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Abstract: In spite of the undeniable epistemological and cognitive distance between

argumentation and formal mathematical proof, argumentation and ordinary

mathematical proof have many aspects in common, as processes and also as products.

This paper aims at pointing out these aspects and sketching some educational

implications of the fact of taking them into account.
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1. Introduction

The general motivation for this study comes from the need to call into question the idea,

widely shared among teachers and mathematics educators, that there are profound

differences between mathematical thinking and thinking in other domains, and that

these differences produce many difficulties in learning mathematics. In particular,

some mathematics educators think that one of the main difficulties students face in

approaching mathematical proof (one of the most characteristic and important

mathematics subject) lies in their inability to grasp the differences between ordinary

argumentation and mathematical proof. This position has been clearly presented by

Duval (1991), and we will refer systematically to him in this article:

“Deductive thinking does not work like argumentation. However these two

kinds of reasoning use very similar linguistic forms and propositional

connectives. This is one of the main reasons why most of the students do not

understand the requirements of mathematical proof”.

Duval’s analysis (see 2.2.) offers a precise cognitive perspective for “formal proof”
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(i.e. proof reduced to a logical calculation). It suggests the following questions:

• What are the relationships between formal proof and proofs really performed in

mathematics, in school mathematics as well as in the history of mathematics and

the mathematics of modern-day mathematicians?

• What are the relationships between mathematical proof (as a written

communication product), and the working mathematician’s process of proving?

• In spite of the superficial analogies and profound differences between

argumentation and formal proof, aren’t there some deep connections between

argumentation and mathematical proof (as products and as processes)?

• If those connections do exist, how can we take them into account, in order to

manage the approach of students to mathematical proof?

In this paper I will try to explore only some aspects of these questions and show

their relevance for the “culture of mathematical proof”, which should be developed in

teacher training and also for some direct educational implications. I will try to show

how proving and arguing, as processes, have many common aspects from the cognitive

and epistemological points of view, though significant differences exist between them

as socially situated products. To provide evidence of the common aspects, it should be

necessary:

• to compare the processes of producing an argumentation and producing a proof;

• to analyse the nature and limits of the reference corpus backing an argumentation

and that backing specifically a mathematical proof;

• to differenciate the process of creating a proof and the product which is a written

communicable object;

• to analyse the process of creation of proof and the process of writing a proof

within social constraints;

• to analyse the structure of proof texts as particular argumentative texts.

This paper concerns mainly the first three points. I will focus only on “grounding

connections” between argumentation and mathematical proof (see 3. and 4.) - although

differences should be taken into account as well! I will also try to sketch some
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educational implications of my analysis (see 5.).

My approach will be phenomenological, i.e. I will consider how argumentation and

mathematical proof “live” in different settings, today and in the past. My analysis will

be mainly inspired by Thurston (1994) as concerns modern-day mathematicians’

proofs. I will also refer to Lakatos (1985) as concerns definitions and proofs in the

history of mathematics; Balacheff (1988), Bartolini et al. (1997) Arzarello et al. (1998);

Simon (1996), Boero et al. (1996) and Harel & Sowder (1998) as concerns some

epistemological, cognitive and educational aspects of proving; Lakoff and Nunez

(1997) as concerns the idea of everyday experience as “grounding metaphor” for

mathematics concepts; and Granger (1992) as concerns the relationships between

formal proof and verification in mathematics.

2. About argumentation and proof

This section is intended to provide the reader with reference definitions and basic ideas

for the following sections.

2.1 What argumentation are we talking about?

We cannot accept any discourse as an argumentation. In this paper, the word

“argumentation” will indicate both the process which produces a logically connected

(but not necessarily deductive) discourse about a given subject (from Webster

Dictionary: “1. The act of forming reasons, making inductions, drawing conclusions,

and applying them to the case under discussion”) and the text produced by that process

(Webster: “3. Writing or speaking that argues”). On each occasion, the linguistic

context will allow the reader to select the appropriate meaning.

The word “argument” will be used as “A reason or reasons offered for or against a

proposition, opinion or measure” (Webster), and may include verbal arguments,

numerical data, drawings, etc. In brief, an “argumentation” consists of one or more

logically connected “arguments”. We may state that the discoursive nature of

argumentation does not exclude the reference to non-discoursive (for instance, visual or

gestural) arguments.

European Research in Mathematics Education I: Group 1 127

http://www.fmd.uni-osnabrueck.de/ebooks/erme/cerme1-proceedings/cerme1-proceedings.html



2.2 Formal proof

In this paper we will consider “formal proof” as proof reduced to a logical calculation.

Duval (1991) offers a precise cognitive perspective for “formal proof”.

Duval performs “a cognitive analysis of deductive organisation versus

argumentative organisation of reasoning”. I will quote some points here:

• as concerns “inference steps”: in argumentative reasoning, “semantic content of

propositions is crucial”, while in deductive reasoning “propositions do not

intervene directly by their content, but by their operational status” (defined as

“their role in the functioning of inference”);

• as concerns “enchaining steps”: argumentative reasoning works “by

reinforcement or opposition of arguments”. “Propositions assumed as

conclusions of preceding phases or as shared propositions are continuously

reinterpreted”. “The transition from an argument to another is performed by

extrinsic connection”. On the contrary, in deductive reasoning “the conclusion of

a given step is the condition of application of the inference rule of the following

step”. The proposition obtained as the conclusion of a given step is “recycled” as

the entrance proposition of the following step. Enchaining makes deductive

reasoning similar to a chain of calculations.

• as concerns the “epistemic value” (defined as the “degree of certainty or

convinction attributed to a proposition”): in argumentative reasoning “true

propositions have not the same epistemic value”, while in mathematics “true

propositions have only one, specific epistemic value [...] - that is, certainty

deriving from necessary conclusion”; and “proof modifies the epistemic value of

the proved proposition: it becomes true and necessary”. This modification

constitutes the “productivity of proof”.

2.3 Mathematical proof

We could start by saying that mathematical proof is what in the past and today is

recognized as such by people working in the mathematical field. This approach covers

Euclid’s proof as well as the proofs published in high school mathematics textbooks,
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and current modern-day mathematicians’ proofs, as communicated in specialized

workshops or published in mathematical journals (for the differences between these

two forms of communication, see Thurston, 1994). We could try to go further and

recognize some common features, in particular: a common function, i.e. the validation

of a statement; the reference to an established knowledge (see the definition of

“theorem” as “statement, proof and reference theory” in Bartolini et al., 1997); and

some common requirements, like the enchaining of propositions.

We must distinguish between the process of proof construction (i.e. “proving”) and

the result (as a socially acceptable mathematical text): for a discussion, see 4.

This distinction and preceding considerations point out the fact that mathematical

proof can be considered as a particular case of argumentation (according to the

preceding definition). However, in this paper “argumentation” will exclude “proof”

when we compare them.

Concerning the relationships between formal proof and proofs currently produced

by mathematicians, we may quote Thurston:

“We should recognize that the humanly understandable and humanly

checkable proofs that we actually do are what is most important to us, and that

they are quite different from formal proof. For the present, formal proofs are out

of reach and mostly irrelevant: we have good human processes for checking

mathematical validity”.

We may also consider some examples of theorems in mathematical analysis (e.g.

Rolle’s Theorem, Bolzano-Weierstrass’ Theorem, etc.) whose usual proofs in current

university textbooks are formally incomplete: completion would bring students far

from understanding; for this reason semantic (and visual) arguments are frequently

exploited in order to fill the gaps existing at the formal level.

2.4 Argumentation in mathematics

Argumentation can be performed in pure and applied mathematical situations, as in any

other area. Argumentations are usually held informally between mathematicians to

develop, discuss or communicate mathematical problems and results, but are not
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recognised socially in a research paper presenting new results: in that case proofs and

“rigorous” constructions (or counter-examples) are needed.

As concerns “communication”, Thurston writes:

“Mathematical knowledge can be transmitted amazingly fast within a

subfield of mathematics. When a significant theorem is proved, it often (but not

always) happens that the solution can be communicated in a matter of minutes

from one person to another within the subfield. The same proof would be

communicated and generally understood in an hour’s talk to members of the

subfield. It would be the subject of a 15- or 20- page paper, which could be read

and understood in a few hours or perhaps days by the members of the subfield.

Why is there such a big expansion from the informal discussion to the talk, to the

paper? One-to-one, people use wide channels of communication that go far

beyond formal mathematical language. They use gestures, they draw pictures

and diagrams, they make sound effects and use body language”

As concerns “rigour”, it is considered here because it appears as a requirement of

mathematical texts although it needs to be defined or rather to be questioned and

historicised - see Lakatos (1985). The problem of rigour will be reconsidered later with

the question of the epistemic value of statements.

2.5 Reference corpus

The expression “reference corpus” will include not only reference statements but also

visual and, more generally, experimental evidence, physical constraints, etc. assumed

to be unquestionable (i. e. “reference arguments”, or, briefly, “references”, in general).

In Section 4.1. I will discuss the social determination of the fact that a “reference” is not

questioned, as well as the necessary existence of references which are not made

explicit.

2.6 Tools of analysis and comparison of argumentation and proof

Aren’t there some criteria (even implicit ones) that enable us to accept or refuse an

argumentation, as it happens for a proof? And are they not finally related to logical

constraints and to the validity of the references, even if entangled with complex implicit
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knowledge? If we follow Duval’s analysis, for argumentation it seems as if there is no

recognised reference corpus for argumentation, whereas for proof it exists

systematically. I do not think that this distinction is correct. The following criteria of

comparison, inspired by Duval’s analysis, will help me to argue this point in the next

section: the existence of a “reference corpus” for developing reasoning; the means by

which doubts about the “epistemic value” of a given statement can be dispelled; and the

form of reasoning.

3. Analysis and comparison of argumentation and proof as

products

3.1 About the reference corpus

No argumentation (individual or between two or more protagonists) would be possible

in everyday life if there were no reference corpus to support the steps of reasoning. The

reference corpus for everyday argumentation is socially and historically determined,

and is largely implicit. Mathematical proof also needs a “reference corpus”. We could

think that this “reference corpus” is completely explicit and not socially determined,

but we will see that this is not true.

A) Social and historical determination of the “reference corpus” for proof

In this subsection I will try to support the idea that the “reference corpus” for

mathematical proof is socially and historically determined. In order to do so, I will

exploit arguments of different nature (historical and epistemological considerations as

well as reflections on ordinary school practices) that are not easy to separate.

The reference corpus used in mathematics depends strongly on the users and their

listeners/readers. For example, in secondary school some detailed references can be

expected to support a proof, but in communication between higher level

mathematicians those may be considered evident and as such disregarded. As Yackel

and Cobb (1998) pointed out, the existence of jumps related to “obvious” arguments in

the presentation of a proof can be considered as a sign of familiarity with knowledge

involved in that proof. On the other hand, some statements accepted as references in
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secondary school are questioned and problematised at higher levels; questions of

“decidability” may surface. We may remark that today problems of “decidability” are

dealt with by few mathematicians and seldom encountered in mathematics teaching

(although in my opinion simple examples concerning euclidean geometry vs non

euclidean geometries could be of great pedagogical value). Let us quote Thurston:

“On the most fundamental level, the foundations of mathematics are much

shakier than the mathematics that we do. Most mathematicians adhere to

foundational principles that are known to be polite fictions”.

Thus for almost all the users of mathematics in a given social context (high school,

university, etc.) the problem of epistemic value does not exist (with the exception of the

case: “true” after proving, or “not true” after counter-example) although it was and it

still is an important question for mathematics as for any other field of knowledge.

Mathematics concepts are the most stable, giving an experience of “truth” which should

not be necessarily taken for truth.

Let us now consider other aspects of the social determination of the reference corpus

which concern the nature of references. If we consider the “references” that can back an

argumentation for validating a statement in primary school, we see that at this level of

approach to mathematical work references can include experimental facts. And we

cannot deny their “grounding” function for mathematics (see Lakoff and Nunez, 1997),

both for the long term construction of mathematical concepts and for establishing some

requirements of validation which prepare proving (e.g. making reference to

acknowledged facts, deriving consequences from them, etc.). For instance, in primary

school geometry we may consider the superposition of figures for validating the

equality of segments or angles, and superposition by bending for validating the

existence of an axial symmetry. Later on in secondary school, these references no

longer have value in proving; they are replaced by definitions or theorems (see

Balacheff, 1988). For instance, in order to prove that an axial symmetry exists,

reference can be made to the definition of symmetry axis as the axis of segments joining

corresponding points. For older students, similar examples can be found in the field of

discrete mathematics, where a lot of familiar statements which are necessary to build a

proof are not part of the elementary axiomatics.
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In general, at a higher level it is a hypothesis or a partial result of the problem to

solve that informs us of equalities, and not “experimental” validation (see Balacheff,

1988). At such a level the meaning of equality is not questioned as might (and should)

happen at “lower” levels. We may note that, in the history of mathematics, visual

evidence supports many steps of reasoning in Euclid’s “Elements”. This evidence was

replaced by theoretical constructions (axioms, definitions and theorems) in later

geometrical theories.

B) Implicit and explicit references

The reference corpus is generally larger than the set of explicit references. In

mathematics, as in other areas, the knowledge used as reference is not always

recognised explicitly (and thus appears in no statement): some references can be used

and might be discovered, constructed, or reconstructed, and stated afterwards. The

example of Euler’s theorem discussed by Lakatos (1985) provides evidence about this

phenomenon in the history of mathematics. The same phenomenon also occurs for

argumentation concerning areas other than mathematics. Let us consider the

interpretations made by a psychoanalyst: we cannot fathom his ability unless we

believe that he bases his work on chains of reasoning that refer to a great deal of shared

knowledge about mankind and society, this knowledge being obviously impossible to

reduce to explicit knowledge. And, in general, we could hold no exchange of ideas,

whatever area we are interested in, without exploiting implicit shared knowledge.

Implicit knowledge, which we are generally not conscious of, is a source of important

“limit problems” (especially in non mathematical fields, but also in mathematics): in

the “fuzzy” border of implicit knowledge we can meet the challenge of formulating

more and more precise statements and evaluating their epistemic value. Lakatos (1985)

provides us with interesting historical examples about this issue.

3.2 How to dispel doubts about a statement and the form of reasoning

Thurston writes:

“Mathematicians can and do fill in gaps, correct errors, and supply more

detail and more careful scholarship when they are called on or motivated to do
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so. Our system is quite good at producing reliable theorems that can be solidly

backed up. It’s just that the reliability does not primarily come from

mathematicians formally checking formal arguments; it comes from

mathematicians thinking carefully and critically about mathematical ideas”.

And considering the example of Wiles’s proof of Fermat’s Last Theorem:

“The experts quickly came to believe that his proof was basically correct on

the basis of high-level ideas, long before details could be checked”.

These quotations raise some interesting questions concerning the ways by which

doubts about mathematics statements are dispelled. Formal proof “produces”

(according to Duval’s analysis) the reliability of a statement (attributing to it the

epistemic value of “truth”) . But what Thurston argues is that “reliability does not

primarily come from mathematicians formally checking formal arguments”. In

Thurston’s view, the requirements of formal proof represent only guidelines for writing

a proof - once its validity has been checked according to “substantial” and not “formal”

arguments. The preceding considerations directly concern the form of reasoning: the

model of formal proof as described by Duval and based on the “operational status” of

propositions rather than on their “semantic content” does not seem to fit the description

of the activities performed by many working mathematicians when they check the

validity of a statement or a proof. Only in some cases (for instance, proofs based on

chains of transformations of algebraic expressions) does Duval’s model neatly fit proof

as a product.

Despite the distance between the ways of dispelling doubts (and the forms of

reasoning) in mathematics and in other fields, the preceding analysis shows many

points of contact - even between mathematical proof and argumentation in

non-mathematical fields. Granger (1992) suggests the existence of deep analogies

which might frame (from an epistemological point of view) these points of contact.

Naturally, as concerns the form of reasoning visible in the final product, argumentation

presents a wider range of possibilities than mathematical proof: not only deduction, but

also analogy, metaphor, etc. Another significant difference lies in the fact that an

argumentation can exploit arguments taken from different reference corpuses which

may belong to different theories with no explicit, common frame ensuring coherence.
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For instance, the argumentation developed in this paper derives its arguments from

different disciplines (history of mathematics, epistemology, cognitive psychology); at

present there is no mean to tackle the problem of coherence between reference theories

belonging to these domains. On the contrary, mathematical proof refers to one or more

reference theories explicitely related to a coherent system of axiomatics. But I would

prefer to stress the importance of the points of contact (especially from an educational

point of view: see 5.).

4. The processes of argumentation and construction of proof

In 2.3. I proposed distinguishing between the process of construction of proof

(“proving”) and the product (“proof”). Of what does the “proving” process consist?

Experimental evidence has been provided about the hypothesis that “proving” a

conjecture entails establishing a functional link with the argumentative activity needed

to understand (or produce) the statement and recognizing its plausibility (see Bartolini

et al., 1997). Proving itself needs an intensive argumentative activity, based on

“transformations” of the situation represented by the statement. Experimental evidence

about the importance of “transformational reasoning” in proving has been provided by

various, recent studies (see Arzarello et al., 1998; Boero et al., 1996; Simon, 1996;

Harel and Sowder, 1998). Simon defines “transformational reasoning” as follows:

“the physical or mental enactment of an operation or set of operations on an

object or set of objects that allows one to envision the transformations that these

objects undergo and the set of results of these operations. Central to

transformational reasoning is the ability to consider, not a static state, but a

dynamic process by which a new state or a continuum of states are generated”.

It is interesting to compare Simon’s definition with Thurston (1994):

“People have amazing facilities for sensing something without knowing

where it comes from (intuition), for sensing that some phenomenon or situation

or object is like something else (association); and for building and testing

connections and comparisons, holding two things in mind at the same time

(metaphor). These facilities are quite important for mathematics. Personally, I
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put a lot of effort into ”listening" to my intuitions and associations, and building

them into metaphors and connections. This involves a kind of simultaneous

quietening and focusing of my mind. Words, logic and detailed pictures rattling

around can inhibit intuitions and associations". And then: “We have a facility

for thinking about processes or sequences of actions that can often be used to

good effect in mathematical reasoning”.

These quotations open some interesting research questions about metaphors:

• What are the relationships between metaphors and transformational reasoning in

mathematical activities, especially in proving?

• What is the role of physical and body referents (and metaphors) in conjecturing

and proving?

Metaphors can be considered as particular outcomes of transformational reasoning.

For a metaphor we may consider two poles (a known object, an object to be known) and

a link between them. In this case the “creativity” of transformational reasoning consists

in the choice of the known object and the link - which allows us to know some aspects

of the unknown object as suggested by the knowledge of the known object

(“abduction”)(cf. Arzarello et al., 1998).

Coming to the second question, we may remark that mathematics “officially”

concerns only mathematical objects. Metaphors where the known pole is not

mathematical are not acknowledged. But in many cases the process of proving needs

these metaphors, with physical or even bodily referents (sometimes their traces can be

detected when a mathematician produces an informal description of the ideas his proof

is based on: see 2.3., quotation from Thurston). In general, Lakoff and Nunez (1997)

suggest that these metaphors have a crucial role in the historical and personal

development of mathematical knowledge (“grounding metaphors”). The example of

continuity is illuminating. Simon (1996) discusses the importance of a physical

enactment in order to check the results of a transformation in transformational

reasoning. In some situations the mathematical object is the known object and the other

pole concerns a non-mathematical situation: the aim is to validate some statements

concerning this situation, exploiting the properties of the mathematical model. In other

cases it happens to relate two non mathematical objects (one known, the other not) by a
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mathematical, metaphoric link which sheds light on the unknown object and/or on its

relationships with the known object. By these means, argumentative activities

concerning non-mathematical situations rely upon mathematical creations

(metaphors), an observation that should be taken into account in mathematics education

(see 5.).

The example of metaphors shows the “semantic” complexity of the process of

proving - and suggests the existence of other links with other mathematical activities. It

also shows the importance of transformational reasoning as a free activity (in particular,

free from usual boundaries of knowledge). However, metaphors represent only one

side of the process of proving. Induction in general is relevant - and the need to produce

a deductive chain guides the search for arguments to “enchain” when coming to the

writing process (see Boero et al., 1996).

5. Some educational implications

Let us come back to the processes of argumentation and proof construction as opposed

to the final static results. In my opinion, an important part of the difficulties of proof in

school mathematics comes from the confusion of proof as a process and proof as a

product, and results in an authoritarian approach to both activities. Frequently,

mathematics teaching is based on the presentation (by the teacher, and then by the

student when asked to repeat definitions and theorems) of mathematical knowledge as a

more or less formalized theory based on rigorous proofs. In this case, authority is

exercised through the form of the presentation (see Hanna, 1989); in this way school

imposes the form of the presentation over the thought, leads to the identification

between them and demands a thinking process modelled by the form of the presentation

(eliminating every “dynamism”). This analysis may explain the strength of the model

of proof, which gives value to the idea of the “linearity” of mathematical thought as a

necessity and a characteristic aspect of mathematics.

If a student (or a teacher) assumes such “linearity” as the model of mathematicians’

thinking without taking the complexity of conjecturing and proving processes into

account, it is natural to see “proof” and “argumentation” as extremely different. But it is
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also important to consider the consequence of such a conception in other fields: it can

reinforce a style of “thinking” for which no “sacred” assumption is challenged, only

“deductions” are allowed (obviously, also school practice of argumentation may suffer

from authoritarian models!). On the contrary, giving importance to “transformational”

reasoning (and, in general, to non-deductive aspects of argumentation needed in

constructive mathematical activities - including proving) can develop different

potentials of thinking. On the possibility of educating manners of thinking other than

deduction, Simon considers “transformational reasoning” and hypothesizes:

“[...] transformational reasoning is a natural inclination of the human learner

who seeks to understand and to validate mathematical ideas. The inclination [...]

must be nurtured and developed.[...]school mathematics has failed to encourage

or develop transformational reasoning, causing the inclination to reason

transformationally to be expressed less universally.”

I am convinced that Simon’s assumption is a valid working hypothesis, needing

further investigation not only regarding “the role of transformational reasoning in

classroom discourse aimed at validation of mathematical ideas” but also its

functioning and its connections with other “creative” behaviours (in mathematics and

in other fields).

As concerns possible educational developments, the analyses perfomed in this paper

suggest some immediate consequences:

• classroom work should include (before any “institutionalisation”) systematic

activities of argumentation about work that has been done;

• validation, in mathematical work and in other fields, should be demanded

whenever it can be meaningful;

• the fact that validation has not been done or was unsatisfactory or impossible

should be openly recognized;

• and, finally, references as such should be explicitly recognized, be they

statements, experiments or axioms (this does not mean that references are fixed as

true once and for all, but rather that for at least a certain time we have to consider

them as “references” for our reasoning).
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The passage from argumentation to proof about the validity of a mathematical

statement should openly be constructed on the basis of limitation of the reference

corpus (see 3.2., last paragraph). It could be supported by exploiting different texts,

such as historical scientific and mathematical texts, and different modern mathematical

proofs (see Boero et al., 1997, for a possible methodology of exploitation).
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