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ABSTRACT

The malicious attacks in the scale-free Internet of Things (IoT) networks create a serious threat for
the functionality of nodes. During the malicious attacks, the removal of high degree nodes greatly
affects the connectivity of the remaining nodes in the networks. Therefore, ensuring the maximum
connectivity among the nodes is an important part of the topology optimization. A good scale-free
network has the ability to maintain the functionality of the nodes even if some of them are removed
from the network. Thus, designing a robust network to support the nodes’ functionality is the aim
of topology optimization in the scale-free networks. Moreover, the computational complexity of an
optimization process increases the cost of the network. Therefore, in this paper, themain objective is to
reduce the computational cost of the network with the aim of constructing a robust network topology.
Thus, four solutions are presented to reduce the computational cost of the network. First, a Smart Edge
SwapMechanism (SESM) is proposed to overcome the excessive randomness of the standard Random
Edge Swap Mechanism (RESM). Second, a threshold based node removal method is introduced to
reduce the operation of the edge swap mechanism when an objective function converges at a point.
Third, multiple attacks are performed in the network to find the correlation between the measures,
which are degree, betweenness and closeness centralities. Fourth, based on the third solution, a Heat
Map Centrality (HMC) is used that finds the set of most important nodes from the network. The HMC
damages the network by utilizing the information of two positively correlated measures. It helps to
provide a good attack strategy for robust optimization. The simulation results demonstrate the efficacy
of the proposed SESMmechanism. It outperforms the existing RESMmechanism by almost 4% better
network robustness and 10% less number of swaps. Moreover, 64% removal of nodes helps to reduce
the computational cost of the network.

1. Introduction
The Internet of Things (IoT) has become an essential

technology nowadays. Its integration with the Wireless Sen-
sor Networks (WSNs) provides good support to the research
community. The IoT-WSNs have various applications in-
cluding intelligent transportation [1], smart environmental
monitoring [2], smart cities, etc. An important character-
istic of the IoT-WSNs is that they are operational even in
hostile environments [3]. The IoT-WSNs consist of sensor
nodes connected with the Internet to perform their functions
without any human interaction. The activities of the sensor
nodes help the researchers to explore the behavior of many
real-world networks.

A lot of researchers have put their efforts to study the
properties of different IoT-WSNs [4], [5]. Among these net-
works, the complex networks have high importance over other
networks due to their dense nature. These networks have
two classic network models, namely, a small-world network
model [6] and a scale-free network model [7]. The small-
world networks have a high clustering coefficient and a low
average distance. They are generally used for modeling the
topology in heterogeneous networks [8]. On the other hand,
the scale-free networks are generally used for modeling the
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topology in homogenous networks [9] due to similar band-
width and transmission range.

An important property of the scale-free networks is that
most of the nodes in the networks are low degree nodes while
few nodes have a high degree. Therefore, the scale-free net-
works become more vulnerable to malicious attacks by re-
moving the most important nodes from the networks. Such
attacks split the networks into multiple independent graphs
[10] and paralyze them with time. A network is robust if
it has the ability to withstand against node or link removal
from the network. Therefore, a robust topology designing is
a common application in the scale-free networks. The com-
mon measure for evaluating the robustness of the network is
proposed by Schneider et al. [11] that considers removing
the nodes one by one until the entire network becomes para-
lyzed. The network robustness R is calculated by analyzing
the connectivity of the nodes in the network, and it is used
in a number of research papers including [11, 12, 13, 14].

In the scale-free networks, the nodes which act as hubs
are considered as the most important nodes and the removal
of these nodes creates a serious threat to the network’s con-
nectivity. Due to the node removal, the connections of the
remaining nodes are deeply affected, which reduces the net-
work performance. The connectivity of the nodes is im-
portant to maintain network’s functionality. Therefore, the
goal is to propose a network, which maintains high robust-
ness against the node removal. Addition or deletion of links
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Table 1
List of Abbreviations and Mathematical Symbols

Notation Description
AI Artificial Intelligence
BA Barabasi Albert
CI Cumulative Influence

DDLP Deep Deterministic Learning Policy
GA Genetic Algorithm
HMC Heat Map Centrality
HC Hill Climbing
MA Multi Agent
ML Machine Learning
RESM Random Edge Swap Mechanism
SESM Smart Edge Swap Mechanism
A Adjacency Matrix

ANNF Average Node’s Neighbor Farness
CC Closeness Centrality
r Assortativity
m Edge Density
G Graph

MCS Maximal Connected Subgraphs
N Number of Nodes
NF Node’s Farness
NNF Node’s Neighbor Farness
� Power Law Exponent
R Robustness
s Shortest Path

between the nodes increases the network robustness, how-
ever, it also increases the computational cost of the network
by increasing the nodes’ degree distribution. Therefore, an
edge swap mechanism is adopted to reduce the cost. The
edge swap mechanism increases the network robustness by
keeping the nodes’ degree distribution unchanged. A simi-
lar edge swap mechanism is introduced using Hill Climbing
(HC) algorithm [11], where edge swap is performed by se-
lecting two random independent edges from the network for
the construction of an optimized scale-free topology. The
edge swap mechanism adopted by ROSE [13] uses the de-
gree difference and angle sum operations to increase the net-
work robustness. However, the random selection of edges
in HC and ROSE increases the number of redundant opera-
tions and computational cost of the network. Furthermore,
there are some other factors as well that increase the compu-
tational cost of the network. Among them is the convergence
of an objective function after its limit is achieved and obtain-
ing similar results after further optimization. For topology
optimization case, performing unnecessary edge swaps does
not provide an optimized scale-free topology, except it in-
creases the cost of the optimization process. Also, the re-
moval of nodes based on degree and betweenness in [14]
shows success because of a strong positive correlation be-
tween them. However, the betweenness centrality has high
computational cost [15]. Moreover, making the network ro-
bust against different types of malicious attacks is a complex

problem in the scale-free networks and the attacker removes
the nodes based on their importance like degree, between-
ness, closeness, etc.

To find the hub nodes from the networks, some other
measures [16, 17, 18, 19] are also proposed. However, these
measures are designed for large-scale networks whereas, our
proposed model is a small-scale network. If these measures
are considered in the proposed model, their efficacy in find-
ing the hub nodes will be compromised due to the following
reasons.

1. The Cumulative Influence (CI) index [16] only pro-
vides the local information of nodes [17]. It effec-
tively evaluates the nodes’ importance for large-scale
networks. However, for small-scale networks, the global
information is also required to judge the nodes’ impor-
tance [15]. Therefore, CI index cannot effectively find
the hub nodes in small-scale networks. Besides, the
degree centrality measure used in our work also pro-
vides the local information of nodes. However, the
measure is computationally efficient and adopted by
our base schemes, i.e., HC and ROSE. On the other
hand, the closeness and betweenness centralities are
global measures that provide the impact of a node on
all the other nodes in the network. Thus, they are opti-
mal measures to evaluate nodes’ importance for small-
scale networks.

2. The belief propagation [17] and explosive immuniza-
tion [18] methods evaluate the nodes’ importance ef-
fectively. However, both methods are computation-
ally complex, resource constrained and are not suit-
able for the proposed network, where resource con-
strained nodes are used. On the other hand, the degree,
betweenness and closeness measures used in proposed
model require simple calculations. Thus, they are suit-
able for our network.

3. The CoreHD [19] is a computationally efficient index
for evaluating the nodes’ importance in a core-based
network. However, our proposed model is not based
on cores. The construction of a core-based network
requires a complete change of the proposed network
topology, which is not suitable in this case.

4. The measures used for the evaluation of nodes’ im-
portance in [20] are designed for multiplex networks
and have high computational cost. Whereas, our pro-
posed model is a single resource constrained network.
If these measures are used for finding the hub nodes
from the network, it will increase the computational
cost of the network. Thus, these measures are not suit-
able for our proposed model. The degree, closeness
and betweenness centrality measures used in the pro-
posed model use less computational cost to evaluate
the node’s importance. Thus, they are suitable for our
model.

1.1. Contributions
In this paper, we address the aforementioned problems in

the scale-free networks and present our model to solve them

Awais and Javaid: Preprint submitted to Elsevier Page 2 of 15



Computationally Efficient Topology Optimization of Scale-Free IoT Networks

with less computational cost. It is important to note that in
this work, it is found that the high computational cost of the
network is due to the excessive use of random edge swaps.
Therefore, it is necessary to validate the effectiveness of the
proposed model with less number of swaps to achieve high
network robustness. Moreover, in this paper, the term ro-
bustness, R, and network robustness are used alternatively.
Also, scale-free networks and scale-free IoT-WSNs are alter-
nate terms used in this paper. Our contributions in this work
are summarized as follows.

1. Aiming to overcome the randomness of edge swap, a
Smart Edge Swap Mechanism (SESM) is proposed to
evaluate the network robustness against the malicious
attacks. The proposed SESM is used to optimize the
network robustness of HC and ROSE. The SESM in-
tegrated models are known as HC-Smart and ROSE-
Smart, respectively.

2. A threshold based node removal method is introduced
to reduce the computational complexity of the net-
work. It tackles the problem of performing unnec-
essary topology optimization when a convergence is
achieved.

3. For the construction of a robust scale-free topology,
three important measures are considered, which are
named as degree, betweenness and closeness. The
Pearson correlation coefficient is used to find two strong
positively correlated measures that can be used simul-
taneously.

4. Considering that multiple attacks can occur on the net-
work, the scale-free topologies are optimized using
a centrality measure named as Heat Map Centrality
(HMC).

1.2. Organization
The organization of this paper is as follows. In Section 2,

we discuss related work. The scale-free network modeling
is discussed in Section 3. The topology optimization using
the proposed solutions is performed in Section 4 and their
performances are evaluated in Section 5. The paper ends
with the conclusion and future work in Section 6.

2. Related Work
This section provides the literature review of different

papers and categorizes them based on their work.

2.1. Construction of a Robust Topology using an
Edge Swap Mechanism

In the scale-free networks, an attacker removes the high
degree nodes that maintain the stability of the networks [12,
13] and the addition of new edges in the network is a good
choice to overcome the loss caused due to the malicious at-
tacks. However, the addition of edges increases the cost of
the network. Therefore, the authors optimize the network
robustness through an edge swap mechanism by perform-
ing malicious attacks on the nodes. However, the degree

of a node is not the only parameter to measure its impor-
tance and the attacker can use other important parameters
like betweenness, closeness, etc., to attack the nodes. The
work in [14] is based on a fault-tolerant model, which shows
high network robustness against random node failure and
low robustness against the malicious attacks. Moreover, the
authors in [21] highlight the importance of the scale-free
networks and find that constructing a robust network topol-
ogy against the malicious attacks is a significant challenge in
the optimization problem. However, both aforementioned
models perform edge swap to increase the network robust-
ness of the scale-free networks. However, they require a
complete knowledge of the scale-free network topology to
perform edge swap. In [22], the authors analyze the threats
of malicious attacks on an Artificial Intelligence (AI) com-
munity and inform that many algorithms involving Machine
Learning (ML) are fragile against malicious attacks. How-
ever, these algorithms do not ensure a reliable and robust
scale-free topology. Thus, the authors introduce a model,
which performs different rewiring mechanisms to increase
the network robustness. Still the link addition and deletion
increase the network’s cost and change the degree distribu-
tion of the nodes.

2.2. Construction of a Robust Topology using
Evolutionary Mechanism

In [23], the authors find that the addition of the links in-
creases the cost of the network. The conventional Genetic
Algorithm (GA) is a good example of an evolutionary algo-
rithm that optimizes the network robustness. However, the
premature convergence in GA reduces the exploration ca-
pability and lowers the performance of the network against
the malicious attacks [24]. Therefore, the authors use Multi-
Population Genetic Algorithm (MPGA) to increase the net-
work robustness. However, both GA based schemes increase
the computational complexity of the network. Moreover, a
similar issue is raised in [25], where the authors state that im-
proving the robustness of the scale-free network against the
malicious attacks is a complex problem. Therefore, the au-
thors propose a model, which shows high robustness against
the malicious attacks. However, it increases the network’s
computational complexity because it involves different mea-
sures to adjust the crossover and mutation rate adaptively.
The authors in [26] address the malicious attacks on a Multi
Agent (MA) network. However, the research focuses only
on constructing a robust MA network without considering
its deployment cost. Furthermore, the network robustness
of the proposed scheme is only compared with the Barabasi
Albert (BA) model [7]. The existing literature studies in
[27] prove that it is necessary to involve both cooperation
and robustness in constructing a robust network. However,
the studies are only limited to undirected network. There-
fore, a model is proposed to increase the network robustness
for a directed network. However, it increases the computa-
tional complexity of the network. The authors in [28] reveal
that node attacks and link attacks are negatively correlated.
Therefore, multi-objective optimization is a better choice in
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this case. However, the computational costs for calculating
the robustness of node and link attacks are different due to
more number of links in the network as compared to nodes.
Furthermore, the optimization of network robustness in the
proposed scheme is performed for large area networks and is
still an open challenge to minimize the computational cost
for large-scale networks. Another attack strategy is intro-
duced in [29], which measures the impact of the intentional
attacks and analyze that they are harmful to the stability of
the network. Therefore, the authors perform single objective
optimization to increase the network robustness. However,
the optimization strategies only deal with optimizing the ro-
bustness against the attacks. Also, considering only the de-
gree information of the nodes in case of an attack is not the
right choice as several nodes in the network have similar de-
grees, and choosing one node from multiple nodes involves
randomness.

2.3. Construction of a Robust Topology using
Machine Learning Techniques

The authors in [30] use an edge swap mechanism on
randomly selected independent edges. However, the ran-
dom edge swap mechanism increases the computational cost
of the network because it performs large number of redun-
dant operations. Thus, the proposed mechanism increases
the network robustness through a deep learning mechanism.
However, the optimal value ofR is not successfully achieved
because of insufficient model training and the solution con-
verges towards the local optima. According to [31], the scale-
free networks show vulnerability to malicious attacks. Thus,
designing a robust mechanism against the attacks is chal-
lenging. The previous optimization strategies have optimized
the network topology by maintaining the network’s connec-
tivity, however, the strategies increase the computational cost
of the network. Due to the increasing demand for IoT de-
vices, increasing the network robustness against malicious
attacks is one of the challenging issues in the scale-free net-
works [32], which needs to be tackled. Thus, the proposed
mechanism performs optimization using a Deep Determinis-
tic Learning Policy (DDLP) method to increase the network
robustness. However, it increases the computational com-
plexity of the network.

2.4. Construction of a Robust Topology using the
Cost of the Network

According to [33], most of the attack strategies remove
all nodes in a specific order. However, the attack cost is in-
volved in removing the nodes in a specific order. The pro-
posed scheme provides a way to damage the network with
little cost. However, considering both high degree and low
degree node attacks simultaneously, damage the scale-free
property of the network. Furthermore, removing a high de-
gree nodes from the network costs more than removing a low
degree node. Therefore, controlling the network robustness
by considering the cost of the attacks is a major problem in
a network [34]. Moreover, according to [35], the degree dis-
tribution of the nodes during the attack process is dynamic

as it changes for each attack. However, both proposed mod-
els fail to consider ways to optimize the network robustness
after the node removal.

2.5. Construction of a Robust Topology using
Different Network Structures

The majority of the research studies in [36] test the net-
work robustness against the random node removal, however,
in general, the attacker tries to attack the most critical nodes
in the network. Besides, the proposed model aims to reduce
the cost of an interdependent directed network. The com-
plicated structure of the directed network becomes an easier
choice for the numerical simulations. However, the struc-
ture is not suitable for practical scenarios due to high com-
putational cost. Based on the analysis of [37], measuring the
network robustness against node and link removal is an open
issue in the complex networks. The former measures for
calculating the network robustness are natural connectivity,
controllability robustness, etc. The measures are based on
edge and node’s connectivity, size of the largest connected
component, etc. However, the measures have failed to ex-
press the network’s capability in preserving the connectivity
of the network. Therefore, a genetic basedmodel is proposed
to increase the network robustness by protecting the links
in the network. However, due to premature convergence of
GA, the proposed model does not provide optimal results.
Moreover, due to the growing demand of the complex net-
works according to [38], there is also a concern of security
issues related to these networks. Therefore, the authors fo-
cus on attacking the links in a single network. However,
many networks are coupled with each other, and removing
a link from a network brings great damage to other network
as well. Thus, several core based attacks are performed to
increase the network robustness against the links removal.
Moreover, according to [39], the link addition strategy in-
creases the cost of the network and changes the degree dis-
tribution of the nodes in the network. To keep the nodes’
degree distribution unchanged and reduce the cost of the net-
work, the edge swap mechanism is designed. However, the
random edge swap mechanism increases the computational
complexity of the network and performsmany redundant op-
erations during the optimization process.

2.6. Construction of a Robust Topology using
Different Parameters

According to [40], the assortativity r and the power law
exponent � are important factors in the scale-free networks,
which help to create a strong interaction between the nodes.
The value of r close to 1 tends to make a strong interac-
tion between the nodes of similar degree. However, there
is no evidence where the proposed model highlights the cor-
relation between R and these measures. Moreover, in the
proposed work, the improvement in robustness against the
malicious attacks is satisfactory. However, in terms of ran-
dom attacks, the proposed model fails to provide optimal re-
sults. Furthermore, the optimization of the network is impor-
tant for the construction of a robust network. However, the
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authors do not perform optimization in the proposed work.
The previous literature studies discussed in [41] reduce the
cascading failure by considering the capacity of the nodes.
However, they fail to analyze its effect on network recovery.
The proposed research is helpful for the network with a fixed
environment. However, its performance can be complicated
in a dynamic environment. According to [42], the degree to
degree correlation is an important factor for enhancing the
robustness of the network. However, the Newman’s research
reveals that the enhancement of degree to degree correlation
is limited to a certain degree threshold under malicious at-
tacks. The addition of edges in the proposed work improves
the network robustness, however, this process increases the
cost of the network. Moreover, the addition of edges alters
the degree distribution of the nodes, thus, damages the scale-
free property of the network.

Based on the literature, we analyze that the computa-
tional complexity of the optimization process is very impor-
tant in the scale-free networks. It is because, due to a large
number of redundant operations in the previous edge swap
mechanisms, the convergence operation slows down. From
the previously discussed literatures, we can say that the au-
thors do not focus on minimizing the number of redundant
operations in the networks, which is the main operation for
the evaluation of network robustness. It is therefore neces-
sary to reduce the number of redundant operations for the
construction of a robust scale-free topology. Furthermore,
the convergence of an operation after a threshold and the
integration of different attack strategies with the proposed
SESM mechanism help to provide a computationally effi-
cient robust network topology, which can outperform HC
and ROSE.

3. Scale-Free Network Modeling
In this section, we discuss the construction of a scale-free

network, its robustness measure and the independent selec-
tion of edges from the network.

3.1. Construction of a Scale-Free Network
The authors consider a BA model [7] that utilizes the in-

formation of the initially deployed nodes to construct a scale-
free network topology. The preferential attachment property
of the BAmodel allows the newly added nodes to make con-
nections with the high degree nodes in the network. How-
ever, due to the limited transmission range, the newly joined
nodes have limited neighbors in their communication range.
Also, it is important for the nodes in the network to have
sufficient neighbors in their communication range due to the
growing demand of dense network topologies in the future.
The ROSE emphasizes the importance of the dense WSNs
and takes into account the communication range of nodes
in the network. The communication range in ROSE allows
the nodes to connect with 50% of the nodes in the network,
making it a dense scale-free network. Moreover, the ROSE
analyzes that for limited transmission range, the division of
a network into multiple clusters is a good choice to develop
a robust network. Therefore, the following aspects of ROSE

are considered in the proposed model for the construction of
the scale-free network.

1. The preferential attachment property of a node is lim-
ited to its nodes, which are within its communication
range.

2. Considering the limited resources of the nodes in IoT-
WSNs, their maximum degree is limited to a certain
threshold.

3. The high degree nodes must be located in the center
of the network.

3.2. Network Robustness Measure
In the scale-free networks, the attacker can attack the

nodes as well as the links to destroy the connectivity of the
nodes in the network. Generally, the attacks can be random
or malicious. The random attacks remove random nodes
while themalicious attacks remove themost important nodes
from the network. In the scale-free networks, we use mali-
cious attacks, which remove the high degree nodes and dam-
age the connectivity of the network. Initially, the degrees of
nodes are calculated and the node with the highest degree is
removed. Also, the edges connected with the node are also
removed. Then, the degree of the nodes is recalculated and
the highest degree node is removed again. The process is
repeated many times until all nodes are removed from the
network.

For calculating the network robustness, a metric R pro-
posed by Schneider et al. [11] is used based on percolation
theory. When a node is removed from the network, the graph
is divided into multiple subgraphs. The connectivity of the
nodes is checked and the subgraph where the nodes are max-
imally connected is considered for the evaluation of R. We
take the mathematical equation from [13] for evaluating the
robustness, which provides the information of the nodes in
the maximal connected subgraphs after removing nth nodes
from the network. The equation for evaluating the robust-
ness in [11] also provides the number of nodes information
in the maximal connected subgraphs, however, it considers
the fraction of nodes, which needs to be removed in order to
disconnect the entire network. Both are similar in terms that
they both provides the information of the network connec-
tivity after repeated removal of nodes in the network. The
equation for evaluating the network robustness [13] is given
as follows.

R = 1
N + 1

N−1
∑

n=0

MCSn
N

. (1)

From Equation (1),N denotes the total number of nodes and
MCSn denotes the maximal connected subgraphs after nth
highest degree node removal from the network [13].

3.3. Network Optimization through Selection of
Independent Edges

In the scale-free networks, the optimization is performed
through edge swap mechanism by selecting two independent
edges from the graph G = (V ,E). Where, V represents the
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Table 2
Limitations Identified, Proposed Solutions and Validations

Limitations Identified Solutions Proposed Validations Done

L1: Random selection of independent
edges increases the computational

cost of the network.

S1:SESM reduces the randomness
through a smart selection of edges.

V1: The performance of the network
is validated through R (Figure 10a
and Figure 10b) and number of

swaps (Figure 11a and Figure 11b).
L2: The computational cost is

increased by performing unnecessary
removal of nodes after the
convergence is achieved.

S2: We analyze the robustness value
and set a threshold for node removal
to reduce the computational cost.

V2: The efficacy of the network is
validated using MCS∕N for node
removal in the network (Figure 5).

L3: Multiple attacks can happen on
the network simultaneously.

S3: Finding the two strong positively
correlated measures to make the
network robust against multiple

attacks.

V3: The validation is provided using
Pearson correlation coefficient

(Figure 3), execution time (Figure 6
and Figure 7) and R (Figure 9).

L4: Finding the set of most
influential nodes in the network that
can damage the network in less time

is a challenging task.

S4: HMC reduces the computational
cost of the network by damaging the

network to a greater extent.

V4: The performance parameters
used for validation are R (Figure
10b) and number of swaps (Figure

11b).

i
j

l
k

(a) Initial Topology

i
j

l
k

(b) Swap 01

i
j

l
k

(c) Swap 02

Figure 1: Edge Swap Mechanism

set of nodes and E represents the set of edges. The two se-
lected edges are said to be independent if they lie within the
communication range of each other and there is no extra con-
nection between these two edges. Figure 1a shows that ei,j
and ek,l are the independent edges. Figure 1b and Figure 1c
show the edge swap performed on these independent edges.

The optimization of the network robustness against the
malicious attacks is evaluated by swapping the independent
edges in the network. The edges are swapped in such a way
that the updated topology increases the network robustness
against the malicious attacks. If the first swap increases the
network robustness, the topology is updated. If the first swap
has low robustness value, the second swap is performed and
the topology is updated only if it increases the robustness.
If both swaps fail to optimize the network robustness, the
original topology is considered in the network.

4. Computationally Efficient Topology
Optimization: Overview
This section describes our proposed topology optimiza-

tion mechanism where we identify four limitations. Each
limitation is associated with the optimization of the network
robustness in the scale-free network, as shown in Figure 2.
The limitations are denoted as L1, L2, L3 and L4, while

their proposed solutions are provided using S1, S2, S3 and
S4, respectively. Table 2 shows the mapping of these limita-
tions with their proposed solutions and validations. L1 and
L2 mentioned in Table 2 are associated with the limitations
in the previous edge swap mechanism based on redundancy
and computational cost of the network. These limitations
are tackled using SESM and threshold based node removal,
respectively. The validation for both these solutions is done
using R, number of swaps,MCS, etc.

For L3, the issue of multiple attacks on the network is
tackled using S3, where a combined attack strategy of the
two strongly correlated measures is needed. In contrast, L4
is associated with finding an attack measure to damage the
network’s connectivity in quick time, as mentioned in Table
2. Therefore, S4 introduces a measure named as Heat Map
Centrality (HMC) to overcome L4. We discuss the solution
of each limitation in the given subsections.

4.1. Smart Edge Swap Mechanism
Due to the involvement of randomness in the edge swap

mechanism used in HC and ROSE, many redundant oper-
ations are generated in the optimization of the network ro-
bustness. Specifically, in HC, the edge swap mechanism in-
creases the number of redundant operations in the network
because it does not mark the independent edges after their
selection. Thus, these edges are selected again in the opti-
mization process, which results in increasing the number of
redundant operations in the network. In ROSE, the marking
of independent edges reduces the redundancy of the network.
However, the random edge swapmechanism happens on low
degree edges in the network, which results in providing low
robustness against the malicious attacks with the high com-
putational cost. Therefore, a new selection criteria for inde-
pendent edges is required to overcome the redundancy issue
and increase the network robustness. It is known that the
high degree nodes are the main target of the attacker and the
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L1
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Independent Edges Selection
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Edge Swap Process
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    Smart Selection of Edges S2 Threshold based Node Removal
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L3 L4
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Multiple Malicious Attacks
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increases Computational Cost

S3 S4Combined Attacks are 

considered
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Figure 2: Limitations Identified and their Proposed Solutions

removal of high degree nodes damages the topology of the
network. Therefore, based on the information of the high
degree nodes, one can protect the connectivity of the nodes
by altering their connections. Furthermore, it is understood
that one high degree node replaces other high degree node
in the network. Thus, changes in the connections of these
nodes can bring a significant improvement in the network.
Besides, an onion-like structure has strong tolerance against
the malicious attacks and in the structure, the high degree
nodes are tightly connected with other high degree nodes.
Therefore, the edge swap mechanism based on high degree
nodes is a good choice to construct an onion-like structure.

For L1, as shown in Table 2, the problem of edge ran-
domization is controlled through the selection of high de-
gree nodes. The SESM is proposed to overcome the random
selection of the independent edges in the previous Random
Edge Swap Mechanism (RESM). For the initial topology, a
set of high degree nodes is selected from the network. From
the set, two high degree nodes are selected before perform-
ing the edge swapmechanism. The information of the neigh-
boring nodes of these two selected nodes is extracted. The
selection process of finding a node from the neighbors’ set
is a complex problem as each node has multiple neighbors.
Therefore, to avoid this problem, a random neighbor is se-
lected from the neighbor’s set. The information of the se-
lected neighbor is utilized for the selection of independent
edges. The independence of the selected edges is checked. If
they are independent, the edge swap operation is performed,
else the selection process continues to try further connec-
tions to find the independent edges. The edge swap mech-
anism swaps the edges of the network in search for a more

optimized network topology.

Algorithm 1 Smart Edge Swap Mechanism
1: procedure SMART EDGE SWAP MECHANISM(A)
2: Input: A,N , G
3: for allN ∈ G do
4: Find a high degree node i fromN
5: Calculate neighbors of the high degree node
6: Pick a neighbor randomly from the neighbors of

node i and mark it as j
7: Perform steps 3-5 again for 2nd high degree node
k and its neighbor l

8: Swapcounter = 0
9: if (i, j) and (k, l) are two independent edges from

the set E then
10: Perform optimization using HC and ROSE
11: if swap is successful then
12: Update A and G
13: Calculate R
14: Swapcounter= Swapcounter + 1
15: end if
16: end if
17: end for
18: end procedure

Algorithm 1 describes the process of SESM. The high
degree node is selected from graph G, which consists of N
number of nodes (Line 4). The neighbor of the selected node
is chosen and the link between them is marked (i, j) (Line 6).
The steps 3-5 are followed for other high degree nodes (Line
7). The swap counter is initialized (Line 8). If the selected

Awais and Javaid: Preprint submitted to Elsevier Page 7 of 15



Computationally Efficient Topology Optimization of Scale-Free IoT Networks

edges (i, j) and (k, l) are independent, the edge swap mech-
anism is performed. For optimization, the operation of HC
and ROSE are used (Line 10). If the swap is successful and
the robustness is increased, the swap counter is incremented
(Line 14).

4.2. Threshold based Node Removal
Several mechanisms including HC and ROSE increase

the network robustness by focusing on changing the network
topology through swapping. Due to the structural complex-
ity of the network, optimizing the network robustness using
an edge swap becomes a difficult task. Moreover, there is
not enough evidence to guide the network to perform lim-
ited edge swaps. Besides, it is understood that the perfor-
mance of the network is greatly reduced when a specific op-
timization task is performed continuously without any im-
provement. In the optimization process, analyzing the con-
vergence of an objective function is an important factor. It is
useless to perform unnecessary optimization for an objective
function after its maximum value is achieved. In the topol-
ogy optimization scenario, the objective is to maximize the
network robustness by swapping the edges of the topology
until a single node is left in the network. However, this type
of process consumes excess memory and increases the com-
putational cost of the network. Therefore, based on these
problems, a threshold based node removal method is con-
sidered as mentioned in Table 2. The method considers re-
moving the nodes one by one until convergence is achieved.
The details of the proposed solution are described below.

Consider a network whose topology is constructed using
the previous BA model. The preferential attachment prop-
erty of the scale-free network guides the newly added node
to connect with high degree nodes in the network. These
nodes are added into the network one by one until a topol-
ogy of the scale-free is generated. The network robustness
is calculated for initial topology by removing the nodes one
by one. For node removal, we have performed several ex-
periments and found out that almost 60-65% node removal
is enough to destroy the network’s connectivity. The 60-65%
node removal guides us to select a threshold value for node
removal, where the robustness value reaches its maximum.
Therefore, the node removal is performed based on the given
threshold. For each node removal, the edge swapmechanism
swaps the independent edgeswithin the given threshold. The
topology that maximizes the R value is considered for the
construction of a robust scale-free network

In Algorithm 2, the threshold based node removal is dis-
cussed. The high degree node is removed from graph G
(Line 6). The robustness R is calculated for each node re-
moval (Line 7). If the value of Rk is greater than the value
of Rk−1, the node removal process is repeated again until
all nodes are removed from the network. If Rk is equal to
the previous valueRk−1 for consecutive node removal steps,
the threshold value is recalculated. The optimization is per-
formed usingAlgorithm 1with the node removal at the given
threshold (Line 12).

Algorithm 2 Threshold based Node Removal
1: procedure THRESHOLD BASED NODE REMOVAL(A)
2: Input: A,N , G
3: for allN ∈ G do
4: for k = 1 ∶ N − 1 do
5: Find a high degree node i fromN
6: Remove the node i and update the topology

from G to G2
7: Calculate MCS and evaluate network ro-

bustness Ri
8: if Rk > Rk−1 then
9: Continue the removal process
10: else if Rk==Rk−1 then
11: Calculate the value for node removal

where Rk==Rk−1
12: Update the threshold for node removal

and perform optimization throughAlgorithm 1 using the
selected node removal phase

13: end if
14: end for
15: end for
16: end procedure

4.3. Optimization of Network Considering
Multiple Attacks

The authors in HC and ROSE have analyzed the network
robustness against high degree node removal. They consider
that the degrees of the nodes can provide more influential
nodes from the network. However, the research performed
in [14] has termed betweenness centrality as another met-
ric to measure the most important nodes from the network.
Therefore, in [14], the authors have combined both measures
to find the attack probability of nodes. Still, they have failed
to provide enough evidence about the importance of both
these measures in terms of computational cost. The work
proposed in [15] has discussed both these measures in terms
of computational cost. The authors have considered the de-
gree of nodes as an excellent parameter to find the local infor-
mation of nodes. However, choosing betweenness centrality
is not the best option because it increases the computational
cost of the network [15].

To determine the relationship between any twomeasures,
the Pearson correlation coefficient is used, which is a well-
known correlated measure. In our scenario, initially, three
attacks named as degree, betweenness and closeness are in-
duced. Then, based on these attacks, three robustness mea-
sures are calculated. Afterwards, the Pearson correlation co-
efficient between the robustness of any two centrality mea-
sures is evaluated using the following formula.

r =
N(

∑

RC1RC2) − (
∑

RC1)(
∑

RC2)
√

[N(
∑

R2
C1) − (

∑

RC1)2][N(
∑

R2
C2) − (

∑

RC2)2]
,

(2)

From Equation (2), RC1 and RC2 are the evaluated robust-
ness for any two centrality measures. Figure 3 shows the cor-
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relation comparison of the three centrality measures. From
Figure 3, the strong positive correlation between degree and
closeness attacks shows that both these measures can be con-
sidered simultaneously in an attack to improve the robust-
ness. The idea of finding the correlation between the mea-
sures is adopted from [23], where the authors use two strong
negatively correlated measures for multi-objective optimiza-
tion. The optimization of both the measures are necessary
to increase the robustness. Contrary to the aforementioned
case, the strong positively correlated measures are combined
together to improve the robustness. The reason is that the
two positively correlated measures have no conflicts at all
and their optimization leads to a similar network structure. It
means that a topology which shows high robustness against
degree and closeness attacks (strong positively correlated
measures) also shows high robustness against the between-
ness attack and the combination of any two attacks. It is to be
noted that we only assume degree, closeness and between-
ness attacks on the network. Moreover, if these two mea-
sures are used simultaneously to derive an attack strategy,
it will prove to be helpful for the optimization of network
robustness.
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Figure 3: Pearson Correlation Bar Graph (Combined Attacks)

4.4. Heat Map Centrality
The importance of the nodes helps the attacker to dam-

age the network to a greater extent. Finding the most impor-
tant nodes from the network is challenging, as mentioned
in Table 2. In ROSE, the degree of nodes is an important
parameter to measure the importance of nodes from the net-
work. Therefore, the attacker always removes high degree
nodes from the network. However, if we consider the cost
of removing high degree nodes from the network, the results
can be costly. Furthermore, the attacker does not always con-
sider removing the high degree nodes every time from the
network. Therefore, another measure needs to be consid-
ered that can eliminate the most important nodes from the
network. The study in [14] reveals that the nodes’ between-
ness centrality is another important parameter that measures
the flow of information between the nodes in the network. As
a result, the authors combine the betweenness centrality and
degree to measure the importance of nodes in the network.
However, the computational complexity for calculating the
betweenness centrality is high for complex networks [15].

Furthermore, the betweenness centrality takes into account
the shortest path calculation using the global information of
all the nodes in the network. Therefore, the computational
cost of the network is relatively high in this case.

The closeness centrality [15] is another important metric
that measures the importance of nodes through calculating
the sum of information of the shortest path between a par-
ticular node and all other nodes in the network. In terms
of time complexity, closeness centrality has less computa-
tional time because it does not need to calculate the number
of shortest paths that pass through particular nodes, which is
required for the betweenness centrality. In this work, we use
a node’s importance metric HMC [15] that has a strong ca-
pability to damage the network. It uses the local and global
information of the nodes in the network. The global infor-
mation of the nodes is calculated using the farness of each
node in the network. This farness is based on closeness cen-
trality information. On the other hand, the local information
of the nodes is evaluated using the degree’s farness of each
node. The node with small farness is considered the most
important node in the network as most of the information is
passed through the node. Therefore, the attacker attacks the
nodes one by one with the small HMCvalue. The steps for
calculatingHMCvalue [15] for each node are given as under.

Step 1:
Calculate the Closeness Centrality (CC) of a node i using
the shortest path s as shown in Equation (3):

CC(i) = 1
∑N
j=1 s(i, j)

. (3)

Step 2:
Calculate Node’s Farness (NFi) using CC obtained from
Equation (3):

NFi =
1

CC(i)
. (4)

Step 3:
Calculate Node’s Neighbor Farness (NNF ), which utilizes
the information of the adjacency matrix A andNFi through
Equation (4):

NNFi = A ∗ NFi . (5)

Step 4:
Calculate Average Farness of Node’s Neighbors (ANNFi)
utilizing the information of NNFi in Equation (5) and de-
gree of node i:

ANNFi =
NNFi
degreei

. (6)

Step 5:
CalculateHMCvalue using the difference ofNFi andANNFi
obtained from Equation (4) and Equation (6), respectively:

HMCvalue = NFi − ANNFi . (7)
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Algorithm 3 Nodes’ Importance Measure
Input: N,G
Output: A,R,MCS

1: procedure HMC
2: for allN ∈ G do
3: Evaluate CC of all nodes using (2)
4: CalculateNFi using (3)
5: CalculateNNFi using (4)
6: Evaluate ANNFi using (5)
7: Use (6) to calculateHMCvalue
8: Find a node i with minimum HMCvalue from

topology G
9: Remove the node i and update the topology from
G to G2

10: Calculate MCS and evaluate network robust-
ness R

11: end for
12: end procedure

5. Simulation Results and Discussion
In this section, we compare the performance of our pro-

posed solutions with the existing algorithms, namelyHC and
ROSE. A sensor field of 500x500 m2 is considered and the
transmission range of nodes is set to 200 m. The nodes are
randomly deployed in the network . The number of nodes
before the start of the network is set to 3. The newly added
nodes then join the network one by one based on the prefer-
ential attachment. The newly added nodesmake connections
with m = 2 nodes. Due to the limited resources of sensor
nodes, the maximum degree limit for the nodes is initially
set to 25 for 100 nodes. The degree threshold increases to
30 when the number of nodes increases to 150 and so on.
The simulations are performed on MATLAB, which is in-
stalled on Dell Latitude E6520 5th Generation system with
4GB RAM. The simulations are performed 50 times and the
results are averaged across 20 independent runs.

5.1. Power Law Distribution
The degree distribution of the nodes in the scale-free net-

work follows the power law distribution. Therefore, it is nec-
essary to show that the degree of the nodes in the proposed
network is distributed according to the power law. Figure 4
shows the power law distribution of the proposed network
with N = 100 and m = 2. P (d) denotes the probability of
the nodes having degree d. The results show that the degree
of the nodes is distributed according to the power law. It
is clear that the probability of high degree nodes in the net-
work is less than low degree nodes. Therefore, the proposed
model has a scale-free network topology.

The degree distribution of the nodes in the scale-free net-
work follows the power law distribution. Therefore, it is nec-
essary to show that the degrees of nodes in the proposed net-
work are distributed according to the power law. Figure 4
shows the power law distribution of the proposed network
with N = 100 and m = 2. P (d) denotes the probability of

the nodes having degree d. The results show that the degrees
of the nodes are distributed according to the power law. It
is clear that the probability of high degree nodes in the net-
work is less than low degree nodes. Therefore, the proposed
model has a scale-free network topology.
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Figure 4: Power Law Distribution

5.2. Measuring the Extent of Damage Caused by
Each Attack

To measure the extent of damage, we use the ratio of
maximum connected nodes in a subgraph and the total num-
ber of nodes in the network (MCS∕N). Figure 5 shows
the connectivity of the nodes after the high degree nodes are
removed from the network. It shows the extent of damage
caused by each attack when all nodes are removed from the
network. When 30 nodes are removed from the network,
the betweenness attack initially causes more damage to the
network as it performs efficiently when the solution space
is large. However, when the number of removed nodes in-
creases, the effect of the betweenness attack reduces. In that
case, the closeness attack performs better in terms of dam-
aging the network at a greater extent. From nodes the 50-90,
the closeness attack causes more damage to the network as
compared to the degree and betweenness attack. The close-
ness attack has a very strong positive correlation with degree
attack. Therefore, it has more probability to provide more
important nodes in the network. Also, its execution time is
less as compared to the betweenness attack. Thus, it helps
to reduce the complexity of the network by fragmenting it at
a quick time compared to the betweenness attack.
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Figure 5: Extent of Damage
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5.3. Execution Time of Different Attacks
The convergence of a certain objective function is di-

rectly related to the execution time of the algorithm designed
for optimization. The high execution time results in provid-
ing less optimal results and vise versa. Figure 6 shows the
execution time of each attack strategy in removing the nodes
from the network. It is shown that the betweenness attack
has less execution time when the number of removed nodes
is less than 55 because the betweenness attack utilizes the
number of paths information in the network. Also, the be-
tweenness attack finds the nodes’ importance based on the
number of paths a node is a part of. As a result of the large
number of links, the performance of the betweenness attack
is improved. The number of paths reduces when the nodes
are removed from the network, which results in removing the
number of links. Therefore, the performance of the between-
ness attack reduces when the number of removed nodes ex-
ceeds to 55, which in turn increases the time complexity of
the network. On the other hand, the closeness attack has a
greater execution time when the number of removed nodes
is greater than 55. It is because the closeness attack has low
performance to decide the importance of the nodes when a
high number of links are present in the network. However,
when the number of removed nodes exceeds 55, its execu-
tion time reduces and has closed intact with the degree at-
tack. On average, it takes less time to execute than the be-
tweenness attack, making it the better choice for use with
the degree attack for single optimization. In Figure 7, mul-
tiple attacks are performed to evaluate the execution time
of the network using degree, closeness and betweenness at-
tacks. The result shows that the degree and closeness attack
has less time consumption as compared to degree and be-
tweenness attack. The performance of the degree and be-
tweenness attack is better when few number of nodes are re-
moved from the network. However, the difference between
both combined attacks gradually decreases from 30 onwards
and after the removed nodes reaches 60, the performance of
the degree and closeness attack starts getting better and bet-
ter. This shows that when more nodes are removed from the
network, its effectiveness is increased. Therefore, the de-
gree and closeness measures are used in the same attack as
compared to the degree and betweenness or closeness and
betweenness measures.
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0 20 40 60 80 100

Number of Removed Nodes

0

5

10

15

20

25

30

T
im

e
 (

s
e
c
)

Degree and Betweenness Attack
Degree and Closeness Attack

Mean Time: 15.0160 sec

Mean Time: 15.343 sec

Figure 7: Execution Time (Combined)

5.4. Convergence of Robustness using the Degree
Attack

An optimization process generates better results when
the computational complexity of the network is decreased
by reducing the number of nodes removed after the conver-
gence is achieved. Figure 8 shows the convergence of R us-
ing the degree attack. The robustness in Figure 8 is eval-
uated by considering the node removal from initial network
topology. It is observed that the convergence decreases when
more nodes are removed from the network. Because robust-
ness is directly linked with the connectivity of the nodes.
Thus, removing more nodes lowers the connectivity of the
network, which in turns reduces the robustness. It is evi-
dent that after removing 64 nodes, the convergence of the
network remains constant. It means that the network is con-
verged at a point. Therefore, removing only 64 nodes out of
100 reduces the computational complexity of the network.
Moreover, the optimization of the network is directly related
to the computational complexity of an objective function.
Thus, when the computational complexity is reduced, better
robustness value is achieved. Therefore, when the threshold
value is set for node removal, the reduction of unnecessary
swaps helps to develop a robust scale-free network.
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Figure 8: Convergence of Initial Network Topology

5.5. Initial Robustness Evaluation considering
Multiple Attacks

Figure 9 shows the initial robustness evaluation consider-
ing combined attacks. The robustness is evaluated from the
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initial network topology by removing the nodes one by one.
For each node removal, the robustness is evaluated through
MCS. It is evident that the initial robustness of the degree
and closeness attack is high as compared to the degree and
betweenness attack. The total initial robustness for the de-
gree and betweenness attack is 0.1425, while for the degree
and closeness attack, it is 0.1438. The high value of robust-
ness for the degree and closeness attack shows that bothmea-
sures are strongly positive correlated with each other and
they can be used simultaneously to damage the network at
a greater portion. Moreover, both these measures have rel-
atively less execution time and computational cost. Thus,
when they are performed together, their average execution
time is reduced. On the other hand, the execution time dif-
ference of the degree and betweenness attack is large. Also,
the total damage caused by the betweenness attack is less
as compared to the closeness attack. Therefore, the robust-
ness of the the degree and betweenness attack is low. Hence,
considering the degree and closeness attack for single objec-
tive optimization is a better choice to make a robust network
topology.
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Figure 9: Robustness of Initial Network Topology

5.6. Robustness Analysis using Degree Attack and
HMC Attack

The robustness of the network using the proposed SESM
is evaluated for the degree attack and HMC attack with dif-
ferent node density. The performance of the proposed topol-
ogy is compared with the initial topology, HC and ROSE. In
HC and ROSE, the RESM is replaced with SESM and are
named as HC-Smart and ROSE-Smart. Their performances
are compared with HC-Original and ROSE-Original.

Figure 10a shows the robustness analysis of the proposed
SESM using the degree attack on nodes. It is observed that
the proposedHC-Smart andROSE-Smart have achieved high
robustness as compared to initial topology, HC-Original and
ROSE-Original. This is due to the selection of high degree
edges for swap that reduces the number of redundant op-
erations of the previous RESM in HC and ROSE. SESM
utilizes the information of high degree nodes to find more
robust solutions in the network. Due to the predefined cri-
teria for the selection of the independent edges, there is no
chance of redundant operations in the network. Therefore,
this mechanism gives a more optimized robustness value.

For HC, the difference between HC-Original and HC-Smart
is clearly seen for high node density. The high node density
increases the number of edges as well as the number of re-
dundant operations in the network. Thus, the improvement
of HC-Smart at high density shows reduction of redundant
operations in the network. For ROSE, the difference between
ROSE-Original and ROSE-Smart is high when the number
of nodes is 100. SESM shows better efficacy in reducing
the number of redundant operations to increase the robust-
ness. However, this difference decreases when the number
of nodes is increased, which shows that both ROSE-Original
and ROSE-Smart provide high robustness value. Still the
effectiveness of ROSE-Smart is judged by the number of
swaps in the network.

Both HC-Smart and ROSE-Smart perform better in con-
structing a robust scale-free network by utilizing high degree
nodes’ information. As high degree nodes are the impor-
tant part of the network, the edge swap between high degree
nodes plays a key role in constructing an onion-like topology.
Moreover, HC-Smart and ROSE-Smart have shown better
robustness for high network density, proving the efficacy of
the SESM for the the degree attack. However, the decreasing
trend of the robustness with the increasing network density
is due to the high removal of nodes, which slows down the
convergence operation.

From Figure 10b, it is seen that our proposed HC-Smart
and ROSE-Smart achieve high robustness as compared to
HC-Original and ROSE-Original. The SESM is performed
using the HMC attack for node removal. Furthermore, the
robustness value for HMC attack is high as compared to the
degree attack because the optimization of the network us-
ing HMC attack is performed using both degree and close-
ness information of nodes. Thus, its robustness value is high
as compared to the degree attack. A good centrality mea-
sure provides a way to protect the most important nodes in
the network. Therefore, protecting these important nodes in
the network overcomes the damage caused due to node re-
moval. Moreover, both degree and closeness have less exe-
cution time, which is already shown in Figure 7. Therefore,
the optimization using both measures gives better robustness
value as it happens in quick time.
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Figure 10: Robustness Analysis
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5.7. Swap Cost using Degree Attack and HMC
Attack

The computational complexity of the network is evalu-
ated through the number of swaps in the network. The aver-
age results are taken for 10-20 independent runs. Figure 11a
shows the number of swaps performed in the optimization
process for finding a robust network topology. The perfor-
mance of the proposed HC-Smart and ROSE-Smart is com-
pared with HC-Original and ROSE-Original for both degree
attack and HMC attack. It is seen that SESM reduces the
computational complexity of the optimization process by re-
ducing the number of swaps in the network. It is clear from
the results shown in Figure 11a and Figure 11b that the con-
vergence operation of the optimization process is inversely
related to the number of swaps in the network. The high
number of swaps slows down the convergence process. Be-
cause the algorithm has to evaluate the network robustness
for all possible swaps in the network. In HC-Original and
ROSE-Original, the RESM affects the performance of the
network by reducing the network robustness. Because the
RESM has excess memory consumption due to many redun-
dant operations and it is not feasible to optimize robustness
at a low computational cost. Moreover, it is seen that the dif-
ference between HC-Smart and HC-Original is more signifi-
cant as compared to ROSE-Smart and ROSE-Original. This
is due to the absence of marking the selected independent
edges in HC, which increases the number of redundant oper-
ations in the network. ROSE performs edge swap by keeping
the independent edges selected during the edge swap pro-
cess. Therefore, it reduces the number of redundant opera-
tions. However, the random selection of independent edges
continues to perform unnecessary optimization in search for
a robust network topology. On the other hand, the SESM
is used to overcome redundant operations. The result shows
that HC-Smart andROSE-Smart achieve great success in op-
timizing the robustness with a low number of swaps.

HC-Original HC-Smart

ROSE-SmartROSE-Original

b) Number of Swaps (HMC)a) Number of Swaps (Degree)

100 150 200 250

Number of Nodes

0

5

10

15

20

25

30

N
u
m

b
e
r 

o
f 
S

w
a
p
s

100 150 200 250

Number of Nodes

0

5

10

15

20

25

30

N
u
m

b
e
r 

o
f 
S

w
a
p
s

Figure 11: Number of Swaps

5.8. Topology Comparison
A perfect onion-like topology shows better robustness

against the degree attack. Therefore, it is necessary for an
optimized topology to have a perfect onion-like structure.
From Figure 12, the network topology is visualized through

a graph during the removal of high degree nodes. The re-
sults show that both HC-Smart and ROSE-Smart have con-
structed a better onion-like topology as compared to initial
topology (Figure 12a), HC-Original (Figure 12b) andROSE-
Original (Figure 12d). Therefore, the optimization based on
the SESM in Figure 12c and Figure 12d show better robust-
ness against the degree attack through the construction of a
robust network topology. Moreover, most of the nodes in the
optimized network topologies are low degree nodes, which
proves that our proposed SESM mechanism has maintained
the property of the scale-free network.

(a) Initial Topology

(b) HC-Original (c) HC-Smart

(d) ROSE-Original (e) ROSE-Smart

Figure 12: Scale-Free Topology Comparison for N = 100 and
m = 2 (Degree Attack

6. Conclusion and Future Work
Considering that the selection of random independent

edges increases the computational complexity of the network;
SESM is introduced to increase the network robustness. The
proposed mechanism utilizes the information of high degree
nodes to find independent edges in the network. The com-
putational complexity is minimized through the reduction
of the number of swaps in the network. The removal of
important nodes from the network after the convergence is
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achieved further reduces the computational complexity of
the network. Besides, HMC attack helps to damage the net-
work quickly. Moreover, it optimizes the convergence speed
of the network.

The degree distribution of the nodes in the proposedmech-
anism follows the power law distribution and constructs a
better onion-like topology without changing the degree dis-
tribution of nodes. The performance of the proposed mecha-
nism is optimized using HC and ROSE. The results show the
efficacy of the proposed edge swap mechanism when com-
pared with the original edge swap mechanism in HC and
ROSE. With fewer swaps and a better onion-like topology,
the proposed HC-Smart and ROSE-Smart improve the net-
work robustness. For multiple attack scenarios, the degree
and closeness attack shows high network robustness when
the nodes are removed from the network. Therefore, select-
ing these two attacks is a good choice for network optimiza-
tion. Thus, the HMC attack is designed to optimize the net-
work robustness using both degree and closeness centrality.

For future work, we will test the efficacy of our pro-
posed SESM for link removal as well. Moreover, an opti-
mized topology will be constructed by analyzing the conver-
gence of the robustness with respect to the number of nodes.
The threshold based node removal method will aid in the de-
velopment of a more robust network with a high node den-
sity. In addition, the solutions proposed in this paper will be
tested on synthetic networks as well.
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