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CXCR4 antagonists: targeting the microenvironment in leukemia and other cancers
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Hematopoietic and epithelial cancer cells express CXCR4,
a seven-transmembrane G-protein-coupled chemokine recep-
tor. Stromal cells within the bone marrow microenvironment
constitutively secrete stromal cell-derived factor-1 (SDF-1/
CXCL12), the ligand for CXCR4. Activation of CXCR4 induces
leukemia cell trafficking and homing to the marrow microenvir-
onment, where CXCL12 retains leukemia cells in close contact
with marrow stromal cells that provide growth and drug
resistance signals. CXCR4 antagonists, such as Plerixafor
(AMD3100) and T140 analogs, can disrupt adhesive tumor–
stroma interactions and mobilize leukemia cells from their
protective stromal microenvironment, making them more
accessible to conventional drugs. Therefore, targeting the
CXCR4-CXCL12 axis is a novel, attractive therapeutic approach
that is explored in ongoing clinical trials in leukemia patients.
Initially, CXCR4 antagonists were developed for the treatment
of HIV, where CXCR4 functions as a co-receptor for virus entry
into T cells. Subsequently, CXCR4 antagonists were noticed to
induce leukocytosis, and are currently used clinically for
mobilization of hematopoietic stem cells. However, because
CXCR4 plays a key role in cross-talk between leukemia cells
(and a variety of other tumor cells) and their microenvironment,
cancer treatment may become the ultimate application of
CXCR4 antagonists. Here, we summarize the development of
CXCR4 antagonists and their preclinical and clinical activities,
focusing on leukemia and other cancers.
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CXCR4: a unique chemokine receptor

Chemokines are defined by their ability to induce directional
migration of cells toward a gradient of the chemokine
(chemotaxis) through binding to a subset of seven-trans-
membrane, G-protein-coupled (chemokine) receptors. Chemo-
kines are small (B8–14 kDa) secreted proteins that are divided
into the two main chemokine subfamilies on the basis of the
arrangement of two N-terminal cysteine residues. These cysteine
residues either have an amino acid between, or they are
adjacent, accounting for CXC or CC chemokines.1 In a more
functional sense, chemokines can also be classified as inflam-
matory or homeostatic chemokines that are induced during
inflammation to attract inflammatory cells,2 or constitutively
secreted by stromal cells (homeostatic chemokines). Homeo-
static chemokines, such as CXCL12, coordinate cell trafficking
and homing, which is essential during development and for
homeostasis and function of the immune system.3,4

Stromal cell-derived factor-1 (SDF-1), now designated
CXCL12,1 signals through the CXCR4 chemokine receptor,5,6

and was initially described as a pre-B-cell growth factor in
1994.7 In 1996, the co-receptor function of CXCR4 for the entry
of T-tropic (X4) human immunodeficiency virus (HIV)-1 strains
into CD4-positive T cells was discovered.5,6,8 Subsequently,
CXCL12 and CXCR4 gene-deleted mice were described with an
identical, lethal phenotype, suggesting a monogamous relation-
ship between this chemokine and its receptor. The phenotype of
these mice is characterized by deficient hematopoiesis with
defects in B-cell development and myelopoiesis, and abnormal
neuronal and cardiovascular development.9–12 More recently,
CXCR7 has been described as an alternate receptor for CXCL12,
which appears to function by sequestering CXCL12 13 and
modifying CXCR4 signaling rather than displaying autonomous
signaling in response to CXCL12.14 Mesenchymal stromal cells
(MSCs) are considered a major source for CXCL12 in the adult
organism. CXCL12-secreting stromal cells can be found in
various tissues, such as the liver, lungs, lymphatic tissues and the
marrow.15 Constitutive high-level CXCL12 secretion by reticular
stromal cells in the marrow is essential for homing16 and
maintenance of hematopoietic stem cells (HSCs) in distinct
vascular and endosteal niches for their development and
growth.17 Through CXCL12, these stromal cells also attract
circulating hematopoietic progenitor cells16 or leukemia cells18

for homing to the marrow (Figure 1). Actually, CXCR4 is the only
functional chemokine receptor on hematopoietic progenitor
cells,19 emphasizing the predominant role of this chemokine
receptor for homing and maintenance of HSC in the marrow
niches. More recently, the architecture of niches for hemato-
poietic and other tissue stem cells (that is, germline stem cells,
follicle stem cell, intestinal stem cell, central nervous system
stem cell, and others) and the mechanism that govern stem cell
homeostasis within these niches are emerging.20,21 Regulated
migration and homing of stem cells to tissue niches are critical
steps not only during embryonic development or tissue repair
but also in cancer (stem) cell dissemination.22 In this context,
the CXCR4-CXCL12 axis functions as a migration mechanism
broadly conserved across species that is essential for stem cell
migration in multiple tissues in both the embryo and adult. The
responsiveness to CXCL12 significantly changes during
differentiation of hematopoietic cells, as demonstrated for
lymphoid23 and myeloid24 cells. These maturation-dependent
changes in CXCL12 responsiveness, which are not necessarily
accompanied by changes in CXCR4 expression levels,23 are
thought to regulate trafficking and homing to distinct tissue
microenvironments. For example, high CXCL12 responsiveness
allows for the retention and homing of immature and mature
B cells (pre- and pro-B cells, and plasma cells) to the marrow.25–27

This maturation-dependent CXCL12 responsiveness appears
to be retained in malignancies that correspond to respective
maturation stages of their normal counterparts; that is, pre- and
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pro-B-cell acute lymphoblastic leukemia (ALL) cells and multi-
ple myeloma cells utilize the CXCR4/CXCL12 axis for bone
marrow homing.18,28

There is also growing evidence suggesting that leukemia
progression is driven by a sub-population of cells referred to as
leukemia stem cells (LSCs) that are more leukemogenic than
other cells of the same clone. LSCs share phenotypic and
functional characteristics with their normal counterparts, and
the hierarchical organization of the neoplastic clone mimics
differentiation and cell turnover as part of homeostasis or tissue
repair, nurtured by infrequent stem cells.29–31 Normal and
malignant stem cells apparently have a particular requirement
for distinct niches: HSCs localize to CXCL12þ stromal cells that
are in close proximity to the marrow vasculature (vascular
niche) or the endosteum.17 Interestingly, brain tumor stem cells
also reside in vascular niches adjacent to blood vessels,32

suggesting that normal stem cells, LSCs and other cancer stem
cells (CSCs) have fundamentally similar requirements toward
their niches.21,33 This concept implies that LSCs would
preferentially localize through CXCR4 to vascular and endosteal
niches that are normally restricted to HSC. Consequently,
CXCR4 antagonists could mobilize LSCs and/or CSCs that are

normally protected in tissue niches and make them accessible to
conventional anticancer drugs.

Current clinical trials with AMD3100 utilized this mechanism
of CXCR4-mediated homing to the marrow to mobilize HSC to
the peripheral blood for HSC collection for autologous stem cell
transplantation.34 In phase II trials, mobilization with the
combination of AMD3100 and granulocyte colony-stimulating
factor (G-CSF) results in the collection of more progenitor cells
than G-CSF alone.35 The peptide CXCR4 antagonist TN14003 is
also a potent mobilizer of HSC alone and in combination with
G-CSF; and apparently TN14003 displays a pattern of hemato-
poietic cells and overall potency for HSC mobilization that is
different from AMD3100.36

The CXCR4-CXCL12 axis is also related to tissue hypoxia and
repair of hypoxic damage.37 The transcription factor hypoxia-
inducible factor-1 (HIF-1), which gets upregulated in hypoxic
states, induces the local expression of CXCL12,38 which in turn
can attract circulating progenitor cells for tissue repair. This
function of the CXCR4-CXCL12 axis plays a prominent role in
the recruitment of marrow-derived progenitors to the heart after
myocardial infarction.39,40 Currently, there are research efforts
to utilize this mechanism by local intramyocardial delivery of a
protease-resistant CXCL12 to attract progenitor cells to sites of
hypoxic damage after myocardial infarction.41 Moreover, in
hypoxic tumors or in tumors that display mutations in the von
Hippel–Lindau tumor suppressor protein pVHL (a negative
regulator of HIF-1), HIF-1 upregulates CXCR4 expression,42,43

providing a survival benefit for tumor cells with high CXCR4
expression.

Blocking CXCR4 in the treatment of leukemia and other
cancers

CXCR4 chemokine receptors are expressed by leukemia cells
from patients with acute and chronic leukemias and also various
solid tumors, such as breast cancer, lung cancer, prostate cancer
and others.37,44 In general, CXCR4 expression by the tumor cells
allows for tumor cell migration, and homing of the neoplastic
cells to sites where non-malignant stromal cells express
CXCL12, the ligand for CXCR4.45 This concept implies that
tumor cell metastasis is not random, but guided by the
expression of chemokine receptors and adhesion molecules on
the neoplastic cells, and respective ligands in the target
organs.15,46 Tumor cells apparently utilize this mechanism to
access microenvironments, such as the marrow, that provide
factors that favor their growth. For example, the importance of
CXCR4 for breast cancer metastasis to different target organs
was demonstrated in vitro and in vivo.15 Leukemia cells from
patients with chronic lymphocytic leukemia (CLL) and ALL
utilize CXCR4 for homing to marrow stromal cells (MSCs)
in vitro47 and in vivo.18 Moreover, CXCL12 has a direct growth-
and survival-promoting effect for various cancer cells, such as
breast cancer cells48 or CLL cells.49 CXCL12 also promotes
tumor progression by recruiting endothelial progenitor cells to
tumors for tumor angiogenesis.48 Stromal fibroblasts, also called
carcinoma-associated fibroblasts or mesenchymal stromal cells
(MSC), are part of the tumor microenvironment. These stromal
fibroblasts constitutively secrete CXCL12, and contact between
tumor cells and stromal cells is largely dependent on the
CXCR4-CXCL12 axis. For example, co-culture between CLL
cells47 or lung cancer cells50 and CXCL12-secreting stromal
cells induces strong adhesion and spontaneous migration of the
neoplastic cells beneath the stromal cells (pseudoemperipolesis)
in a CXCR4-dependent manner. Nonspecific and specific

Figure 1 CXCR4 antagonists in human immunodeficiency (HIV-1)
and cancer. (a) CXCR4 is the co-receptor used along with CD4 by T
cell-tropic (X4) HIV-1 strains for cellular entry into T cells. A trimeric
unit of viral envelope glycoproteins (gp120) that are anchored by gp41
binds to CD4 on the surface of T cells, inducing a conformational
change of gp120, allowing it to interact with CXCR4 through the V3
loop of gp120. CXCR4 antagonists block the CXCR4-binding site for
X4 HIV-1, and thereby prevent fusion of HIV-1 with T cells. (b) Stromal
fibroblasts within the tumor microenvironment secrete CXCL12 and
thereby attract and retain tumor cells in contact with the stroma.
Adhesion of tumor cells to stromal cells confers survival, growth and
drug resistance signals (cell adhesion-mediated drug resistance (CAM-
DR)) that are, at least in part, mediated by activation of CXCR4 on the
tumor cells. Stromal cell-mediated activation of CXCR4 is also called a
‘paracrine’ activation of tumor cells through CXCL12.48 CXCR4
antagonists can disrupt the adhesive interactions between tumor cells
and tumoral fibroblasts, mobilizing them from the tumor microenvi-
ronment, and making the tumor cells more accessible to cytotoxic
drugs. (c) Tumor cells (hematopoietic and non-hematopoietic) also
utilize the CXCR4-CXCL12 axis to migrate and home to target organs,
such as the marrow. CXCL12 is constitutively secreted by marrow
stromal cells retains leukemia cells in protective marrow niches and
attracts circulating tumor cells for directional homing/metastasis.
CXCR4 antagonists can inhibit this mechanism of tumor cell homing
by blocking CXCR4 receptors responsible for migration to CXCL12-
secreting stromal cells, thereby mobilizing tumor cells from tissue
sites, such as the marrow.
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CXCR4 antagonists, such as pertussis toxin and CXCR4
antagonists (T140 and AMD3100) can block this adhesion and
migration.51 Adhesion to stromal cells confers resistance to
spontaneous and drug-induced cell death of tumor cells,
and therefore is also termed cell adhesion-mediated drug
resistance.52,53 Tumor cells that adhere to stromal cells through
CXCR4 are therefore, at least partially, protected from the effects
of cytotoxic chemotherapy and represent a reservoir for minimal
residual disease (MRD) and relapses commonly seen in the
treatment of patients with various cancers. However, the overall
role of MSC in the tumor microenvironment remains contro-
versial. Although on the one hand, MSC can provide survival,
growth and drug resistance signals,48,54 MSC can also induce
cell cycle and growth arrest in epithelial cancer55–57 and
leukemia cells.58 On the basis of these findings, the therapeutic
use of MSC to decelerate tumor growth has been proposed.59,60

These controversial findings regarding the capacity of MSCs to
induce tumor progression (in vivo) and also to induce tumor cell
growth arrest (in vitro) could, at least in part, be due to the
ability of MSC to provide niches for CSCs in vivo. In these
tissue niches, MSCs are thought to maintain and support a
sub-population of growth-arrested tumor cells/CSCs that are
resistant to cytotoxic treatments and function as a reservoir of
the disease with the potential to proliferate and sustain the
malignant process.22

In summary, the rationale for targeting CXCR4 with CXCR4
antagonists in leukemia and other cancers is as follows:

1. disrupting the adhesive stromal interactions that confer
survival and drug resistance signals to leukemia and other
cancer cells;

2. mobilizing tumor cells from tissue sites, such as the marrow,
and thereby making them better accessible to conventional
therapy;

3. blocking of migration and dissemination of tumor cells in the
process of tumor cell metastasis;

4. blocking of paracrine growth and survival signals through
activation of the CXCR4-CXCL12 axis and

5. blocking pro-angiogenesis effects of CXCL12.

These different mechanisms through which CXCR4 antagonists
may display activity in treatment of neoplastic diseases raise
questions about when during the course of the disease and for
how long they should be administered, and whether CXCR4
antagonists should be given alone or in combination with
conventional anticancer drugs. This question will be addressed
by clinical trials that are currently designed or ongoing.

CXCR4 antagonists

CXCR4 antagonists were initially developed as new drugs for the
treatment of HIV-1 infection. At the time of their discovery in the
early 1990s, the mechanism of anti-HIV activity of the most
prominent CXCR4 antagonists, T140 and its analogs,61,62

AMD3100 63,64 and ALX-4C,65 was unknown. After the dis-
covery of the co-receptor function of CXCR4 for T tropic HIV-1,
the specific CXCR4-blocking function of the different CXCR4
antagonists was rapidly demonstrated.66–68 With the rapid
increase in our knowledge of other, non-HIV-related functions
of CXCR4 over the past 11 years, other potential applications
such as HSC mobilization and treatment of cancer and
autoimmune disease are emerging and have gradually replaced
the original intent to use CXCR4 antagonists as anti-HIV drugs.

In general, four major classes of CXCR4 antagonists and agonists
can be distinguished: (a) small peptide CXCR4 antagonists, such as

T140 and its analogs (TN14003 and others), (b) non-peptide
CXCR4 antagonists, such as the bicyclam AMD3100, (c) antibodies
to CXCR4 and (d) modified agonists and antagonists for SDF-1.
Below, we will summarize the current status of preclinical and
clinical development for CXCR4 antagonists.

Small peptide antagonist of CXCR4
Initially, this group of small peptide CXCR4 antagonists was
discovered screening naturally occurring peptides for anti-HIV
activity. In that process, self-defense peptides from horseshoe
crabs, called tachyplesin (from the Japanese horseshoe crab
Tachypleus tridentatus) and polyphemusin (from the American
horseshoe crab Limulus polyphemus), were identified and
chemically modified, leading to the synthesis of the anti-HIV
peptides T22,62 T134 and T140.69 Initially, these compounds
were thought to function by inhibiting HIV-1–T-cell fusion or the
viral uncoating.61 However, the precise mechanism of anti-HIV
activity remained unclear until the discovery that T tropic HIV-1
(X4-HIV-1) utilizes CXCR4 as a co-receptor for cellular entry
into CD4-positive T cells. Soon after this, it was demonstrated
the T22 specifically binds to CXCR4 and blocks CXCR4 receptor
regions that are critical for HIV-1 viral entry and for activation
by its natural ligand, CXCL12.68 T140 is considered the most
active CXCR4 peptide antagonist among the initially synthesized
peptides, but lacks serum stability due to cleavage of the
C-terminal Arg. Therefore, C-terminally amidated T140 analogs
were developed to overcome serum instability,70 leading to the
synthesis of TN14003 and TC14012. Further work revealed the
binding regions for T140 within the extracellular domains and
regions of the hydrophobic core of CXCR4, which are distinct
from the binding region for AMD3100.71 Also, in a series of
experiments to elucidate the mechanism of CXCR4 signaling, it
was noticed that T140 decreased autonomous CXCR4 signaling
in CXCR4 wild-type or constitutively active CXCR4 mutants,
characterizing T140 as an inverse CXCR4 agonist, whereas
AMD3100 and ALX40-4C displayed partial agonist activity in
this study.72 Clinical trials will help to determine whether this
characteristic of CXCR4 peptide antagonists correlates with a
profile of activities and/or side effects that is distinct from
AMD3100.

The efficacy of T140 and its analogs for blocking CXCR4
in vitro and in vivo has been documented in numerous
preclinical studies, including in vivo models for breast cancer
and melanoma,73,74 rheumatoid arthritis75 and stem cell
mobilization.36 Other studies explored the activity of these
agents in acute76,77 and chronic leukemias,54 multiple myelo-
ma,78 small cell lung cancer (SCLC),50 malignant melanoma74

and pancreatic cancer.79 Besides these disease-oriented studies,
T140 and its analogs have been used in basic studies exploring
the function of CXCR4 in dendritic cell development80 and
migration,81 B-cell homing and germinal center positioning
within lymphatic tissues,82 and HSC homing.83 Currently, the
T140 analog TN14003 is under clinical development by Biokine
Therapeutics Ltd, Rehovot, Israel.

ALX40-4C is a polypeptide of nine Arg residues that is
stabilized by terminal protection and inclusion of D-amino
acids. ALX40-4C is a specific CXCR4 antagonist,66 and was the
first CXCR4 antagonist clinically used in phase I and phase I/II
trials in HIV patients conducted by the Canadian company
Allelix Biopharmaceuticals, Mississauga, ON, Canada.65 This
peptide is no longer under development, particularly because of
formulation difficulties and lack of efficacy, and also because it
is unlikely that an oral formulation of this complex peptide can
be produced.
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Non-peptide CXCR4 antagonists
AMD3100 is a bicyclam, in which two cyclam rings are
connected through an aromatic bridge. AMD3100 possesses the
highest anti-HIV activity among a series of bicyclams that were
synthesized in the early 1990s.64,84 AMD3100 is a specific
antagonist of CXCL12 binding to CXCR4, inhibiting CXCL12-
mediated calcium mobilization, chemotaxis and GTP binding,
and does not cross-react with other chemokine receptors.85

AMD3100 was initially considered to interfere with HIV-1
fusion or uncoating.63 Initially developed at Johnson Matthey in
collaboration with the Rega Institute for Medical Research
(Leuven University, Leuven, Belgium), this compound was first
called JM3100, which changed to AMD3100 after a new
company (AnorMED, Langley, BC, Canada) took over the
development. The anti-HIV-1 activity of AMD3100, restricted
to X4-HIV-1 strains, and the blocking function of AMD3100 on
gp120 interaction with CXCR4 during viral entry86 were the
initial focus during the early development of this drug.
However, an unexpected rapid, transient leukocytosis was
noticed during phase I/II clinical trials of AMD3100 in
volunteers and HIV-infected patients, caused by the mobiliza-
tion of various hematopoietic cells, including CD34-positive
HSC, to the blood.87,88 In the second trial in HIV patients, one
patient receiving the highest dose of AMD3100 (160mg/kg/h)
had a significant drop in his viral load, but overall the efficacy of
AMD3100 in affecting disease activity in HIV-1 patients was
considered low and therefore this application was not further
pursued for AMD3100. Instead, AnorMED explored AMD3100
as a mobilizing agent for HSC,88 and a subsequent series of
preclinical and clinical trials demonstrated that AMD3100 alone
and in combination with G-CSF mobilizes HSC.34,89,90

AMD3100 (recently re-named as Plerixafor or Mozobil) is
now owned by Genzyme Corporation (Cambridge, MA, USA)
after a recent takeover of AnorMED by Genzyme in late
2006. Plerixafor is currently used in phase III trials in lymphoma
and multiple myeloma patients undergoing autologous stem cell
mobilization, and current plans are to file for US and European
approval of the drug in 2008. The activity of Plerixafor to inhibit
CXCR4 activation in various in vitro and in vivo tumor models,
such as inhibition of CXCL12-induced tumor cell migration and
downstream signaling and activity in murine tumor models has
been reported. These studies are summarized in Table 1.

AMD070 is another orally bioavailable small molecule CXCR4
antagonist with anti-HIV activity that Genzyme is currently
developing in phase II trials for HIV-1 treatment.91

KRH-1636 is an orally available, non-peptide CXCR4 antagonist
that inhibits infection by X4-HIV-1 virus and blocks responses to
stimulation with CXCL12, such as calcium mobilization.92

Development antibodies to CXCR4
Neutralizing the interaction between CXCL12, the ligand
for CXCR4, and CXCR4 by using anti-CXCR4 antibodies

significantly inhibit HIV infection and tumor cell migration
in vitro.47,93,94 Furthermore, anti-human CXCR4 or CXCL12
antibodies also significantly impair metastasis and progression of
non-Hodgkin’s lymphoma, breast, lung and prostate tumors in
animal models.95–98 The unique properties of monoclonal antibody
(mAb) therapies, including their high affinity and specificity, and the
differential expression of target antigen in tumor cells versus normal
cells make them attractive agents for cancer immunotherapy.
Development of therapeutic mAbs to CXCR4 is challenging due to
the fact that CXCR4 can exhibit conformational heterogeneity.
Using a panel of mAbs to CXCR4, it was found that CXCR4 on both
primary and transformed T, B and myeloid cells exhibited
considerable conformational heterogeneity.99 This conformational
heterogeneity of CXCR4 explains the cell-type-dependent ability of
CXCR4 antibodies to block chemotaxis to its ligand CXCL12. In
addition, the mAb most commonly used to study CXCR4
expression, 12G5, recognizes only a sub-population of CXCR4
molecules on all primary cell types analyzed. As a result, CXCR4
concentrations on these important cell types have been under-
estimated to date. The factors responsible for altering CXCR4
conformation are not known. However, CXCR4 can be post-
translationally modified by sulfation of its N-terminal tyrosines, and
by a chondroitinsulfate chain at serine 18. This phenmenon may
explain, in part, the difference in confirmation, antibody specificity
and function of CXCR4.100 Altered glycosylation patterns, neo-
expression and underexpression or overexpression of glycans are
hallmarks of cancer and may significantly affect the activity of
various CXCR4 antagonists in development.

Modified CXCL12
CTCE-9908 and CTCE-0214 are peptide analogs of CXCL12 with
inhibitory and agonist activity, respectively. CTCE-9908 that has
received orphan drug status by the Food and Drug Administra-
tion for the treatment of osteogenic sarcoma. CTCE-9908
decreases growth and adhesion of osteosarcoma cells and the
metastatic dissemination of cancer cells in two murine models.101

CTCE-9908 is developed by Chemokine Therapeutics Corp.,
Vancouver, BC, Canada.

CXCR4 antagonists in selected cancers

CLL
B-cell CLL is a leukemia of mature, antigen-experienced B cells.
CLL cells accumulate in the blood, marrow and secondary
lymphoid tissues. Despite their apparent longevity in vivo, isolated
CLL cells generally undergo spontaneous apoptosis in vitro when
cultured under conditions that support the growth of human B-cell
lines.49 CLL cells express high levels of CXCR4,47,102 and CLL cells
spontaneously migrate beneath MSCs that secrete CXCL12 in a
CXCR4-dependent manner.47 Stromal cells and nurse-like cells,

Table 1 CXCR4 antagonists that are currently in preclinical and clinical development

Product name Company Structure Administration Indication Study phase

Plerixafor (AMD3100) Genzyme Bicyclam s.c. Stem cell mobilization Phase III
AMD070 Genzyme Bicyclam derived Oral HIV Phase I/II
CTCE-9908 antagonist Chemokine Therapeutics Corp. Modified SDF-1 s.c./i.v. Solid tumors Phase I/II
CTCE-0214-agonist Chemokine Therapeutics Corp. Modified SDF-1 s.c./i.v. Mobilization BM recovery Phase I/II
No name Northwest Biotherapeutics,

Bethesda, MD, USA
Antibody s.c./i.v. Cancer Preclinical

TG-0054 TaiGen Biotechnology Co.,
Taipei, Taiwan

? ? Stem mobilization for regeneration Phase I/II

BKT140 Biokine Therapeutics Modified peptide s.c./oral MM and leukemia Phase I
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another stromal cell type derived from monocytes, protect CLL
cells from spontaneous or drug-induced apoptosis in a contact-
dependent manner. These observations support a model proposing
that expression of CXCR4 by CLL cells allows for their recirculation
between the blood and the marrow or lymphoid tissues, where
they receive protective survival signals. We demonstrated earlier
that CXCR4 antagonists effectively block CXCL12-induced
activation, migration and signaling of CLL cells.54 Also, CXCR4
antagonists reversed stromal cell-mediated protection from spon-
taneous or fludarabine-induced apoptosis of CLL cells, suggesting a
potential role of CXCR4 antagonists in combination with a B-cell-
targeted therapy in the treatment of CLL. Because of the high-level
CXCR4 expression, and the particular requirement of stromal cell
support for CLL cell survival, it appears that CLL patients would
particularly respond to CXCR4 antagonists. The expected response
to CXCR4 antagonists would be a mobilization of the CLL cells
from the tissues (marrow and lymphoid tissues) to the blood, where
CLL cells then could be targeted by mAbs, such as anti-CD20 or
anti-CD52 mAbs, or cytotoxic agents.

Acute myeloid leukemia
Despite a general sensitivity to chemotherapy, long-term
disease-free survival in patients with acute myelogenous

leukemia (AML) is low because a majority of patients relapse
from MRD. The marrow is considered the primary site for MRD
where adhesion to stromal elements may protect AML cells from
cytotoxic drugs. Several studies indicated that adhesion to MSCs
affects the survival and proliferation of AML cells58,103,104

and protects AML cells from chemotherapy in vitro105 and
in vivo.106 Adhesion molecules, in particular the very late
antigen-4 (VLA-4) integrins, along with CXCR4 chemokine
receptors, are essential for AML cell adhesion to respective
ligands (fibronectin and VCAM-1) on stromal cells107 and for
protection of AML cells from spontaneous or drug-induced
apoptosis.106,108 CXCR4 receptors are functional in AML,58,109

and surface CXCR4 expression, which is generally low when
compared with lymphoid cells, correlates with functional
responses, such as chemotaxis.110 CXCR4-dependent engraft-
ment of AML cells in non-obese diabetic/severe combined
immunodeficient (NOD/SCID) mice was demonstrated by Tavor
et al.,111 and this group also reported that the proteolytic
enzyme elastase is involved in regulating SDF-1-dependent
migration and proliferation of AML cells in vitro and in vivo.112

CXCR4, in cooperation with VLA-4 integrins, mediates sponta-
neous migration of AML cells beneath MSCs, along with a
decreased proliferation of migrated AML cells within stromal
layers.58 This suggests that CXCR4 expression by AML cells

Table 2 In vitro and in vivo efficacy of CXCR4 antagonists in solid tumors and leukemia/lymphoma

Cancer type In vitro studies In vivo studies

Solid tumors
Breast cancer AMD3100: blocks CXCL12-induced HER2-

neu activation133
T140: reduced metastasis in murine model73;
AMD3100: prolongs survival in murine
model128

Small cell lung cancer (SCLC) T140 and its analogs block adhesion and
survival pathways50,130

Pancreatic cancer AMD3100 inhibits tumor cell migration and
growth134

Cholangiocarcinoma AMD3100 inhibits tumor cell migration135

Gastric cancer AMD3100 reduced tumor growth in a murine
model136

Colorectal cancer AMD3100 inhibits tumor cell growth137

Malignant melanoma AMD3100 inhibits tumor cell activation and
proliferation138

T140 analog inhibits metastatic melanoma,74

T22 increases efficacy of immunotherapy in
metastatic melanoma139

Glioma AMD3100 inhibits tumor cell invasion140

Other CNS tumors AMD3100 inhibits glioblastoma and
medulloblastoma growth in xenograft
model141

Ovarian cancer AMD3100 inhibits cancer cell migration and
activation142

Rhabdomyosarcoma T140 blocked in vitro responses to
CXCL12 143

Prostate cancer T140 blocks tumor cell invasion and
signaling144

Leukemia/lymphoma
Chronic lymphocytic leukemia (CLL) T140, TC14012 and TN14003 block

migration, adhesion and stromal protection54;
AMD3100 blocks actin polymerization in CLL
cells54

Acute myelogenous leukemia (AML) RCP168 and AMD3465 block migration and
CXCR4 signaling;145 AMD3100 reduced AML
cell survival111

Acute lymphoblastic leukemia (ALL) T140 and its analogs and AMD3100 inhibit
ALL cell migration and adhesion76

T140 analogs, AMD3100 and AMD3465
mobilize ALL cells77

Multiple myeloma T140 analogs block CXCL12-induced
osteoclast activity78

AMD3100 inhibits in vivo homing of myeloma
cells28

Non-Hodgkin’s lymphoma CXCR4 neutralization inhibited lymphoma
growth95

Abbreviation: CNS, central nervous system.
The diseases in which CXCR4 antagonists showed activity, along with the respective references, are listed.

CXCR4 antagonists in leukemia and cancer treatment
JA Burger and A Peled

47

Leukemia



favors the enrichment of a non-cycling sub-population of AML
cells within the stromal layer. These cells may be less
susceptible to cytotoxic treatments, and they may represent
dormant leukemia progenitors serving as a reservoir for MRD.113

This function of CXCR4 could explain why CXCR4 surface
expression on AML cells has such a profound negative
prognostic impact in AML.114–116 Plerixafor is currently used
in an ongoing clinical trial for mobilization of AML cells from
the protective marrow microenvironment to the blood, where
the AML cells are then targeted by conventional cytotoxic drugs.
The feasibility of using Plerixafor for AML cell mobilization to
the blood in an animal model and in AML patients on this trial
was recently reported.117,118

CXCR4 in ALL
Precursor B-cell ALL, the most common childhood malignancy
and the second most common adult acute leukemia,
is characterized by a high motility of the leukemia cells,
resulting in leukemic infiltrates into extramedullary sites. In
particular, ALL cells have a high affinity for the central nervous
system, which is the most common location for extramedullary
relapses, but also for the liver, spleen and the lymph nodes. The
presumed normal counterparts of B-ALL cells are precursor B
cells that are highly dependent on the stromal microenviron-
ment during their maturation in the marrow.119 Contact
between precursor B cell and CXCL12-secreting stromal cells
is maintained by CXCR4 expression on the B cells, and gene
deletion of CXCR4 or CXCL12 in mouse models results in
premature release of B-cell precursors into the circulation.25 We
reported that B-ALL cells express functional CXCR4 receptors
that induce leukemia cell chemotaxis to CXCL12 and sponta-
neous migration beneath CXCL12-secreting stromal cells in a
CXCR4- and VLA4 integrin-dependent manner, using the B-cell
precursor lines NALM-6 and REH,47,120 findings that were
subsequently confirmed with primary ALL cells.121,122 CXCR4
receptors on ALL cells participate in homing of leukemia cells to
the marrow in NOD/SCID mice.123,124 A recent study by Sipkins
et al.18 provided in vivo evidence that CXCR4 is necessary for
homing of ALL cells to the marrow. Blocking CXCR4 on ALL
cells with specific CXCR4 receptor antagonists blocked the
migration of ALL cells to CXCL12 and MSCs, and partially
disrupted the protection of ALL cells from cytotoxic agents by
MSCs.76 One of the mechanisms by which MSCs protect ALL
cells from chemotherapeutic agents is related to asparagine
synthetase, an enzyme that is critical to the biosynthesis of
asparagine. MSCs constitutively secrete asparagine synthe-
tase,125 which interferes with asparaginase, a drug that has a
critical impact in the treatment of ALL patients. Through this
mechanism, ALL cells may survive in marrow stromal niches
and thus represent the seed for residual disease and relapses.126

Collectively, these studies suggest that ALL cells should be
particularly responsive to therapeutic attempts for mobilization
with CXCR4 antagonists. ALL cells mobilized in such a way
from marrow or other tissue niches then could be better targeted
by conventional ALL treatments.

CXCR4 in breast cancer
CXCR4 was the first chemokine receptor that was described to
be functionally expressed by breast cancer cells.15 Initially, the
main function of CXCR4 in breast cancer was considered to
be the directed, organ-specific metastasis of circulating CXCR4-
positive cancer cells to CXCL12-expressing target organs, such
as the lungs, liver, lymphatic tissues and the marrow.15

Treatment with anti-CXCR4 antibodies reduced local and
systemic metastasis of breast cancer in an animal model.15

Subsequently, additional functions of the CXCR4-CXCL12 axis
in breast cancer have been described: first, CXCR4 activation on
breast cancer cells induces a growth response in the tumor cells
(paracrine function of CXCL12), and second, CXCL12 recruits
endothelial progenitor cells to the tumor for tumor angiogenesis
(endocrine function of CXCL12).48 Stromal fibroblasts, also
termed carcinoma-associated fibroblasts, constitutively secrete
CXCL12 into the tumor microenvironment.45,48 High-level
expression of CXCR4 on neoplastic cells is associated with
relatively poor overall survival in patients with breast cancer.127

The multiple tumor-promoting effects of CXCL12 in breast
cancer suggest that CXCR4 antagonists alone or in combination
with cytotoxic drugs could decrease the rate of recurrence in the
adjuvant setting where patients are likely to have MRD, and/or
increase the response rates to conventional therapy in advanced
stages of the disease. Animal breast cancer models using T140 73

and Plerixafor128 have shown promising results, suggesting that
CXCR4 antagonists should be explored in this cancer.

CXCR4 in lung cancer
SCLC is an aggressive, rapidly metastasizing cancer. Even with
combination chemotherapy and radiotherapy treatments, the
5-year survival is only 5% due to rapid development of drug
resistance. CXCR4 is the major chemokine receptor expressed
by primary SCLC cells or SCLC cell lines.50,129 CXCR4
activation induces migratory and invasive responses in SCLC
cells, and adhesion to CXCL12-secreting stromal cells in a
CXCR4- and integrin-dependent manner.50 Moreover, signaling
through CXCR4 on SCLC cells induces activation and signaling
of integrin adhesion molecules expressed on the SCLC cells.130

Integrin-mediated adhesion of SCLC cells to stroma and extra-
cellular matrix in turn protects SCLC cells from chemotherapy-
induced apoptosis.130,131 Collectively, CXCR4 cooperates with
integrins in SCLC cells, mediating tumor cell adhesion to
stromal cells, which in turn confers drug resistance and tumor
cell growth. Moreover, CXCR4 may direct the distinct metastatic
pattern observed in patients with SCLC with a high propensity
for bone marrow involvement. The neoplastic cells in NSCLC
also express CXCR4, but at levels that are lower than in SCLC.50

Because of the very transient responses to cytotoxic chemo-
therapy in lung cancer patients, particularly in SCLC, mobiliza-
tion of tumor cells from their protective microenvironment using
CXCR4 antagonists could be an attractive new approach and
combination partner for conventional chemotherapy of lung
cancer patients.

Potential side effects of CXCR4 antagonists

Permanent or long-term inhibition of the CXCR4-CXCL12 axis
would potentially expose patients to risks of immune system and
hematopoietic dysfunctions. T and B lymphocytes utilize
CXCR4 for trafficking and homing to distinct microenvironments
within lymphoid tissues and the thymus during develop-
ment and immune surveillance.82,132 Another general concern
regarding the use of CXCR4 antagonists in cancer patients is the
mobilization of normal progenitor cells, such as HSC from their
microenvironments to the blood. Mobilized HSCs that are
normally protected in marrow niches would be exposed to the
effects of cytotoxic drugs in trials where CXCR4 antagonists are
administered along with cytotoxic drugs, which could result in
prolonged cytopenias. More specific side effects are Plerixafor-
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related cardiac complications (premature ventricular contrac-
tions) in two patients treated with 40 and 160mg/kg/h, who had
a history of cardiac problems.88 No cardiac side effects were
reported for the subsequent clinical trials of Plerixafor for stem
cell mobilization.

Collectively, CXCR4 antagonists provide a new, targeted tool
to mobilize leukemia cells from their protective marrow
microenvironment. Mobilized leukemia cells then become
more accessible to conventional drugs, and therefore this
strategy may help to overcome MRD and relapses commonly
seen in the treatment of leukemia patients. Currently, CXCR4
antagonists are explored in proof-of-principle studies in leuke-
mia patients in whom leukemia cell mobilization can be easily
assessed and monitored. However, given the expression of
functional CXCR4 receptors by a variety of other hematopoietic
and epithelial cancers,37 a broader use of CXCR4 antagonists in
other cancers is expected provided that the ongoing studies are
successful (Table 2).
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