
Optimal and Dynamic SDN Controller Placement
Nadia Mouawad∗†‡, Rola Naja∗†§ and Samir Tohme†¶

∗Doctoral School of Science and Technology, Lebanese University, Lebanon
†Li-Parad Laboratory, University of Versailles Saint Quentin, France

‡mouawad.nadia@gmail.com §rola.naja@ul.edu.lb ¶samir.tohme@uvsq.fr

Abstract—Software Defined Networking (SDN) is an emerging
paradigm that separates control and data plane. This technology
will be a key component in designing 5G networks that involve
essentially higher capacity and lower latency. With SDN, traf-
fic and network devices are controlled using SDN centralized
controllers. Several studies denoted the limitation of using one
controller in a large-scale network and advocated the use of
multiple controllers. The main problem appears in the placement
of these controllers in the network, while considering several
criterion such as latency, network load and connectivity. To this
end, our work solves the controller placement problem and deals
with network load using dynamic switch migration algorithm.
The validation of the algorithm and the performance analysis
showed that the proposed topology is stable and presents a
reduced number of load balancing occurrences.

Keywords—Software Defined Networking, Controller place-
ment, Load balancing and 5G Networks

I. INTRODUCTION

5G networks are expected to have an explosive growth of
data traffic and to provide billions users a high capacity and
low latency [1]. These networks are more flexible than the
traditional networks and guarantee enhanced communication
across heterogeneous technologies. Nevertheless, these fea-
tures bring a lot of challenges, especially in terms of providing
low latency, high reliability and flexibility.

SDN [2] is gaining a lot of attention since it enables
centralized network provisioning and lower operating costs.
Therefore, 5G networks will take advantages of using this
technology to face the above mentioned challenges.

SDN is a new paradigm that separates the control plane
(SDN controllers) from the data plane (switches). Openflow
protocol [3] defines an interface between the data and control
plane to describe the interaction between controllers and the
switches.

SDN controller receives openflow requests (Packet In)
that should be processed in order to organize the data plane.
Therefore, using a single controller brings several drawbacks
such as controller overload in large-scale network and the in-
ability of providing network decisions in a tight time window.
Therefore, the use of multiple controllers is primordial. To
this end, several studies ([4], [5]) designed a hierarchical SDN
topology using multiple controllers as shown in figure 1. The
proposed architecture presents a global controller having an
abstract network view in addition to local controllers each one
managing a domain of switches.

The SDN architecture incurs the following challenging
issues:

Fig. 1. 5G SDN based architechture

1) The optimization of the controller placement has a
paramount importance in terms of network latency.

2) The determination of the switches embedded in one
controller domain should be carefully studied since it
impacts network load.

3) A load balancing algorithm should be derived in case of
controller overload.

The controller placement problem has attracted many re-
searchers ([6],[7],[8],[9]). In [10], after proposing an algorithm
for placing controllers, a flow based dynamic switch migration
algorithm is presented to adjust controllers load. This algo-
rithm consists of migrating the boundary switches to neighbor
controllers. However with this method, the controller load is
not accurately adjusted, since all boundary switches may be
sending a low average of packets to the controller. As a result,
a large number of switches should be migrated to balance the
load.

In [11], the controller placement problem was tackled while
taking into consideration three criterion: connectivity, capacity
and link failure recovery. This work aimed at maximizing
the number of disjoint paths between devices and controllers
respecting the controller capacity constraints. While authors
took into account connectivity metrics, they neglected the
controller-switch latency.

In [12], the goal is to find the optimal controller place-
ment while minimizing latency and considering the resilience
(capacity to recover rapidly after a failure). Authors in [12]
did not take into consideration the load constraint. When
applying the proposed algorithm, the number of switches in



each controller domain is unbalanced, and this will induce the
risk of flooding controllers.

The before mentioned papers considered one or two impor-
tant parameters for the controller placement while neglecting
important constraints. Our work differs from these literature
works since it brings a global solution by taking into account
all the following parameters: the connectivity, the controller-
switch latency, inter-controllers latency and controllers load.

To this end, we design an algorithm to solve the controller
placement problem using a quadratic program that provides
as an output the locations of the controllers and number of
switches in each domain.

After calculating the optimal controllers placement, we
provide an enhancement for the proposed topology. In fact,
the network may suffer in certain cases from fluctuation
due to large number of openflow requests rate. Therefore
striving to prevent congestions, we developed an algorithm for
dynamically migrating switches in case of controller overload.

The rest of this paper is structured as follows: section II
derives our proposed controller placement and load balancing
algorithms. Section III presents our simulation results and per-
formance analyses. Finally, we conclude our work in section
IV.

II. CONTROLLER PLACEMENT AND LOAD BALANCING
ALGORITHMS

In this paper, we present our work that aims at finding
an optimal dynamic SDN controller placement that reduce
controllers-switches latency, inter-controllers latency and con-
trollers load. The proposal is split into three parts as follows:

1) Optimal Controller Placement that takes into account
the following inputs: network topology, inter-nodes dis-
tance, connectivity between nodes, average request rate,
controller maximal capacity, minimal distance between
two controllers. The algorithm is designed as an offline
application that derives an optimal strategy for controller
placement.

2) Load balancing algorithm that aims at enhancing the
derived topology in order to balance the network load. It
takes into account the controllers load and their maximal
capacity and switches request rate. The algorithm is
implemented as SDN application in each local controller.

3) Switch migration algorithm that presents a heuristic
to choose the corresponding migrated switches and
their target controllers. It takes into account the derived
optimal topology, controllers load, maximal controller
capacity and the minimum allowed distance between
migrated switches and target controllers. The heuristic
is designed as SDN application running in the global
controller.

Figure 2 depicts the integration of the proposed algorithms in
SDN planes. Next, we explain these algorithms in details.

A. Optimal controller placement

The study objective is to find the optimal placement of
C controllers while minimizing the distance (i.e the latency)

Fig. 2. Integration of the proposed algorithms in SDN planes

and maximizing connectivity between adjacent nodes. The
proposed algorithm will take the following inputs:
• G(N,E): a graph that denotes the network topology, where

n∈N represents forwarding devices and edges (m,n)∈ E
represent bi-directional links.

• Dis: a (NxN) matrix where Disi j represents the distance
between nodes i and j. We represent the distance by the
number of hops.

• Cn: a (NxN) matrix where Cni j = 1 if there exists a link
between nodes i and j.

• λn denotes the average requests rate from each device
n ∈ N.

• µmax: the maximum capacity of the controllers.
• α: percentage of the maximum capacity at which we

consider that the controller is overloaded.
• M: maximal threshold latency between two controllers.

It is noteworthy that taking into account the connectivity leads
to reduce the number of requests received by the controller.
Consider a node connected to several switches, this node is
preferred to be a controller rather than a normal switch.
As a result, we obtain the following output:
• X: a (NxN) matrix where xnc = 1 if a device n is mapped

to a controller c and 0 otherwise.
• Y: a (1xN) matrix where yn = 1 if a controller is placed

on the node n and 0 otherwise.
The following Quadratic Problem (QP) solves the matrices X
and Y :

minimize ∑
i

∑
j
(Disi j−Cni j)∗ xi j ∗ yi (1)

s.t. ∑
i∈C

yi =C ∀i ∈C. (2)

∑
i∈C, j∈N

xi j = N ∀ j ∈ N ∀i ∈C. (3)

∑
i∈C

xi j = 1 ∀ j ∈ N;∀i ∈C. (4)

xi j ≤ yi ∀i ∈ N ∀i ∈C. (5)
xii = yi ∀i ∈ N ∀i ∈C. (6)

∑
j∈N, j 6=i

λ j ∗ xi j ≤ µmax ∗α ∀i ∈C. (7)

∑
j∈N

Disi j ∗ yi ∗ y j ≤M ∀i ∈ N. (8)



xi j ∈ {0,1} ∀ j ∈ N; ∀i ∈C. (9)
yi ∈ {0,1} ∀i ∈C. (10)

The goal in (1) is to minimize the controller-switch latency
(the distance in our case) and maximize connectivity between
the assigned switches and their controller. Equations (2) and
(3) assess that the number of assigned controllers should be
equal to the number of used controllers, and the number
of assigned switches is equal to the number of considered
nodes. Equation (4) guarantees that each device j ∈ N will
be controlled by one controller. Equation (5) makes sure that
the assigned controller must be active. By (6), we denote that
each node designed to be a controller belongs to the set of
the assigned switches. Constraint (7) guarantees the controller
load: the average number of requests from all the assigned
switches is in the acceptable range. Finally, in (8), we include
into the problem the inter-controller latency and make sure
that the distance that separates each two controllers should
not exceed the maximal predefined distance M.

B. Load balancing algorithm

In the previous section, we formulated the controller place-
ment problem by considering several metrics. The problem
solution computes the controllers/switches connected graph.
Once controllers are placed in the calculated position, the
network topology will be static.

Nevertheless, real networks are subject to a dynamic flow
variation. In fact, switches may flood controllers with a high
packet in request load. Consequently, the static network topol-
ogy will not be able to cope with the load change.

Therefore, we elaborated Algorithm 1 that aims at migrating
switches to adjust controller load. The main goal is to calibrate
load of the overloaded controller by migrating the minimum
number of switches to a target controller in order to keep the
topology as close as possible to stability.

Algorithm 1 Load balancing algorithm
A traffic monitor is present in each controller in order to collect
packets statistics.
if (controller load ≥ α.µmax) then

Solve the quadratic program (QP1) as presented in the
following section

Migrate the calculated switch to the target controller
Calculate the remaining controller load after switch migra-

tion
if ( remaining controller load ≥ µmax ∗α ∗β ) then

Resolve QP1
else

Derive the migrated switches, their number, and the target
controller

end if
end if

C. Switch migration algorithm

The present subsection details the switch migration ap-
plication that is executed in the global controller in case of
overload. To this end, we solve a quadratic program in order
to determine the migrated switches and target controllers. Mi-
grated switches are chosen according the following constraints:

1) The target controller should be chosen in a way that its
capacity could accept the migrated switches load.

2) A minimal number of switches should be migrated to
the target controller.

3) The migrated switch should reduce the overloaded con-
troller load.

To this purpose, we formulated the following quadratic pro-
gram (QP1) that takes as inputs:
• o: the overloaded controller number.
• D2: a ((C-1)x N) matrix composed by the controllers

rows of matrix Dis except the overloaded one. For reader
clarity, D2 elements are filled as follows:
D2[k][j]=Dis[i][j] where yi = 1 and i 6= o ∀k∈ (C−1),∀i∈
C,∀ j ∈ N.

• λi j is the packet requests rate from switch j to controller
i

• β : the percentage of the maximum capacity that should be
respected in each controller in order to avoid the overload.

• µmax: the maximum capacity of the controller.
• D: the maximum allowed distance (number of hops)

between the migrated switch and its new controller.
• α: percentage of the maximum capacity at which the

controller is overloaded.
As a result, we obtain the following output:
• S: a (1xN) matrix that determines the position of the

migrating switch; si = 1 indicates the switch i should be
migrated.

• T: a (1x(C-1)) matrix where ti = 1 indicates that controller
i is the target controller.

At this stage, we solve the following quadratic program(QP1):

max ∑
i

∑
j

λo j ∗ s j ∗ ti (11)

s.t.∑
i

∑
j

D2i j ≤ D ∀i ∈ (C−1)∀ j ∈ N. (12)

∑
i

ti = 1 ∀i ∈ (C−1). (13)

∑
i

∑
j, j 6=i

λi j ∗ t j +∑
j

λo j ∗ s j ≤ µmax ∗α (14)

∑
j

s j = 1 ∀ j ∈ N,λo j 6= 0. (15)

s j ∈ {0,1} ∀ j ∈ N. (16)
ti ∈ {0,1} ∀i ∈ (C−1). (17)

The main goal in (11) is choosing a high load switch
in order to minimize the number of migrated switches while
taking into account the latency constraint in equation (12). This
is achieved under the following constraints: (13) and (17) show



TABLE I
SWITCH-CONTROLLER DISTANCE COMPARISON

Zoo topology Internet2 NSFNET
ODCP 3 4 2
CPFD 4 5 3

TABLE II
INTER-CONTROLLER DISTANCE COMPARISON

Zoo topology Internet2 NSFNET
ODCP 3 3 3
CPFD 5 5 3

that one target controller is chosen. (15) and (16) ensure that
one switch in the overloaded controller domain is migrated.
Equation (14) guarantees that the load of the migrated switch
added to the total load of the target controller should satisfy
the maximum acceptable load.

III. PERFORMANCE ANALYSIS

In this section, we evaluate the robustness of the proposed
dynamic optimal SDN topology and provide a performance
analysis. We proceed first by evaluating the controller place-
ment by considering the latency metric. Second, we study the
network performance by evaluating the topology robustness.

A. Controller placement evaluation

In order to validate the proposed controller placement
algorithm and to show its capability of reducing the switch-
controller distance and inter-controller distance, we consid-
ered several networks topologies proposed in the literature:
Zoo Toplogy(50 nodes) [13], Internet2 (34 nodes) [14] and
NSFNET topology (14 nodes) [10]. We studied the average
distance in terms of number of hops between switches and
controllers and inter-distance controllers and compared our
results with the ones given by the algorithm proposed in [10].
In order to simply mentioning reference [10], we give it the
name CPFD based on its title ( Controller Placement and
Flow based Dynamic Management Problem towards SDN).
In addition, we call our proposal ODCP referring to Optimal
and Dynamic Controller Placement. Tables I and II show that
our proposal results in minimizing the distance between the
switches and the controller and the inter-controller distance.

In the following, we adopt the NSFNET topology [10].
NSFNET (figure 3) nodes should be clustered into two sepa-
rated domains; each controlled by a controller and remaining
nodes are switches. Figures 4 and 5 illustrate the derived
topology with our proposal (calculated for M = 3) and with
CPFD respectively.

B. Performance evaluation

The robustness of a topology is achieved when it manages
load variation while inducing the least number of switch mi-
grations, and the least number of overloads. In fact, the optimal
controller placement strategy conducts to a stable topology that
presents a reduced number of controller overloads. We proceed
in two steps in order to evaluate our work performance:

Fig. 3. NSFNET nodes

Fig. 4. NSFNET topology studied in ODCP

Fig. 5. NSFNET topology studied in CPFD

First, we evaluate the switch migration in the context of 3
scenarios:

1) Scenario 1: Controller load before and after switch
migration in normal network state.

2) Scenario 2: Controller load before and after switch
migration in case of heavy Packet In request load in
all switches.

3) Scenario 3: Controller load before and after switch
migration in case of low Packet In request arrival from
boundary switches.



Next, in order to assess the robustness of our algorithm and
to compare it with that of CPFD, we derive for each scenario
the following performance parameters:

1) Number of overloads: number of overload occurrences.
2) Number of migrated switches: number of migrated

switches from overloaded controller domain.
In the following, we study each scenario separately and
compare its results with the work presented in CPFD.

Scenario 1: Controller load before and after switch migra-
tion in normal network state: Figure 6 depicts the controllers
load achieved in our proposal and in CPFD. This figure
shows that in ODCP controllers load is less than the overload
threshold (µmax ∗α = 90%); this will prevent the network from
a second overload incident. However, with CPFD controller
load after switch migration is 89% . This value makes a next
overload likely to occur.

Fig. 6. Controllers load before and after migration

Scenario 2: Controller load before and after switch migra-
tion in case of heavy load in all switches: The second scenario
tackles the controller load in a saturated network.
We consider the following inputs: µmax∗α = 90% and β = 0.9.
Figure 7 depicts controllers load in this case. With the al-
gorithm adopted in CPFD, we can not find a solution for
the switch migration algorithm. Contrarily to our work that
provides load balancing. Indeed, figure 7 shows that in ODCP
controller 2 is overloaded and controller 1 load is far below
the threshold. As a result, we can easily migrate switches from
domain 2 to domain 1 and achieve the network load balancing.
These results validate the derived topologies in ODCP and
CPFD.

Scenario 3: Controller load before and after switch migra-
tion in case of low request rate from boundary switches: In
this scenario, we consider a low packet rate from boundary
switches, and study the controllers load before and after
triggering the switches migration algorithm.

After applying the method proposed in CPFD, three
switches are migrated from domain 2 to domain 1 while the
load balancing problem is not solved as shown in figure 8.
This is due to the fact that in CPFD, the boundary switches
are migrated and in this case all of them send low packets

Fig. 7. Controllers load in case of heavy packets arrival from all switches

requests to the controller. On the other hand, our proposal
succeeds to achieve load balancing.

Fig. 8. Controllers load in case of low packets arrival from boundary switches

Number of overloads : Figure 9 shows that, despite the
heavy requests arrival from all the switches, ODCP results in
a reduced overload rate (75% less than CPFD).
This is explained in figures 4 and 5 where the proposed
topology is not equally distributed as in CPFD, which leads
to reduce the number of overloads in domain 1.

Number of migrated switches: Figure 10 illustrates the
number of migrated switches from one domain to another in
several network states:

• Normal requests rate
• Heavy requests rate from boundary switches
• Heavy requests rate from non boundary switches
• Low requests rate at boundary switches

In figure 10, we can notice that ODCP reduces the number
of migrated switches except in case of heavy requests rate from
boundary switches. In fact, CPFD migrates boundary switches
which helps adjusting controllers load in this case.



Fig. 9. Number of overload

Fig. 10. Number of migrated switches

IV. CONCLUSION

This research paper addresses the optimal placement of
SDN controllers. In fact, SDN topology should be designed
carefully to guarantee performance parameters. To this end,
we presented a novel work that aims at designing an optimal
and dynamic topology for SDN networks. We considered the
hierarchical SDN topology proposed in the literature where
the SDN control plane consists of several local controllers
controlled by a global controller. In this work, we designed
an offline application that derives the optimal controller
placement, we implemented a local controller application
for load balancing and a switch migration application global
controller.

We demonstrated the stability of our topology by showing
that within a sufficient duration of time we achieve a
minimum number of overloads and a minimal number of
switch migrations from one domain to another. Performance
analysis showed that our proposal outperforms other
literature algorithms in terms of network stability, minimizing
the number of controllers overloads and minimizing the
probability of overloads occurrences.

Acknowledgments The work was funded by the Lebanese
University and the AUF ’ Projet de cooperation scientifique
interuniversitaire’ (PCSI).

REFERENCES

[1] G. P. A. W. Group et al., “View on 5g architecture,” White Paper, July,
2016.

[2] “Sdn architecture overview,” Open Networking Foundation, 2013.
[3] “Openflow switch specification,” Version1.5.0, vol. 1, no. 0, 2014.
[4] L. S. P. Ameigeiras, J.J. Ramos-Munoz, “Link-level access cloud archi-

tecture design based on sdn for 5g networks,” IEEE Network, vol. 29,
no. 2, pp. 24–31, 2015.

[5] D. Z. MA Zheng, ZHANG ZhengQuan, “Key techniques for 5g wireless
communications: network architecture, physical layer, and mac layer
perspectives,” Science China Information Science, Tech. Rep., 2015.

[6] E. Borcoci, T. Ambarus, and M. Vochin, “Distributed control plane
optimization in sdn-fog vanet,” ICN 2017, p. 135, 2017.

[7] G. Yao, J. Bi, Y. Li, and L. Guo, “On the capacitated controller place-
ment problem in software defined networks,” IEEE Communications
Letters, vol. 18, no. 8, pp. 1339–1342, 2014.

[8] M. F. Raouf Bari, A. R. Roy, S. R. Chowdhury, Q. Zhang, M. F. Zhani,
R. Ahmed, and Boutaba, “Dynamic controller provisioning in software
defined networks,” in Proceedings of the 9th International Conference
on Network and Service Management (CNSM), 2013.

[9] A. Sallahi and M. St-Hilaire, “Optimal model for the controller place-
ment problem in software defined networks,” IEEE Communications
Letters, vol. 19, no. 1, pp. 30–33, 2015.

[10] L. Yao, P. Hong, W. Zhang, J. Li, and D. Ni, “Controller placement and
flow based dynamic management problem towards sdn,” in Proceedings
of the International Conference on Communication Workshop (ICCW).
IEEE, 2015, pp. 363–368.

[11] L. F. Marinho P Müller, R. R. Oliveira, M. C. Luizelli, L. P. Gaspary,
and Barcellos, “Survivor: an enhanced controller placement strategy for
improving sdn survivability,” in Proceedings Global Communications
Conference (GLOBECOM). IEEE, 2014, pp. 1909–1915.

[12] Q. L. Y. J. Sheng Guo, Shu Yang, “Towards controller placement for
robust software-defined networks,” in Proceedings the 34th International
Performance Computing and Communications Conference (IPCCC).
IEEE, 2015, pp. 1–8.

[13] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan,
“The internet topology zoo,” IEEE Journal on Selected Areas in Com-
munications, vol. 29, no. 9, pp. 1765–1775, 2011.

[14] R. Dantu, T. A. Anderson, R. Gopal, and L. L. Yang, “Internet2 open
science, scholarship and services exchange,” 2004.


