globally distributed plant trait data are increasingly used to understand relationships between biodiversity and ecosystem processes. However, global trait databases are sparse because they are compiled from many, mostly small databases. This sparsity in both trait space completeness and geographical distribution limits the potential for both m...
Article
Full-text available
Aim Tropical forest succession and associated changes in community composition are driven by species demographic rates, but how demographic strategies shift during succession remains unclear. Our goal was to identify generalities in demographic trade‐offs and successional shifts in demographic strategies across Neotropical forests that cover a larg...
Article
Full-text available
Intraspecific variability (IV) has been proposed to explain species coexistence in diverse communities. Assuming, sometimes implicitly, that conspecific individuals can perform differently in the same environment and that IV increases niche overlap, previous studies have found contrasting results regarding the effect of IV on species coexistence. W...
Article
Conserving the tree species of the world requires syntheses on which tree species are most vulnerable to pressing threats, such as climate change, invasive pests and pathogens, or selective logging. Here, we review the population and forest dynamics models that, when parameterized with data from population studies, forest inventories, or tree rings...
Preprint
Life history variation in trees is a ubiquitous feature of tropical forests that may facilitate the niche partitioning of light. However, many tests have failed to detect light partitioning by saplings in gaps, which may reflect the stochastic nature of understory light penetration and recruitment. We argue that tree size is a critical component of...
Article
Full-text available
Here we provide the ‘Global Spectrum of Plant Form and Function Dataset’, containing species mean values for six vascular plant traits. Together, these traits –plant height, stem specific density, leaf area, leaf mass per area, leaf nitrogen content per dry mass, and diaspore (seed or spore) mass – define the primary axes of variation in plant form...
Preprint
Ecological theory aims to understand how and why species differences allow competitors to coexist, but explanations remain inconsistent with data. Tightly constrained parameter tradeoffs needed for coexistence in models contrast with evidence that forests can support high diversity and be invaded repeatedly by species that lack specialized tradeoff...
Preprint
Full-text available
The role of intraspecific variability (IV) in shaping community dynamics has been intensively discussed over the past decade and modeling studies have played an important role in that respect. However, a major, but often implicit, assumption typically made by these studies, that IV can be represented by independent random draws around species-speci...
Preprint
Full-text available
Context: Intraspecific variability (IV) has been proposed to explain species coexistence in diverse communities. Assuming, sometimes implicitly, that conspecific individuals can perform differently in the same environment and that IV blurs species differences, previous studies have found contrasting results regarding the effect of IV on species coe...
Preprint
One goal for the 50-ha plot on Barro Colorado Island since its inception has been to understand demographic variability across the entire community of tree species. Early papers classified demographic response of many species to canopy gaps, culminating over the last decade with improved statistical methods that could quantify the response of growt...
Preprint
THIS PREPRINT IS A DUPLICATE OF 10.1101/2022.03.16.484259 Context: Intraspecific variability (IV) has been proposed to explain species coexistence in diverse communities. Assuming, sometimes implicitly, that conspecific individuals can perform differently in the same environment and that IV blurs species differences, previous studies have found co...
Article
Full-text available
Organisms of all species must balance their allocation to growth, survival and recruitment. Among tree species, evolution has resulted in different life‐history strategies for partitioning resources to these key demographic processes. Life‐history strategies in tropical forests have often been shown to align along a trade‐off between fast growth an...
Preprint
Tropical forest succession and associated changes in community composition are driven by species’ demographic rates, but how demographic strategies shift during succession remains unclear. To identify generalities in demographic trade-offs and successional shifts in demographic strategies, we quantified demographic rates of 787 tree species from tw...
Article
Full-text available
Plant functional traits can predict community assembly and ecosystem functioning and are thus widely used in global models of vegetation dynamics and land–climate feedbacks. Still, we lack a global understanding of how land and climate affect plant traits. A previous global analysis of six traits observed two main axes of variation: (1) size variat...
Article
Full-text available
Resilient secondary tropical forests? Although deforestation is rampant across the tropics, forest has a strong capacity to regrow on abandoned lands. These “secondary” forests may increasingly play important roles in biodiversity conservation, climate change mitigation, and landscape restoration. Poorter et al . analyzed the patterns of recovery i...
Preprint
All species must balance their allocation to growth, survival and recruitment. Among trees, evolution has resulted in different strategies of partitioning resources to these key demographic processes, i.e. demographic trade-offs. It is unclear whether the same demographic trade-offs structure tropical forests worldwide. Here, we used data from 13 l...
Preprint
All species must balance their allocation to growth, survival and recruitment. Among trees, evolution has resulted in different strategies of partitioning resources to these key demographic processes, i.e. demographic trade-offs. It is unclear whether the same demographic trade-offs structure tropical forests worldwide. Here, we used data from 13 l...
Article
Full-text available
Community composition is a primary determinant of how biodiversity change influences ecosystem functioning and, therefore, the relationship between biodiversity and ecosystem functioning (BEF). We examine the consequences of community composition across six structurally realistic plant community models. We find that a positive correlation between s...
Preprint
Full-text available
Community composition is a primary determinant of how biodiversity change influences ecosystem functioning and, therefore, the relationship between biodiversity and ecosystem functioning (BEF). We examine the consequences of community composition across six structurally realistic plant community models. We find that a positive correlation between s...
Article
Full-text available
There is an urgent need to synthesize the state of our knowledge on plant responses to climate. The availability of open-access data provide opportunities to examine quantitative generalizations regarding which biomes and species are most responsive to climate drivers. Here, we synthesize time series of structured population models from 162 populat...
Article
Full-text available
Species range limits are thought to result from a decline in demographic performance at range edges. However, recent studies reporting contradictory patterns in species demographic performance at their edges cast doubt on our ability to predict climate change demographic impacts. To understand these inconsistent demographic responses, we need to sh...
Preprint
Full-text available
The competition for light has long been regarded as a key axis of niche partitioning that promotes forest diversity, but available evidence is contradictory. Despite strong tradeoffs between growth and survival with light, field tests suggest neutral forces govern tree composition across forest gaps and resource use between size classes. Here we in...
Preprint
Full-text available
To mitigate and adapt to climate change, there is an urgent need to synthesize the state of our knowledge on plant responses to climate. The availability of open-access data, combined with our understanding of plant physiology and life history theory provide opportunities to examine quantitative generalizations regarding which biomes and species ar...
Article
Forest dynamics and demography Tropical forest succession has been viewed mostly by considering trees in categories of early-, mid-, and late-successional species, corresponding to a fast–slow continuum of life history strategies. Rüger et al. now show that the fast–slow continuum does not capture the demographic strategy of the long-lived pioneer...
Article
Full-text available
The majority of variation in six traits critical to the growth, survival and reproduction of plant species is thought to be organised along just two dimensions, corresponding to strategies of plant size and resource acquisition. However, it is unknown whether global plant trait relationships extend to climatic extremes, and if these interspecific r...
Article
Full-text available
Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research sp...
Data
Supplementary Information to Kupers, S.J., Wirth, C., Engelbrecht, B.M.J. et al. Performance of tropical forest seedlings under shade and drought: an interspecific trade-off in demographic responses. Sci Rep 9, 18784 (2019) doi:10.1038/s41598-019-55256-x
Article
Full-text available
Seedlings in moist tropical forests must cope with deep shade and seasonal drought. However, the interspecific relationship between seedling performance in shade and drought remains unsettled. We quantified spatiotemporal variation in shade and drought in the seasonal moist tropical forest on Barro Colorado Island (BCI), Panama, and estimated respo...
Preprint
Full-text available
Assessing vegetation feedbacks with the climate system and planning sustainable management in tropical forests requires efficient, yet accurate, predictions of the joint dynamics of hundreds of tree species. With increasing information on tropical tree life-histories, our predictive understanding is no longer limited by species data, but by the abi...
Preprint
Full-text available
Species range limits are thought to result from a decline in demographic performance at range edges. However, recent studies reporting contradictory patterns in species demographic performance at their edges cast doubt on our ability to predict climate change demographic impacts. To understand these inconsistent demographic responses at the edges,...
Article
Full-text available
Fine scale spatial variation in soil moisture influences plant performance, species distributions and diversity. However, detailed information on local soil moisture variation is scarce, particularly in species-rich tropical forests. We measured soil water potential and soil water content in the 50-ha Forest Dynamics Plot on Barro Colorado Island (...
Article
Full-text available
In the version of this Article originally published, the following sentence was missing from the Acknowledgements: “This work was supported by the Norwegian Research Council SnoEco project, grant number 230970”. This text has now been added.
Article
Full-text available
Advancing phenology is one of the most visible effects of climate change on plant communities, and has been especially pronounced in temperature-limited tundra ecosystems. However, phenological responses have been shown to differ greatly between species, with some species shifting phenology more than others. We analysed a database of 42,689 tundra...
Article
Full-text available
Local tree species distributions in tropical forests correlate strongly with soil water availability. However, it is unclear how species distributions are shaped by demographic responses to soil water availability. Specifically, it remains unknown how growth affects species distributions along water availability gradients relative to mortality. We...
Article
Full-text available
The tundra is warming more rapidly than any other biome on Earth, and the potential ramifications are far-reaching because of global feedback effects between vegetation and climate. A better understanding of how environmental factors shape plant structure and function is crucial for predicting the consequences of environmental change for ecosystem...
Article
Full-text available
Essential Biodiversity Variables (EBVs) allow observation and reporting of global biodiversity change, but a detailed framework for the empirical derivation of specific EBVs has yet to be developed. Here, we re-examine and refine the previous candidate set of species traits EBVs and show how traits related to phenology, morphology, reproduction, ph...
Article
Full-text available
Life‐history theory posits that trade‐offs between demographic rates constrain the range of viable life‐history strategies. For coexisting tropical tree species, the best established demographic trade‐off is the growth‐survival trade‐off. However, we know surprisingly little about co‐variation of growth and survival with measures of reproduction. W...
Article
Full-text available
Warmer temperatures are accelerating the phenology of organisms around the world. Temperature sensitivity of phenology might be greater in colder, higher-latitude sites than in warmer regions, in part because small changes in temperature constitute greater relative changes in thermal balance at colder sites. To test this hypothesis, we examined up...
Data
A full text is currently unavailable. Suggest contact the lead author: sdiaz@efn.uncor.edu Kind regards, andy g
Article
Full-text available
Earth is home to a remarkable diversity of plant forms and life histories, yet comparatively few essential trait combinations have proved evolutionarily viable in today’s terrestrial biosphere. By analysing worldwide variation in six major traits critical to growth, survival and reproduction within the largest sample of vascular plant species ever...
Article
Full-text available
Biodiversity and ecosystem functioning (BEF) research has progressed from the detection of relationships to elucidating their drivers and underlying mechanisms. In this context, replacing taxonomic predictors by trait-based measures of functional composition (FC)-bridging functions of species and of ecosystems-is a widely used approach. The inheren...
Article
Full-text available
Forests are major components of the global carbon cycle, providing substantial feedback to atmospheric greenhouse gas concentrations. Our ability to understand and predict changes in the forest carbon cycle-particularly net primary productivity and carbon storage-increasingly relies on models that represent biological processes across several scale...
Article
Full-text available
For trees in tropical forests, competition for light is thought to be a central process that offers opportunities for niche differentiation through light gradient partitioning. In previous studies, a canopy index based on three-dimensional canopy census data has been shown to be a good predictor of species-specific demographic rates across the enti...
Article
For many tree species, growth patterns derived from tree-ring time series have been shown to be good indicators of tree mortality. Although tree rings of common beech (Fagus sylvatica) have been widely used to answer complex questions of forest ecology, there are only few studies using growth characteristics, such as growth decline or growth variab...
Article
Full-text available
Relationships between functional traits and average or potential demographic rates have provided insight into the functional constraints and trade-offs underlying life-history strategies of tropical tree species. We have extended this framework by decomposing growth rates of -130 000 trees of 171 Neotropical tree species into intrinsic growth and t...
Article
1. Metabolic scaling theory predicts that diameter growth rates of tree species are related to tree diameter by a universal scaling law. This model has been criticised because it ignores the influence of competition for resources such as light on the scaling of demographic rates with size. 2. We here test whether scaling exponents of abundant tropi...
Data
Light dependence of growth rates for species with ≥25 individuals in the two census intervals (1985−1990, 1990−1995). Light classes correspond to deciles of light availability across all individuals. Predicted mean growth rates were calculated at mean observed light level and mean dbh of the individuals in the respective light class. Observed and p...
Data
Full-text available
Diameter-light relationship. (A) Light estimate vs. tree diameter (dbh) for 148 933 trees at Barro Colorado Island, Panama, in 1990. Trees with dbh >1 m are assumed to receive full sunlight and are not shown. (B) Nonlinear regression predicting average log(dbh) in the light range from 2 to 20% (log(dbh) = 4.547+0.455×log(light)+2.006×light; dbh is...
Data
Full-text available
Dbh dependence of growth rates for species with ≥25 individuals in the two census intervals (1985−1990, 1990−1995). Observed and predicted growth rates of individual trees are displayed as grey and orange dots, respectively. Mean observed and predicted growth rates in different size classes are displayed as black and red dot, respectively. For spec...
Data
Posterior means, lower and upper limits of 95% credible intervals (CI−, CI+) of the average growth rate at 5 cm dbh and 5% light (a), log(light) dependence (b), log(dbh) dependence (c), and process error (σp) for two census intervals (1985–1990, 1990–1995) and tree species in the 50-ha Forest Dynamics Plot at Barro Colorado Island, Panama. Dashes i...
Data
Observed and predicted average growth rate for tree species with <25 individuals at Barro Colorado Island, Panama. N is the number of individuals. (XLSX)
Article
Full-text available
An understanding of the drivers of tree growth at the species level is required to predict likely changes of carbon stocks and biodiversity when environmental conditions change. Especially in species-rich tropical forests, it is largely unknown how species differ in their response of growth to resource availability and individual size. We use a hie...
Article
Tree mortality is an important process determining forest dynamics. However, in species-rich tropical forests it is largely unknown, how species differ in their response of mortality to resource availability and individual condition. We use a hierarchical Bayesian approach to quantify the impact of light availability, tree size and past growth on m...
Chapter
The area covered by tropical montane cloud forest (TMCF) in central Veracruz, eastern Mexico, has decreased rapidly over the last 50 years. Deforestation has been accompanied by fragmentation of the remaining forest. Restoring the TMCF and the important ecological services it provides (e.g. highquality water, soil protection, biodiversity conservat...
Article
Full-text available
"Although sustainable forest management (SFM) has been widely adopted as a policy and management goal, high rates of forest loss and degradation are still occurring in many areas. Human activities such as logging, livestock husbandry, crop cultivation, infrastructural development, and use of fire are causing widespread loss of biodiversity, restric...
Article
Full-text available
1. Many hypotheses about species coexistence involve differential resource use and trade-offs in species’ life-history traits. Quantifying resource use across most species in diverse communities, although, has seldom been attempted. 2. We use a hierarchical Bayesian approach to quantify the light dependence of recruitment in 263 woody species in a...
Article
Full-text available
Fuelwood extracted from natural forests serves as a principal energy source in rural regions of many tropical countries. Although fuelwood extraction (even low intensities) might strongly impact the structure and species composition of natural forests, long-term studies remain scarce. Here, we estimate the potential long-term impacts (over several...
Article
Current forestry practices in Chile largely rely on exotic tree plantations, and limited management experiences are available for the species-rich native evergreen rain forests. Yet, conservationists and forest scientists call for sustainable management of native forests as an alternative to plantations so as to maintain important ecosystem service...
Chapter
Full-text available
This chapter presents results of a scenario-building exercise, designed to explore future trends in forest biodiversity in four forest areas, and the potential implications for policy develop-ment and implementation. An expert consultation conducted in a workshop environment identified 11 principal pressures responsible for biodiversity loss in Lat...
Chapter
Full-text available
This book is the result of an international collaborative research effort focusing on the tropical montane forests of Mexico and the temperate rain forests of southern South America. The over-all aim of the research was to investigate the impact of human activity on the key processes influencing biodiversity in fragmented forest landscapes, and to...
Article
River basin management decisions have to be made under uncertainty. Relevant uncertainties especially in external driving forces can often not be sufficiently reduced. Rather than expecting to eliminate them, new management strategies should thus aim at taking them into account. Simulation tools can support a process of reasoning about the implicat...
Article
Full-text available
Current forestry practices in southern Chile rely largely on the establishment of pure plantations of exotic tree species after clear-cutting and burning of native old-growth forests. There is little experience with silviculture of the species-rich native evergreen rainforests. Nevertheless, conservationists, forest scientists and foresters call fo...
Article
Full-text available
The development of ecologically sound water allocation strategies that account for the needs of riverine ecosystems is a pressing issue, especially in semiarid river basins. In the Aral Sea Basin, a search for strategies to mitigate ecological and socioeconomic deterioration has been in process since the early 1990s. The Geographic Information Syst...
Article
Full-text available
Simulation models that describe autonomous individual organisms (individual based models, IBM) or agents (agent-based models, ABM) have become a widely used tool, not only in ecology, but also in many other disciplines dealing with complex systems made up of autonomous entities. However, there is no standard protocol for describing such simulation...
Article
We developed a spatially explicit and individual‐based simulation model describing the dynamics of tree populations across treeline ecotones. Our aims were to identify minimal factors and processes able to generate treeline types with abrupt vs. smooth transitions in different variables (tree height, age, density), to investigate the role of positi...
Article
In the Northern Amudarya delta (Uzbekistan), the regulated hydrological regime is one of the main factors determining the ecological state of riverine ecosystems, such as the characteristic tugai forests. Euphratica poplar (Populus euphratica, syn. ariana) is the dominant tree species of tugai forests in Central Asia. A habitat suitability index fo...
Article
Simulation and decision support tools facilitate a process of reasoning about potential future development paths of a system, e.g. a river system, under alternative management strategies. Joint scenario development and analysis with river basin authorities and stakeholders can inform and structure discussions on management goals and major uncertain...
Article
Full-text available
Simulation and decision support tools facilitate a process of reasoning about potential future development paths of a system, e.g. a river syste m, under alternative management strategies. Joint scenario development and analysis with river basin auth orities and stakeholders can inform and structure discussions on management goals and major uncerta...

Network

Cited By