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Abstract

In this paper we present the formalization of a methodol-
ogy for producing three-dimensional models of real objects
from sampled surface data.

We provide a high abstraction view of the process, de-
picting a common strategy to solve a class of problems re-
lated to the surface reconstruction and show the effective-
ness of the use of hierarchical paradigm in this context.

1. Introduction

Production of digital copies of real objects is composed
of three main stages: data acquisition, model reconstruc-
tion, and model optimization. Each stage requires the solu-
tion of several interdependent problems.

In this paper the formalization of a methodology for pro-
ducing three-dimensional models of real objects from sam-
pled surface data is presented.

A critical review of the knowledge available in the litera-
ture is useful since it provides the basis for categorizing the
main problems and the techniques used to tackle them, but
it does not provide a general schema which encompasses
a class of problems and the corresponding solving tech-
niques. Hence, we do not aim to present any implementa-
tive suggestion, but a higher abstraction view, disregarding
the implementative details related to a specific application
and depicting a common strategy to solve a class of prob-
lems. Besides, the use of a methodology allows for eval-
uating functionalities and explicitating relationships among
the processing stages rather than assessing the performance
of a specific technique.

An overview of the whole digitalization procedure will
be presented in section 2, while section 3 will be focused
on the methodology for the model reconstruction. Section
4 will be devote to illustrate how the use of hierarchical
paradigms can positively affects the methodology.
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Figure 1. High level schema of the digitaliza-
tion methodology.

2. Digitalization of real objects

The digitalization process and its various activities is de-
picted in fig. 1. The core of the digitalization of a real ob-
ject is the transformation of an ensemble of measurement
of the real object into a 3D model (i.e., the reconstruc-
tion). However, the digitalization process contains also two
stages: the acquisition and the optimization. We will focus
on the reconstruction phase, but a brief description of the
other stages will be provided in the following sections.
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2.1. Acquisition

Acquisitionprovides a collection of information regard-
ing the surface of a real object. It is composed of three activ-
ities: planning, calibration, and measurement. Inplanning
the sensors of the measurement instrument are positioned
so that the region of interest can be observed. Thecalibra-
tion finds out the transformation which make the expected
values to be measured corresponding to the quantities cap-
tured by the sensors. Themeasurementactivity uses the cal-
ibration information to transform the data collected by the
sensors into the data that will be used in the reconstruction
phase.

This stage provides a set of measurement of the surface
(and, possibly, of external references) and the calibration
information to thereconstruction. On the other hand, it
receives from the reconstruction indications on the regions
where new measurements are needed to achieve the desired
quality of the reconstruction and an approximated model,
which can be used to improve the measurement accuracy.

2.2. Reconstruction

The reconstructionstage processes the acquisition data
to provide a 3D digital model of the measured object. The
reconstruction stage is composed of three activities: gener-
alization, registration, and fusion.

Possible variables of this stage are:a priori knowledge
on the object characteristics, the membership of the object
to a given class of objects, the reconstruction paradigm to
be used and its related configuration algorithm, resolution
and accuracy of the reconstruction.

The acquisition stage provides a collection of (partial)
viewsof the objects from which the reconstruction is per-
formed, usually by an iterative schema. Data obtained from
the N views can be formalized asS0 = {S0

1 , . . . , S0
N},

where the superscript index indicates the number of itera-
tions of the reconstruction process — initially0.

Two reconstruction strategies can be devised:

• for each set,S0
i , the data are used to produce a model

M0
i by generalization. The models of theviewsare

parted in groups of adjacentviewsand transformed in
order to refer them to the same group reference system
(registration). Then, the geometry of the models in the
overlapping regions is modified, in order to obtain a
unique 3D model for each group (fusion). At the end
of the process described above, there areN1 models,
M1 = {M1

1 , . . . , M1
N1}, whereN1 is the number of

groups obtained during the registration step. The pro-
cedure of registration and fusion can be iterated until
no more adjacent model can be found (in particular,
when only one 3D model is obtained). These opera-
tions are schematized in fig. 2a.
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Figure 2. The two reconstruction strategies.

• For each set,S0
i , the data are used to produce a model

M0
i by generalization. As in the previous case, the

models of theviewsare parted in groups of adjacent
viewsand for each model a suitable operation ofregis-
tration andfusionis devised. Differently to the previ-
ous case, these transformations are applied to the data,
producing the collection of setsS1 = {S1

1 , . . . , S1
N1}.

These sets can be used to obtain another collection of
3D models,M1 = {M1

1 , . . . , M1
N1}. This schema

can be applied until no adjacent models can be found.
This strategy is schematized in fig. 2b.

The two approaches differ mainly for the role of the gen-
eralization. In the first case, the generalization ability of the
chosen approximation technique is used only on the data
provided by the acquisition: theviewsdata are no longer
used. The generalization has to extract all the details that it
can directly from the data. On the contrary, in the second
case, the generalization is instrumental to the registration
and fusion transformations search: the data changes at each
iteration.

Then, the second strategy is computationally more ex-
pensive, but is more scrupulous: the modes can be recon-
structed from bigger (possibly redundant) dataset with less
influence of the border effects. Besides, the first strategy
can be seen as a particular case of the second one. These
approaches can be further generalized backpropagating to
the acquisition stage the information provided by the inte-
gration (registration + fusion). However, the opportunity of
using this information to diminishing the uncertainty on the
data depends on the devices and the techniques used.

For these reasons in the following we will consider only
the second strategy.

2.3. Optimization

Optimizationprocesses the reconstructed model to ob-
tain a model suitable for a specific target application. Gen-
erally, the reconstructed model is converted in another rep-
resentational paradigm and is optimized.
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Figure 3. Multi-view acquisition.

This stage receives from thereconstructiona 3D model
of the real object and may require a more detailed model
(however, in real cases, this feedback is rarely needed, as
acquiring devices can provide a higher resolution than the
visualization devices can usually support).

3. The methodology for reconstruction

The reconstruction stage starts from a collection ofN0

data setsS0 = {S0
1 , . . . , S0

N0} and produces a sequence of
collections{Sj | j = 1, . . . , z}, whereN j is the number of
elements ofSj N j > N j+1 >= 1, (possibly,Nz = 1).
At each iteration step, each data set is represented in an
independent reference system. At thej-th iteration, the
M j = {M j

1 , . . . , M j
Nj} (partial) surface are reconstructed,

where their reference systems are the same of the corre-
sponding data sets. ThenM j is partitioned inN j+1 groups,
where each group is composed by surfaces that correspond
to partially overlapping region of the real object.

In order to make the formalization as light as possible,
in the following the superscript indices will be dropped out,
when explicitating the number of iterations will be super-
fluous.

1 2 3 4

5 6 7 8

Figure 4. The data sets acquired in fig. 3 are
generalized (the real profile is dashed).

The partitioning can be described by the collection of
the set of indices of the models which belong to the same
cluster:

{
Cj

k |Cj
k ⊆ {1, . . . , N j}, k = 1, . . . , N j+1

}

such that
⋃

k Ck = {1, . . . , N} and Ck ∩ Ch = ∅,
∀k, h k 6= h.

Every processing applied to the modelsMi in order to
find the registration and fusion transformations (also called
integration) is independently performed on each cluster.
For each model which belong to thek-th cluster,MCk

=
{Mh |h ∈ Ck}, a transformationRh, h ∈ Ck, is found,
so that the surfaces which belong to the set{Rh(Mh) |h ∈
Ck} are represented in the same reference system. Then,
a suitable fusion functionFk should be devised: its role
is to improve the correspondence of the overlapping re-
gions of the registered surfaces{Rh(Mh)}. By apply-
ing these transformations to the data sets used to produce
the models, a unique data set (consistent with the real ob-
ject geometry) can be obtained. Hence, at the end of the
j-th integration step, the data setSj+i

k will be obtained
as integration of the data setsSCk

= {Sj
h |h ∈ Cj

k} as
Sj+i

k = F ({Rh(Sh)}h∈Ck
).

In the following sections, a more elaborated description
of the activities here delineated is given.

3.1. Generalization

LetM be the paradigm used to represent the surface. In
the context of this work, an instance of this paradigm,M ∈
M, can be characterized univocally by the set{θ, K, P},
whereθ is a vector of parameters which represent the geo-
metrical and photometrical characteristics of theM surface,
K is a description of theM topology, andP is the param-
eterization of the surface. Th generalization procedure of
the data setS can be formalized as a functionG : S →M,
which has to choose, given a paradigmM, the most suitable
elementMi to represent the surface from whichS has been
sampled. Given a suitable functionD, which measures the
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distance between a data set and a surface, the optimal model
is:

G(S) = arg min
Mi∈M

= D(Mi, S)

Theoretically, the search should cover all the set of char-
acteristics of the model,{θi, Ki, Pi}. However, in real
application, this does not happen, as the topology and the
parameterization are given (usually, at the begin, they are
homeomorphic to the plane and in the following iterations
they are constructed). The search is usually performed to
θi. Moreover, in practice, the photometrical characteristics
are reconstructed after the geometry is recovered, but at the
level of abstraction of this context, it can be considered a
unique process of adaptation to the data. The parameter-
ization, Pi, can be (a posteriori) adapted onto the topol-
ogy and the geometry, as the target application requires.
Besides, the search is usually constrained by the formal-
ization of somea priori known characteristics (e.g., accu-
racy, size of a model description). Hence, a more realistic
formalization of the generalization procedure is a function
G : S × K × P × V → M, whereK andP are the set of
the topologies and the parameterizations of the elements of
M, andV is the class of the set of constraints which can be
imposed on the geometrical and photometrical characteris-
tics vector,θi. Parameterization and topology are usually
correlated, hence the functionG can be not surjective.

3.2. Registration

The partitioning of the models{Mi} into cluster is a crit-
ical step, as all the integration processes are applied only on
the models which belong to the same cluster. If calibration
information is available, it can be exploited for the parti-
tioning, as it may provide the position of the sensors with
respect to some common reference system. Otherwise, the
geometrical (and photometrical) properties of the models
can be exploited by a feature extraction and matching pro-
cedures. This process is similar to those adopted in the reg-
istration transformation search, and, hence, the information
gathered can be reused later.

The registration transformations are generally affine
transformations (rototranslations, in particular) to be ap-
plied to the models which belong to the same cluster, such
that the resulting models are represented in the same ref-
erence system and the overlapping region of the models
are themselves consistent. In real applications, the data
from which the models are produced are affected by noise
and (non linear) distortions that are different fromview to
view. Hence, the perfect alignment cannot be found and
some approximation must be considered: given a suitable
distance function, the registration transformations will be
the ones that minimize the distance between the models in
the overlapping regions. This optimization cannot usually
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Figure 5. Features extraction and alignment.

be achieved directly by using the surfaces because the re-
quired computational cost would be unaffordable and this
approach is sensitive to local minima. For these reasons,
the registration is usually achieved in two steps:features
extraction followed by features alignment. The goal of the
first operation is the characterization of the common regions
of the models belonging to the same cluster. For instance,
the featurescan be points or lines lying on the surface. It is
important that their estimation would be robust, as the relia-
bility of the registration depends on them. Thefeaturescan
be formalized as the result of the following procedure:

f j
i = E(M j

i ).

and can be defined as properties of the object in a given
region, and the termsfi’s identify their representation in
Mi.

The aligning transformation is computed as the affine
transformation that best matches thefeaturesof different
models. Hence, for each clusterCk, the alignment can be
formalized as:

arg min
{Rhi

}hi∈Ck

Distf ({Rhi(fhi)}hi∈Ck
) ,

where{Rhi}hi∈Ck
identifies the ensemble of the registra-

tion transformations for the models which belong to thek-
th cluster, and the functionDistf measures the difference
between the features after the transformation have been ap-
plied.

If there is no external reference system to relate with, one
of the registration transformation can be chosen equal to the
identity and the other one can be computed using the refer-
ence system of the first model of the cluster as the reference
system of the cluster.

Usually, the minimization ofDistf cannot be obtained
by analytical solution, as the number of possible features
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Figure 6. Integration (a)-(b). Back-
propagation of the integration transformation
to the data sets (c)-(d).

matched makes the exhaustive search of the solution space
unfeasable. An ICP algorithm variant is generally used here
[1],[2].

3.3. Fusion

A simplicistic definition of the fusion operator,F , could
be the union of the data set related to each cluster:

F (RCk
(SCk

)) =
⋃

i∈Ck

RCk
(Si)

This choice can lead to unreliable dataset, as the noise and
the distortion of the acquired data set can vary even in dif-
ferent regions of the sameview. Hence, the measurement
error is not uniform. This problem can be overcome if the
generalization procedure can process data which include a
reliability attribute.

A more general solution, however, is to include in the fu-
sion process a procedure to homogenize the data that belong
to common regions, using the more reliable data to correct
the ones with higher uncertainty. This can be done by ex-
ploiting the surface description of the models.

The fusion can be applied to the models first
(Fh(Rh(Mh)), ∀h ∈ Ck), and then backpropagated to the
data (Fh(Rh(Sh)), ∀h ∈ Ck), obtaining the fused data set
Sj

Cj
k

= Sj+1
k .

Besides, the fusion process applied to the clusterCj
k in-

duce a new topological description of the integrated data set,
Kj+1

k and a new parameterization function,P j+1
k which

may be exploited in the generalization procedure to produce
M j+1

k = G(Sj

Cj
k

). Although there are techniques to devise

the topology and the parameterization from the geometri-
cal data (e.g., [3]), the knowledge gained during the fusion
processing can be exploited, improving the efficiency of the
methodology.

Figure 7. Regions can be hidden by the visible
portion of the object.

3.4. Problems to be considered

The above illustred methodology does not consider ex-
plicitly some problems that can occur in real applications,
which, however, can be tackled by the processes of the
methodology. If the shape of the object to be acquired is
non convex, some regions hide other parts of the object (fig.
7), resulting in:

• ambiguity of the sampled data,

• missing information in certain regions of the object.

Data areambiguouswhen they lead to conflicting recon-
structions. In the methodology here presented, the ambigu-
ity can be catched during the registration, when same re-
gions match, but inner regions do not. This can happen be-
cause the generalization procedure is based on the hypoth-
esis of spatial continuity of the data. If occlusions occur
during the acquisition, this hypothesis is no longer verified.

Missing data happens because sensors do not reach some
regions of the object. That can be a symptom of a badview-
planning, but can be caused by inaccessibility of the surface
(for instance, the inner surface of an amphora). In this case,
the methodology behavior is driven by the topology devis-
ing strategy and by the ability of the generalization proce-
dure to address the absence of data in some region (fig. 8).

To tackle this situation, it is necessary to introduce an an-
cillary segmentationactivity to subdivide the data of a sin-
gle view in two or more views in which the spatial contigu-
ity hypothesis holds. To perform this activity, auxiliary in-
formation gathered by the acquisition can be exploited (e.g.,
slope information [4] [5]).

Thus, if in the registration activity ambiguities are found,
a roll-back procedure have to be applied, in order to change
the views data sets (fig. 9).

4. Using a hierarchical paradigm

Hierarchical paradigms describe a model surface at dif-
ferent level of detail (LOD) and they can be used effectively
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Figure 8. Generalization tackles missing data.

Figure 9. Segmentation.

to reduce the computational cost of the above described pro-
cedure and to make it more robust.

The hierarchical paradigms are characterized by the
properties of multiresolution and spatial locality. The mul-
tiresolution allows to describe the properties of the surface
at different level of detail, which is equivalent to locality in
the frequency domain. The spatial locality allows to limit
the use of computational resources only where the informa-
tion is effectively located.

These characteristics can be exploited in several proce-
dures of the methodology.

The most natural use is during generalization: spatial lo-
cality allows a cheap model configuration as it can use only
a local subset of the data, while multiresolution allows to
tune the level of detail required by the processing. In gen-
eral, the use of a hierarchical structure allows to save com-
putational resources (e.g., access to the data). Their ability
to decorrelate the information at different level of detail pro-
vides spatial-frequency characterization of the information
which can be exploited to extract thefeatures. Moreover,
the LOD description allows to perform the search for the
integration transformation using a strategy based on suc-
cessive approximations. Since a low resolution description
includes only the main characteristics of a surface, it is pos-
sible to explore very large regions of the solution space in a
robust way — although with low accuracy. This can lead to
a little pool of approximated candidates solutions which can
be explored more deeply by exploiting the detail informa-
tion of the models. This procedure can be iterated several

times using the different level of detail descriptions of the
models. Besides, the use of details only in a refinement step
diminish the risks of be trapped in local minima.

Besides, the spatial locality may be exploited during the
fusion: only the common regions (and, hence, the subset of
parameters that describe that regions) have to be modified.

Lastly, multiresolution representation can be exploited to
refine the topology, since, usually, the representation of the
model at a given resolution can be used to approximate the
topology of the representation at higher level of details.

5. Conclusions

In this paper a general methodology for the digitization
of real object is presented. It is focused mainly on the recon-
struction stage, but its relationship with the acquisition and
the optimization stages is described. Moreover, the effec-
tiveness of the use of hierarchical paradigms in this context
is shown.
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