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Abstract—This work presents a novel approach to support
application capacity planning in infrastructure-as-a-service (IaaS)
clouds. The approach, called performance inference, relies on the
assumption that it is possible to establish a capacity relation
between different resource configurations offered by a given
IaaS provider, enabling one to infer an application’s performance
under certain resource configurations and workloads, based upon
the application’s actual performance as observed for other related
resource configurations and workloads. Preliminary evaluation
results, obtained from testing the performance of a well-known
blogging application (WordPress) in a public IaaS cloud (Amazon
EC2), show that the best performance inference strategies can
significantly reduce (over 80%) the total number of application
deployment scenarios that need to be actually tested in the cloud,
with a high (over 98%) inference accuracy.

I. INTRODUCTION

One of the main challenges faced by users of Infrastructure-
as-a-Service (IaaS) clouds is to adequately plan the capacity of
the cloud resources, in particular, virtual machines, necessary
to run their applications [1]. This usually involves identifying
the most effective way to deploy an application in the cloud
taking into account a variety of resource options offered
by current IaaS providers as well as multiple application-
specific quality criteria (e.g., performance, scalability, cost,
security) [2].

In general, IaaS providers charge their customers in a
pay-per-use basis, with resource utilization prices varying
according to the offered capacity (e.g., number of CPU cores,
memory size, disk space). Therefore, in order to calculate
the operational cost of running an application in the cloud
it is necessary to estimate or measure how the application
will respond to varying demand levels considering different
deployment options. In practice, this means that it is up to
cloud users to find out which resources and deployment options
are the most appropriate (e.g., in terms of cost or performance)
for their applications. It is worth noting that using an auto-
scaling service, such as Amazon Auto Scaling,1 which allows
users to deploy an application in a cluster of virtual machines
whose size can automatically be adjusted according to user-
defined elasticity rules, only partially solves the problem, since
the user still needs to plan the capacity of the cluster’s virtual
machines.

Several solutions have been proposed to support IaaS
cloud users in planning the capacity of their applications. We

1http://aws.amazon.com/autoscaling/.

categorize those solutions in two general approaches, which
we refer to as predictive and empirical. Predictive solutions
aim at predicting how a cloud application would behave under
different resource configurations and workload levels without
having to deploy the full application stack in the cloud [3]–[8].
This is usually done by simulating the application’s behavior
in the cloud (e.g., [6], [7]) or by comparing its expected usage
profile with existing cloud benchmarks (e.g., [3]). Empirical
solutions, in turn, aim at evaluating the performance of the
application in the “real” cloud environment. To this end, most
empirical solutions provide automated ways to deploy, execute
and test the performance of the application in the cloud using
different resources configurations under multiple artificially-
generated workloads [9]–[12].

Predictive solutions have the advantage of imposing little
or no extra cost for testing the cloud application. However,
due the performance variability commonly observed for public
cloud services [13], and the fact that some characteristics of
public clouds, such as multi-tenancy and physical resource
sharing, are not yet properly represented in most performance
prediction models, the results obtained with current predictive
solutions, specially cloud simulators [7], can be quite inaccu-
rate. In this regard, empirical solutions are much more reliable,
but tend to be considerably more demanding due to the many
possible resource configurations and workload levels that have
to be effectively evaluated in the cloud. Another drawback of
empirical solutions is that, depending on the number of tests
to be conducted, and on the duration of each test, they can
incur a significant cost to cloud users.2

This paper proposes a new application capacity planning
approach for IaaS clouds, which combines the advantages
from both predictive and empirical solutions. The proposed
approach, called performance inference, relies on a simple yet
intuitive assumption that it is possible to establish a capacity
relation between different resource configurations offered by
a given IaaS provider, enabling one to predict — or infer —,
with high accuracy, an application’s expected performance for
certain resource configurations and workloads, based upon its
actual performance as observed for other (related) resource
configurations and workloads. The underlying idea is to reduce
the number of deployment scenarios that need to be actually
tested in the cloud, thus also reducing the cost and effort
typically associated with the capacity planning process. To give

2Even though many cloud providers offer their users a limited amount of
free resources, those are often of very low capacity and, hence, insufficient to
handle real application workloads.



an example of how the performance inference approach works,
consider the case in which an application deployed in the cloud
satisfies an expected quality indicator (e.g., response time)
under a certain resource configuration and workload. In this
case, it should be possible to infer that the application will also
satisfy the same quality indicator under other higher-capacity
resource configurations or lower workload levels. Analogously,
if the application fails to satisfy the expected quality indicator,
one could infer that it will also fail the tests under other lower-
capacity resource configurations or higher workload levels.

Despite its simplicity, in practice using the performance in-
ference approach requires a careful selection of the deployment
scenarios upon which to test the application in the cloud, so
as to maximize the number of related deployment scenarios
for which the application performance could be inferred at
no cost for the cloud user. Our preliminary evaluation results,
obtained from testing the performance of a well-known blog-
ging application (WordPress) in a public IaaS cloud (Amazon
EC2), show that the best performance inference strategies
can drastically reduce (over 80%) the number of application
performance tests executed in the cloud, while providing a high
(over 98%) inference accuracy.

The remainder of the paper is organized as follows.
Section II describes our proposed application capacity plan-
ning process based on the performance inference approach.
Section III reports on our evaluation method and results.
Section IV compares our approach with related work. Finally,
Section V presents our conclusions and directions for future
work.

II. A CAPACITY PLANNING PROCESS BASED ON
PERFORMANCE INFERENCE

A. Concepts and Terminology

Before presenting the proposed process, we need to define
some important concepts related to the domain of application
capacity planning in the cloud (see Table I). Those concepts
constitute the main terminology which will be used throughout
the rest of this paper.

B. Process Input

The process requires the following data as input: a ref-
erence value (or SLO), used to asses if the application un-
der test has achieved the expected performance level after
each execution; a set of workload values, used to submit
the application under test to varying demand levels; and
the application’s deployment space. The latter is built from
three parameters also provided as input to the process: (i)
an ordered set of virtual machine types offered by the target
cloud provider; (ii) the maximum number of virtual machines
used in each virtual machine configuration; and (iii) the criteria
for establishing the capacity relations between the deployment
space’s configurations. Examples of criteria that can be user
for that purpose are the technical characteristics of each virtual
machine type (e.g., number of CPU cores or memory size)
or other non-technical features such as the virtual machine
types’ price per hour of utilization. Section III-A will show
an example of a deployment space in which capacity relations
were defined based on the category, type and number of virtual
machines belonging to each virtual machine configuration.

TABLE I. CONCEPTS AND TERMINOLOGY USED IN THE PAPER.

Concept Definition

Application
under Test

A software application, possibly implemented in a multilayer architec-
ture, to be deployed in a cloud platform and for which one wants to
identify the most appropriate cloud resource configurations based on
one or more performance metrics.

Performance
Metric

A characteristic or measurable behavior of the application under test
collected in an automated fashion and comparable to a reference value.
A performance metric is the means to asses the degree of success of an
execution of the application under test in the cloud. Its measurement
unit is dependent on the application domain, e.g., response time, frames
per second, throughput and so on.

Reference
Value (SLO)

A value defined as minimally acceptable for a performance metric
measured during an execution of the application under test. This value,
also referred in this work as SLO (Service Level Objective), serves as
a basis for assessing whether the application is capable of successfully
executing using a given virtual machine configuration under a given
workload.

Workload Denotes a demand imposed onto the application under test in a partic-
ular execution. Its measurement unit also depends on the application
domain, e.g., number of concurrent users for a web application, image
size for a image conversion application, etc.

Virtual
Machine
Type

A label used to classify virtual machines offered by a cloud provider
based on their technical characteristics (e.g., number of processing
cores, memory size, disk space), such as small, large, extra large, and
so on. Labeling VMs with named types allows the provider to offer a
finite and discrete virtual machine product line.

Virtual
Machine
Category

A label used to classify related virtual machine types offered by a cloud
provider according to their common features, such as hardware platform
and/or intended usage. For example, a provider my offer virtual machine
categories that prioritize processing speed, memory consumption, disk
access, etc.

Virtual
Machine
Configuration

Denote a set of virtual machines of the same type and category. Differ-
ent configurations can be used to deploy and execute the components
of different architectural layers (e.g., presentation, business, persistence)
of the application under test.

Deployment
Space

Denotes a finite set of virtual machine configurations upon which the
application under test will be deployed and executed during a capacity
evaluation session.

Capacity
Relations

Define a directed graph over the deployment space where vertices
correspond to the deployment space’s virtual machine configurations
and edges represent the relative superiority or inferiority (depending on
the direction of the edge) of a configuration over another in terms of
expected computing power.

Capacity
Levels

Establish a hierarchy over the deployment space’s virtual machine
configurations according to their capacity relations. Virtual machine
configurations belonging to the same capacity level are considered
indistinguishable in terms of computing power.

C. Process Activities

The main activities executed as part of the proposed
capacity planning process are shown in Figure 1. The activities
tagged with the �A� label (highlighted in red) are abstract,
meaning that they need to be implemented or customized
by the process user according to different capacity planning
strategies (described in more detail in Section II-D). The other
activities are concrete and thus always executed in the same
(generic) way independently of any particular application or
capacity planning strategy.

The process execution is cyclic and takes places in four
different phases: (i) selection of an initial execution scenario;
(ii) application execution; (iii) performance inference; and (iv)
selection of the next execution scenario.

1) Selection of an Initial Execution Scenario: The first
activity in this phase is the selection of a workload. As this
is an abstract activity, different strategies can be employed for
selecting a particular workload, such as selecting the lowest or
highest workload from the set of workload values provided as
input to the process. After selecting a workload, the process



Fig. 1. Activity diagram for the proposed capacity planning process.

proceeds with the selection of a virtual machine category.
This is a concrete activity since the category chosen will not
influence the process outcome as all configurations of every
category included as part of the deployment space will have
to be evaluated. The next activity is the selection of a capacity
level from the deployment space. This is another abstract
activity as different strategies can be used for selecting a
capacity level, such as selecting the lowest of highest capacity
level in the deployment space. Finally, the process proceeds
to select one of the set of virtual machine configurations
belonging to the previously selected capacity level. The order
of the selection is irrelevant as all configurations at the chosen
capacity level will have to be evaluated.

2) Application Execution: Once a workload, a virtual
machine category, a capacity level and a virtual machine
configuration have all been chosen, the process is ready to
execute the application in the cloud. This is another abstract
activity as it depends on several technical factors related to
either the application under test of the target cloud provider.
Examples of such factors are the technologies required to
deploy, configure, stress and monitor the performance of the
application components in the cloud. After the application has
been executed, the process proceeds to assess the collected
execution results and moves on to the performance inference
phase.

3) Performance Inference: During this phase the process
reaches its first decision point. Based on the analysis of the
execution results, the process determines whether the appli-
cation is capable of handling the current workload using the
current virtual machine configuration. If the required SLO is
satisfied (or not), the process marks the current configuration,

Fig. 2. Example of the performance inference approach in action.

respectively, as candidate or rejected for the current workload.

At this moment, the process triggers the performance
inference approach originally proposed in this work. Using this
approach, the process can infer (without the need of actual
executions) the application’s expected performance for other
workloads and virtual machine configurations not yet evalu-
ated. This is possible based on domain knowledge captured in
the form of the capacity relations defined over the deployment
space’s configurations and simple reasoning. Specifically, if the
execution results show that the application meets the required
SLO for the current configuration and workload, then the ap-
plication is also expected to meet that same SLO for any higher
capacity configuration (as indicated by the deployment space’s
capacity relations) under that same workload. Similarly, the
application is also expected to meet that same SLO using
the same configuration under lower workloads. In this case,
the process marks as candidate for the current workload all
the other configurations considered of having higher capacity
(according to the deployment space’s capacity relations) than
the current configuration. Finally, the process also marks the
current configuration as candidate for all lower workloads.

The case in which the application fails to meet the required
SLO using the current virtual machine configuration under
the current workload is treated analogously. In this case,
the process marks as rejected for the current workload all
configurations considered of having lower capacity than the
current configuration. Finally, the current configuration is also
marked as rejected for all higher workloads.

Figure 2 shows an example of a possible outcome from the
performance inference phase. In this example, the deployment
space is represented as a matrix whose rows and columns
correspond, respectively, to virtual machine configurations and
workloads. The configurations’ capacity levels grow from
top to bottom while the workload values grow from left to
right. The lower left part of the matrix shows the case in
which the application meets the required SLO for a given
execution scenario along with all the other execution scenarios
for which the application’s successful performance can be
inferred. The upper right part of the matrix, in turn, shows the
opposite case, highlighting an execution scenario in which the
application fails to meet the required SLO and all the other
execution scenarios for which that same negative behavior
can be inferred. Note, in this example, that by testing the
application in only two execution scenarios the process is
able to infer its expected performance for a total of ten other
different scenarios. This represents a reduction of near 90% in
the overall number of execution scenarios that needed to be
effectively tested in the cloud.



This example is illustrative of the great potential offered by
the performance inference approach to reduce the time, cost
and effort typically associated with other empirical capacity
planning approaches. Section III gives further evidence of the
benefits of the performance inference approach by evaluating
its effectiveness in a real cloud environment.

4) Selection of the Next Execution Scenario: After the
performance inference phase, the process either selects the
elements for the next execution scenario or ends its execution
in case there are no more alternative scenarios to explore. In
the latter case, the process produces as outcome a list of all
configurations marked as candidate for each given workload
ordered by configuration price.

The selection of the next execution scenario involves taking
either of the following decisions: selecting a new virtual
machine configuration from the same (current) capacity level;
selecting a new capacity level; selecting a new virtual machine
category; or selecting a new workload. The selection of a new
capacity level or a new workload depends on the application’s
execution results, as the process will attempt to decrease
(increase) the current configuration’s computing power or,
alternatively, increase (decrease) the current workload in case
the application has met (failed to meet) the required SLO.
For this reason, these are also abstract activities that have to
be customized by the process user when instantiating a new
capacity planning strategy.

D. Capacity Planning Strategies

All abstract activities of the process (except the Application
Execution activity) need to be instantiated as part of the
implementation of a new capacity planning strategy. Since
those activities basically involve the selection of workloads
and capacity levels, implementing different capacity planning
strategies means providing different ways to explore the appli-
cation’s deployment space.

Choosing a proper way to explore the deployment space
is an important decision that can have a significant impact
on the effectiveness of the performance inference approach.
To give an example, consider the case in which none of the
configurations on a given deployment space are capable of
satisfying the required SLO for any workload. In this case,
starting the evaluation process by the lowest capacity level and
highest workload would be a bad decision as the application
would fail all tests, thus preventing the process from inferring
the application performance for any other higher capacity
configuration or any other lower workload. On the other hand,
starting the process by the highest capacity level and lowest
workload would be much more effective as the application
failing a single test would be enough for the process to infer
its failure for all other lower capacity configurations as well
as for all other lower workloads.

These two extreme cases illustrate the challenges of design-
ing effective capacity planning strategies for the performance
inference approach. As a first step towards addressing these
challenges, in this work we introduce the concept of a selection
heuristic, which encompasses different selection tactics to be
used by the process when selecting a new capacity level or
workload. Initially, we defined three selection tactics, namely
optimistic, conservative and pessimistic. These can be used to

Fig. 3. Tactics and heuristics for selecting new capacity levels and workloads.

select both workloads and capacity levels. The combination
of these three selection tactics yields a total of nine different
selection heuristics, as illustrated in Figure 3.

Note in Figure 3 that each selection heuristic is identified
by a pair of capital letters, with each letter representing the
initial of the respective selection tactic used by the heuristic.
The first letter corresponds to the tactic used for selecting a
capacity level (i.e., row), while the second letter corresponds to
the tactic used for selecting a workload (i.e., column). From the
way the letters are positioned in the deployment space matrix
we can see that an optimistic tactic selects the lowest capacity
level and the highest workload. A conservative tactic in turn
selects an intermediate capacity level and workload. Finally,
a pessimistic tactic selects the highest capacity level and the
lowest workload.

Selection heuristics are (re)applied recursively, for the un-
explored part of the deployment space, at each new iteration of
the process. Therefore, the terms highest, lowest and intermedi-
ate are all relative in this context, meaning the highest, lowest
and intermediate elements amongst the remaining choices of
capacity levels and workloads. In this respect, choosing an
optimistic or pessimistic tactic corresponds to performing a
linear search in a given dimension of the deployment space
matrix, while choosing a conservative tactic corresponds to
performing a binary search in that dimension.

The proposed capacity planning process has been imple-
mented in the form of an extensible performance inference
framework, called Cloud Capacitor.3 This framework was
used to support the execution of the experimental evaluation
reported in the next section. More details on the framework’s
design and implementation have been omitted from the paper
due to space constraints.

III. EXPERIMENTAL EVALUATION

This section describes the method and results of an experi-
mental investigation conducted to evaluate the effectiveness of
the performance inference approach, in particular, of the nine
selection heuristics introduced in the previous section.

A. Method

The experiment consisted in using the proposed capacity
planning process to systematically evaluate the performance of
a real blogging application (WordPress4) in a real IaaS cloud

3A web-based version of the Cloud Capacitor framework is publicly
available at http://cloud-capacitor.herokuapp.com/.

4https://wordpress.org/.



Fig. 4. WordPress’s deployment architecture used in the Amazon EC2 cloud.

platform (Amazon EC25). We chose WordPress and Amazon
EC2 due to their huge popularity in their respective domains.

We deployed WordPress in the Amazon EC2 cloud in
two architectural layers: one layer for the Apache application
server, and the other layer for the MySQL relational database
(see Figure 4). Due to cost and time constraints, during the
experiment we varied only the type and number of virtual ma-
chines used to deploy the Apache application server, using the
Nginx web server as load balancer. Finally, we used the Cloud
Crawler [11] perfomance evaluation environment to automate
all the tests in the cloud. These included starting and stoping
each virtual machine, configuring the load generator according
to the required workload, and executing and monitoring the
performance of the WordPress components.

To build WordPress’s deployment space we selected two
virtual machine categories offered by Amazon EC2, namely
c3, which provides CPU-optimized instance types, and m3,
which provides general-purpose instance types. We then se-
lected seven virtual machine types from those two categories:
c3 large, c3 xlarge and c3 2xlarge, from category c3; and
m3 medium, m3 large, m3 xlarge and m3 2xlarge, from cat-
egory m3. For each of those types we created four virtual
machine configurations composed of one, two, three and
four virtual machine instances, respectively, yielding a total
of 28 different virtual machine configurations upon which
WordPress’s performance would be evaluated.

We defined capacity relations over those 28 virtual machine
configurations based on the category, type and number of
virtual machines belonging to each individual configuration.
Specifically, configurations with a higher (lower) number of
virtual machines of a given type were considered of higher
(lower) capacity than configurations with a lower (higher)
number of virtual machines of that same type. Moreover,
configurations with a certain number of virtual machines of
a given type were considered of higher (lower) capacity than
configurations with the same number of virtual machines of
a higher (lower) type of the same category according to the
provider’s instance type hierarchy. For example, a configu-
ration containing three virtual machines of type m3.medium
was considered of higher (lower) capacity than a configuration
containing two (four) virtual machines of that type. Similarly, a
configuration containing two virtual machines of type c3.xlarge
was considered of higher (lower) capacity than a configuration
containing two virtual machines of type c3.large (c3.2xlarge).
Note that we did not assume any capacity relation between
configurations containing virtual machine types from different
categories.

5http://aws.amazon.com/ec2.

Fig. 5. Sample of WordPress’s deployment space used in the experiments.

Figure 5 shows a sample of the deployment space built
from the 28 virtual machine configurations selected from
Amazon EC2. This particular sample only includes 12 config-
urations containing virtual machine types belonging to the c3
category. Note how the configurations are hierarchically orga-
nized in the deployment space according to 6 different capacity
levels, with the lowest and highest capacity configurations
located, respectively, at the top and the bottom of the hierarchy.
Also, note that there are no capacity relations defined amongst
configurations belonging to the same capacity level, as these
are considered indistinguishable from an expected computing
power perspective.

To evaluate how WordPress would perform using each of
the 28 deployment space configurations under varying demand
levels, we defined 10 different workloads by varying the
number of concurrent users that would access the application
in a given execution. The number of current users defined
for each workload was 100, 200, 300, 400, 500, 600, 700,
800, 900 and 1000, respectively. In each execution the load
generator would create the required number of users, who
would continuously access WordPress during several minutes
by repeatedly issuing the following sequence of requests:
logon; add a new post; search for the new post; update the
new post; search for a previously existing post by keyword;
update the existing post; logoff.

The performance metric used was the total response time,
which was measured by each user as the elapsed time between
issuing a logon request and receiving a response from the
subsequent logoff request. A test execution would be con-
sidered satisfactory if at least 90% of all request sequences
issued by WordPress users were successfully served by the
application within the minimum total response time defined by
the provided SLO parameter. In order to allow the investigation
of the effectiveness of different capacity planning strategies
under different SLO requirements, we defined five SLO levels
upon which to evaluate the performance of WordPress, starting
at 10s (a very strict requirement for which only a few configu-
rations would achieve the required SLO under most workloads)
and then gradually increasing the SLO in 10s increments up
to 50s (a more soft requirement for which most configurations
would achieve the required SLO under most workloads).

Finally, to establish a baseline upon which we could
compare the effectiveness of our proposed capacity planning
strategies, we deployed, executed and collected detailed per-
formance results for WordPress using all (28) virtual machine



TABLE II. WORDPRESS’S CONSOLIDATE PERFORMANCE RESULTS IN
THE AMAZON EC2 CLOUD.

Configuration Workload

Type # 100 200 300 400 500 600 700 800 900 1000
c3.l 1

2
3
4

c3.xl 1
2
3
4

c3.2xl 1
2
3
4

m3.m 1
2
3
4

m3.l 1
2
3
4

m3.xl 1
2
3
4

m3.2xl 1
2
3
4

Legend
Minimum SLA level achieved:

10s 20s 30s 40s 50s

configurations under all (10) workloads, yielding a total of 280
execution scenarios investigated. Table II shows a consolidate
view of WordPress’s performance results obtained in the
Amazon EC2 cloud.

We refer to the performance results shown in Table II
as the experiment’s oracle, and to the exhaustive empirical
strategy used to collect them as the Brute Force (BF) selection
heuristic. The other 9 selection heuristics presented in the
previous section were then compared with each other as well
as with BF in terms of both efficiency (i.e., the fraction of
execution scenarios that had to be effectively tested in the
cloud) and accuracy (i.e., the fraction of execution scenarios
for which the application performance was correctly inferred
based on the oracle).

B. Results

1) Efficiency: To assess the relative efficiency of the nine
selection heuristics with respect to BF we consider two met-
rics: relative execution time and relative cost. Since each test
scenario is executed for the same amount of time, the relative
execution time of a given selection heuristic is calculated by
the ratio between the number of real application executions
required by that heuristic and the total number of application
executions required by BF. The relative cost of a selection
heuristic, in turn, is calculated by the ration between the sum
of the cost of each virtual machine configuration effectively
tested by that heuristic in the cloud and the sum of the cost of
every virtual machine configuration tested by BF. We should
note that the cost of a given virtual machine configuration
depends on the number as well as on the utilization price of
the virtual machine instances belonging to that configuration.

(a)

(b)

Fig. 6. Relative effectiveness of the 9 selection heuristics: (a) execution time;
and (b) cost.

Therefore, since a provider can charge quite different prices
for different virtual machine types, the relative cost of a given
selection heuristic will be greatly influenced by the specific
configurations that heuristic selects to evaluate in the cloud.

Figure 6 shows the results for both metrics considering
the five SLOs investigated. An analysis of the results for the
relative execution time metric, as seen in Figure 6(a), shows
that under more soft SLOs the best heuristics are OC and CO,
offering gains up to 86% and 88%, respectively, with respect
to BF. However, under more stringent SLOs the best heuristics
are PO and OP, with gains up to 82% and 81%, respectively,
over BF. In fact, PO and OP, along with CC, are amongst
the best heuristics overall for this metric, since their results
remain stable throughout the five SLOs, as indicated by their
mean values (represented in the right most column in both
charts). The lowest gains for this metric are obtained with PP
and CP, particularly the former, whose average gain is only
about 30% with respect to BF.

Now, regarding the relative cost metric, an analysis of
Figure 6(b) shows that under more soft SLOs the best results
are obtained with OO and CO, which offer gains up to 96%
compared with BF. However, those two heuristics do not
perform so well under more stringent SLOs, where the best
results are obtained with PO, PC and CC, with gains between
78% and 85% over BF. Overall, the best heuristics for this
metric are PO, OC and CO, offering average gains between
86% and 89% with respect to BF. The lowest average gains



TABLE III. ACCURACY OF THE PROPOSED SELECTION HEURISTICS.

SLO

10s 20s 30s 40s 50s

Heuristic P R F P R F P R F P R F P R F

CC 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00
CO 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00
CP 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00
OC 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00
OO 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00
OP 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00
PC 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00
PO 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00
PP 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00

are offered by PP, CP and PC, with PP once more providing
the worst results by a large margin.

An analysis of the results for both metrics reveals that the
best heuristics overall are PO, OP and CC, all offering gains
of at least 75% over BF throughout the five SLOs. These
results reveal that the most effective strategies to explore the
deployment space, at least in the case of WordPress, is to either
select the highest capacity level and the highest workload;
the lowest capacity level and the lowest workload; or an
intermediate capacity level and an intermediate workload, in
that order.

2) Accuracy: To assess the selection heuristics’s accuracy,
we compare their capacity planning results with those available
in the oracle and then calculate their average values in terms
of Precision, Recall and F-Measure [14]. Specifically, we use
the oracle’s performance results to assess whether each of the
virtual machine configurations marked as candidate or rejected
(representing positive and negative capacity planning results,
respectively) by each selection heuristic for each workload
under each of the five SLOs are actually true.

Table III shows the average values of Precision (P ), Recall
(R) and F-Measure (F ) calculated for the nine selection
heuristics under each of the five SLOs investigated. Note that
all selection heuristics achieve 100% accuracy except for the
30s SLO, where their accuracy results vary between 98% and
100%.

A more thorough investigation of the oracle’s performance
data revealed that the heuristics’ slight accuracy drop under
the 30s SLO was due to a few unexpected performance vari-
ations experienced by WordPress in the Amazon EC2 cloud.
Those variations caused some virtual machine configurations
to perform better than other configurations that were supposed
to have higher computing power according to the deployment
space. This was the case of the configuration containing two
virtual machines of type c3.xlarge, which under high demand
performed better than the two configurations containing three
and four virtual machines of that same type (see the corre-
sponding results in Table II).

Even though significant performance variations are relative
common in current IaaS cloud offerings [13], in our experiment
such variations had a very limited impact on the effectiveness
of the performance inference approach, causing an accuracy
drop of less than 3% under a single SLO. These results rein-
force our confidence that the proposed approach can provide
high prediction accuracy even for real applications and cloud
environments.

IV. RELATED WORK

As we have mentioned earlier in the paper, we categorize
existing application capacity planning solutions for the cloud
domain as following two main approaches, which we refer
to as predictive and empirical. We discuss each of those
approaches in more details below.

Predictive solutions employ different techniques to predict
the performance of applications in the cloud. Some solutions
(e.g. [3]–[5], [8]) base their predictions on results of several
benchmarks executed previously in the cloud. These results are
then consolidated by the capacity planning solution and used
later, by users, to predict the performance of applications by
analogy between the user’s application and the results of the
benchmarks. Another work [7] simulates the behavior of the
application in the cloud based on a simulation model without
having to conduct any performance test in the cloud. The
solution described in [6] monitors the application behavior
(e.g., CPU, memory, disk) in a local environment by collecting
the events that are relevant from a performance perspective.
After the data is collected, the solution executes the same
events in the cloud in a way to try to predict the behavior
of the application.

Regarding costs, predictive solutions can range from vir-
tually no cost when doing simulation, as in [7], from low to
moderate costs when using analogy tools [3]–[5], [8] or event
replays [6], respectively. However, one common shortcome
of all predictive solutions is the limited accuracy of their
results. The prediction by analogy technique requires that the
user’s application has a similar behavior as the benchmarks
previously available and executed in the cloud. The simulation
technique also suffers from possible mismatches between the
user’s application and the simulation model. Some results show
performance discrepancies larger than 30% between existing
simulation models and real executions in IaaS clouds [7]. The
event replay technique [6] presents some limitations in its event
capturing based on a local environment that also limits the
accuracy of its predictions.

Empirical solutions (e.g., [9]–[12]), on the other hand,
have a high accuracy as they execute the real application
(not a benchmark) in the cloud and collect real execution
data that can serve as a precise basis for capacity planning.
Moreover, those solutions are much more flexible as they
allow users to configure the application architecture in different
ways, enabling different deployment options, configurations
and workloads to be assessed. One relevant drawback of those
solutions is that as the number and complexity of execution
scenarios grow so does the cost incurred in the evaluation
phase.

There are also a number of other so called autoscaling
solutions that focus on a different perspective of short-term
capacity planning (e.g., [15]). The main goal of those solutions
is to dynamically adjust the cloud resources required for the
application based on decisions taken while monitoring the
behavior of the running application components in a cloud
environment. Such decisions usually consist of scaling the
application up or down based on general virtual machine
parameters (e.g., CPU and memory consumption) [15] as well
as on elasticity rules defined by users of the autoscaling
service. Some problems related to those autoscaling solutions



are that in some cases application level parameters are more
relevant to scaling decisions than generic virtual machine
parameters. Another issue is that the scaling decisions are
generally based on some pre-established virtual machine types
(usually selected by the user) that are not always the most
optimal configuration for handling specific workloads and tend
to over provision the application [16]. We plan to investigate
how the performance inference approach could be used to
improve current autoscaling solutions and services in our
future work.

Compared to those existing solutions, our work proposes
a hybrid approach for application capacity planning that
leverages the advantages of both empirical and predictive
approaches. Its predictions are based on capacity relations
defined between virtual machine configurations offered by a
cloud provider and on empirical results of the execution of the
application in that same provider. As shown in the previous
section, the approach provides a very high prediction accuracy
and at the same time manages to keep the time and costs of
executing the capacity planning experiments in the cloud very
low.

V. CONCLUSION AND FUTURE WORK

Wisely choosing an appropriate set of cloud computing
resources (e.g., virtual machines), with the goal of minimizing
an application’s operational cost considering varying demand
levels and performance requirements, is an important challenge
for which there still no fully satisfactory solutions available.
This paper presented a novel approach to support application
capacity planning in Iaas clouds. The approach, called perfor-
mance inference, was shown to be at the same time an efficient
(in terms of both execution time and cost) and accurate (in
terms of the quality of the results) solution to support IaaS
cloud users in planning the capacity of their applications.

The performance inference approach described here is the
result of an on-going research work and, for this reason,
still has a number of important limitations that need to be
overcome before the approach can gain more widespread use.
In particular, our current and future work focus on improving
the approach in the following ways:

• New capacity planning strategies. We are investigating
other alternatives to explore the application’s deploy-
ment space, for example, by selecting new capacity
levels and workloads based on resource utilization
metrics such as CPU and memory consumption. The
idea is to propose “intelligent” selection heuristics that
could more quickly find the optimal virtual machine
configuration for the application under each given
workload.

• New capacity relations. Another interesting line of
research is to investigate more effective ways to
define capacity relations, for example, by micro-
benchmarking some specific configurations and then
establishing their capacity relations based on utility
functions derived from how well they perform for each
micro-benchmark.

• Multi-layered deployment space. We also are investi-
gating how to extend our approach to support multi-
layered deployment spaces. The challenge here is

to propose effective ways to explore the different
virtual machine configurations that can be used to
deploy each layer of the application. For example,
if the application fails to achieve the required SLO
for a given workload, one could analyze the resources
utilization metrics collected for the components of
each layer in order to decide if and how each layer’s
configuration should be changed in terms of increasing
or decreasing their computational power.

• New experiments. Finally, we are already conducting a
number of new performance evaluations experiments
involving different types of applications and cloud
providers. The idea is to assess the extent to which
our approach and tools can be generalized to a more
diverse set of cloud applications and deployment sce-
narios.
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