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Development, differentiation and response to environmental 
stimuli are characterized by sequential changes in cellular state 
initiated by the de novo binding of regulated transcriptional 
factors to their cognate genomic sites1–3. The mechanism 
whereby a given regulatory factor selects a limited number  
of in vivo targets from a myriad of potential genomic binding 
sites is undetermined. Here we show that up to 95% of  
de novo genomic binding by the glucocorticoid receptor4, a 
paradigmatic ligand-activated transcription factor, is targeted 
to preexisting foci of accessible chromatin. Factor binding 
invariably potentiates chromatin accessibility. Cell-selective 
glucocorticoid receptor occupancy patterns appear to be 
comprehensively predetermined by cell-specific differences 
in baseline chromatin accessibility patterns, with secondary 
contributions from local sequence features. The results define 
a framework for understanding regulatory factor–genome 
interactions and provide a molecular basis for the tissue 
selectivity of steroid pharmaceuticals and other agents that 
intersect the living genome.

How regulatory factors interact with the chromatin landscape to effect 
gene regulation is one of the leading questions in genome biology. 
Chromatin structure is altered at cis-regulatory regions, resulting in 
hypersensitivity of the underlying DNA to nuclease attack in vivo5–7. 
However, how this preexisting landscape influences de novo binding 
site selection has not been determined.

Here we address this using a well-controlled model system: the 
endogenous glucocorticoid hormone response pathway found in 
most mammalian cells. The cellular actions of glucocorticoids are 
mediated through the glucocorticoid receptor4, at where it selectively 
engages up to several thousand cognate genomic binding sites8–10. 
Glucocorticoid receptor signaling thus represents an ideal system for 
both qualitative and quantitative analysis of de novo transcription 
factor–genome interactions in a highly controlled fashion.

We first sought to determine the global relationship between the 
preexisting chromatin accessibility state of untreated cells and the pat-
tern of glucocorticoid receptor binding following hormone induction. 

The glucocorticoid receptor is widely believed to function as a ‘pio-
neer protein’ that is capable of autonomous binding to genomic DNA 
target sites, resulting in local chromatin remodeling11,12. However, 
this concept is based largely on qualitative results from a limited set 
of loci13.

To gain a genome-wide perspective, we used digital DNase I 
analysis14,15 and ChIP-seq10,16,17 to map chromatin accessibility 
and glucocorticoid receptor occupancy at high resolution both 
before and after steroid hormone (dexamethasone (Dex)) treat-
ment in a well-studied model cell type (mouse 3134 mammary 
adenocarcinoma cells). Digital DNase I profiling enables quan-
titative delineation of chromatin accessibility, including both 
classical DNase I hypersensitive sites (DHSs) as well as regions of 
general chromatin accessibility marked by DNase I sensitivity18 
(Supplementary Figs. 1 and 2).

Genome-wide DNase I sensitivity and glucocorticoid receptor 
occupancy profiles were highly reproducible (Supplementary 
Fig. 3) and revealed a striking correspondence between the loca-
tions of glucocorticoid receptor occupancy after dexamethasone 
treatment and the preexisting pattern of chromatin accessibility 
in untreated cells (Fig. 1 and Supplementary Fig. 3a–c). To quan-
tify this phenomenon, we delineated genomic regions with high 
chromatin accessibility over background and identified 97,717 
strongly DNase I–sensitive regions encompassing 2.1% (56.7 Mb) 
of the genome in untreated cells (Supplementary Tables 1 and 2 
and Supplementary Note), within which we localized 87,490 
DHSs (0.4% of the genome at a false discovery rate (FDR) of 1%; 
Supplementary Tables 1 and 3).

Analysis of glucocorticoid receptor ChIP-seq data from hormone-
treated cells revealed 8,236 sites of glucocorticoid receptor occu-
pancy (Supplementary Table 4). Performing de novo motif 
discovery on the top 500 glucocorticoid receptor occupancy sites 
recovered a 15-bp motif that closely matched the consensus gluco
corticoid receptor binding element (GRBE; Fig. 2a)19,20. More 
than 80% of glucocorticoid receptor occupancy sites contained  
some form of this GRBE consensus sequence (P < 10−3), with 50%  
of these sites containing higher stringency matches (P < 10−4).
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The great majority of glucocorticoid receptor occupancy sites (71%, 
5,865 sites) were targeted to the 2.1% of the genome defined by preex-
isting (that is, pre-hormone or ‘baseline’) strongly DNase I–sensitive 
regions (P < 10−300). An additional ~9% of binding localized to weakly 
DNase I–sensitive regions, with 80% of glucocorticoid receptor bind-
ing occurring within 4.9% of the genome (Supplementary Fig. 3d). 
However, this estimate represents a lower limit. For example, increas-
ing the sequencing depth of the pre-hormone DNase I–seq sample 
approximately eightfold increased the proportion of glucocorticoid 
receptor sites falling within pre-hormone accessible chromatin from 
71% to 88.3% (P < 10−300; Supplementary Note and Supplementary 
Fig. 3d). In hormone-treated cells, 95% of glucocorticoid recep-
tor occupancy sites (and >99% after deep sequencing) localized to 
accessible chromatin (P < 10−300). Additionally, we observed DHSs 
unique to hormone-treated cells that were not directly associated with 
glucocorticoid receptor binding (Fig. 1a, blue arrows and Fig. 1d, 
blue crescent). Most of these DHSs derived from sites of very weak 
pre-hormone chromatin accessibility that were potentiated following 
hormone treatment (Supplementary Fig. 4) and may thus represent 
indirect or ‘network’ effects of glucocorticoid receptor action.

Taken together, these results indicate that preexisting patterns of 
chromatin accessibility exert a dominant, global effect on de novo 
regulatory factor localization, and that factor occupancy is almost 
invariably associated with local chromatin remodeling.

Despite the fact that average pre-hormone chromatin accessibility 
at promoter regions was high, we observed 93% of glucocorticoid 
receptor occupancy sites >2.5 kb distal to the nearest transcriptional 
start site (compared to 61% of all DHSs; Supplementary Fig. 5). 
Glucocorticoid receptor sites were also highly clustered along the 
genome (Supplementary Fig. 6). However, we found no clear rela-
tionship between glucocorticoid receptor occupancy patterns and 
transcriptional activation of nearby genes (Supplementary Table 5 

and Supplementary Fig. 7), raising the possibility that the glucocor-
ticoid receptor acts through long-range mechanisms, or that many 
glucocorticoid receptor binding events are opportunistic.

We next asked why, given the dominant influence of the chroma-
tin structure, the glucocorticoid receptor occupied only a subset of 
DNase I–sensitive regions and why a small minority of glucocorticoid 
receptor binding events could escape the requirement for preexist-
ing highly accessible chromatin. We first examined the relationship 
between GRBE motifs and glucocorticoid receptor occupancy pat-
terns by developing an approach for quantifying the differential sen-
sitivity of different GRBEs to their local chromatin environment. Of 
2,296,115 GRBE (15 bp) matches21 (Fig. 2a) in the non-repetitive 
mouse genome, only a very small fraction were actually occupied 
in vivo after hormone treatment. Standard position weight matrix 
matching21 to the GRBE consensus was a poor predictor of gluco-
corticoid receptor binding, as many GRBEs with a high matching 
score were not occupied by a glucocorticoid receptor. However, we 
observed that many occupied GRBEs harbored distinct instantiations 
of the consensus sequence comprising specific combinations of non-
degenerate bases (Fig. 2b).

To quantify the global relationship between these combinations 
and chromatin reprogramming, we partitioned the ~2.3-million 
candidate GRBEs into motif sequence classes such that all mem-
bers of a given class shared identical non-degenerate consensus 
base sequences. Next, we computed a chromatin context coef-
ficient (CCC) for each GRBE sequence class that quantified its 
relative dependence on pre-hormone chromatin accessibility as a 
prerequisite for post-hormone glucocorticoid receptor occupancy 
(Fig. 2c–d and Supplementary Note). High CCC values denote 
strong chromatin context dependence of glucocorticoid receptor 
binding, whereas low values mark classes with potential to over-
ride the dominant effect of chromatin structure and initiate local 

Figure 1  Dominant effect of chromatin 
accessibility on glucocorticoid receptor 
occupancy patterns. (a,b) Examples of DNase I 
sensitivity and glucocorticoid receptor occupancy 
patterns in relation to dexamethasone exposure 
(see Supplementary Fig. 3a–c for additional 
examples). Each data track shows tag density 
(150-bp sliding window) from either DNase 
I–seq or glucocorticoid receptor ChIP-seq, 
normalized to allow comparison across different 
samples (Online Methods). Green arrows mark 
sites of post-hormone glucocorticoid receptor 
occupancy in pre-existing DNase I–sensitive 
chromatin (‘preprogrammed’ sites). Red arrows 
mark glucocorticoid receptor occupancy sites 
in pre-hormone inaccessible chromatin that 
result in post-hormone chromatin remodeling 
(‘reprogrammed’ sites). Blue arrows mark 
hormone-induced DHSs not directly associated 
with glucocorticoid receptor occupancy 
(Supplementary Fig. 4c). (c) Venn diagram 
summarizing global glucocorticoid receptor 
occupancy compared to the chromatin 
accessibility landscape (~25 million read 
depth) in mammary cells (for legibility, the 
glucocorticoid receptor circle is shown at ×5 scale). Most glucocorticoid receptor occupancy occurs within pre-hormone accessible chromatin. A small 
fraction of generally weak glucocorticoid receptor peaks (5.2% of total peaks) are not associated with reprogrammed or preprogrammed chromatin.  
(d) DNase I sensitivity (tag density) pre-hormone (horizontal axis) compared to post-hormone (vertical axis) treatment. Colors match those used in c. 
Black, pre-hormone accessible regions with no post-hormone glucocorticoid receptor occupancy; blue, DNase I–sensitive regions induced post-hormone 
without glucocorticoid receptor occupancy (Supplementary Fig. 4c); green; pre-hormone DNase I–sensitive regions occupied by glucocorticoid receptor 
post-hormone (‘preprogrammed’ sites); red, pre-hormone inaccessible chromatin remodeled by glucocorticoid receptor occupancy (‘reprogrammed’ sites), 
resulting in marked alteration in DNase I sensitivity (Supplementary Fig. 4a,b). GR, glucocorticoid receptor.
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remodeling. Notably, we observed no CCC values <1, indicating 
that glucocorticoid receptor occupancy was universally enhanced by 
residence of GRBEs within pre-hormone accessible chromatin. Five 
hundred twenty-six out of one thousand one hundred statistically 
well-defined GRBE sequence classes lacked any occupancy at GRBE 
instances in pre-hormone closed chromatin (that is, CCC = ), indi-
cating an absolute requirement of preexisting chromatin accessibil-
ity for glucocorticoid receptor occupancy (Supplementary Note 
and Supplementary Table 6). Ranking the remaining 574 GRBE 
sequence classes with finite CCC values revealed a hierarchy of chro-
matin dependence among GRBE elements, with the quantitative 
effect of preexisting chromatin accessibility on the probability of 
glucocorticoid receptor occupancy ranging from twofold to 473-fold 
(Fig. 2c and Supplementary Table 6). CCC values and GRBE class 
size were uncorrelated (R2 = 0.15).

We next profiled both DNase I sensitivity and glucocorticoid 
receptor binding pre- and post-dexamethasone treatment in a 
highly divergent cell type (mouse pituitary cell line AtT-20) (Fig. 3, 
Supplementary Fig. 8a–c and Supplementary Tables 7–10). In 
pituitary cells, we found an even tighter targeting of de novo gluco-
corticoid receptor occupancy to pre-hormone accessible chromatin, 
with 95% (3,079 out of 3,242) of glucocorticoid receptor occupancy 
sites occurring within pre-hormone DNase I–sensitive regions  
(Fig. 3c). As in mammary cells, we observed no pre-hormone gluco-
corticoid receptor occupancy, and almost all (99%) post-hormone 
glucocorticoid receptor occupancy was accompanied by increased 
DNase I sensitivity. Pre-hormone chromatin accessibility patterns 
in mammary cells compared to pituitary cells were highly discord-
ant (~30% overlap), consistent with cell type–specific cis-regulatory 
landscapes (Fig. 3d). The cell-selectivity of glucocorticoid recep-
tor occupancy was even more pronounced, with only 11.4%  
(371 out of 3,242) of glucocorticoid receptor occupancy sites shared  
between pituitary and mammary cells (Fig. 3e).

Eighty-three percent (473 out of 572) of the GRBE sequence 
classes with well-defined CCC values in both 3134 and AtT-20 
cells showed statistically significant enhancement of glucocorti-
coid receptor binding in both cell types (CCC > 1; Supplementary 
Fig. 8d). In AtT-20 cells, enhancement of GRBE occupancy by chro-
matin context ranged from threefold to 596-fold (Supplementary 
Table 6). The effects associated with specific GRBE classes were 
largely stable between cell types (R = 0.48, P < 0.01; Supplementary 
Fig. 8e). Notably, we were unable to identify a unique or specific 
GRBE sequence class that functioned exclusively to render closed 
chromatin more accessible.

In 3134 cells, ~25% of baseline accessible DHSs contained GRBEs, 
yet only 23% were occupied by a glucocorticoid receptor, suggest-
ing additional requirements for glucocorticoid receptor binding. 
Glucocorticoid receptors have been reported to interact with a 
number of cell-restricted and ubiquitous transcriptional regulators22. 
We therefore examined glucocorticoid receptor sites for evidence of 
accessory factor motifs by performing de novo motif discovery on 
preprogrammed compared to reprogrammed sites from each cell 
type. This analysis revealed distinct complements of highly significant  
(P < 10−5) motifs enriched in conjunction with classical GRBEs  
(Fig. 4 and Supplementary Fig. 9). In mammary preprogrammed 
sites, these included AP-1 most prominently, as well as AML1,  
NF-κB and a previously unassigned motif (Fig. 4a). In pituitary pre-
programmed sites, we recovered the canonical GRBE plus consen-
sus motifs for HNF3, TAL1 and NF1 (Fig. 4b). Notably, both HNF3 
and NF1 have previously been connected with both nuclear recep-
tor binding generally and with glucocorticoid receptor interaction 
specifically23,24. ChIP analyses confirmed that at least a proportion of 
the identified sequence motifs were occupied by their cognate factors 
(Supplementary Fig. 10a–e).

Analysis of reprogrammed glucocorticoid receptor sites revealed a 
strikingly different picture. In 3134 cells, we found only the canonical 

Figure 2  The quantitative effect of chromatin 
context on glucocorticoid receptor occupancy 
of GRBEs. (a) The top scoring motif recovered 
from de novo motif discovery performed on the 
top 500 glucocorticoid receptor occupancy 
sites by ChIP-seq tag density (MEME E value = 
8.6 × 10−753) closely matches the consensus 
glucocorticoid receptor binding element (GRBE). 
(b) A 50-kb genomic region comparing pre-  
and post-hormone chromatin accessibility  
and glucocorticoid receptor occupancy in 
relation to GRBE genomic sequence matches 
(P < 10−3). Only a small fraction of the ~2.3 × 
106 GRBE consensus sites are occupied in vivo, 
and occupied sites differ in their underlying 
combinations of consensus GRBE motif 
nucleotides. (c) GRBE sequence classes ranked 
by chromatin context coefficient (CCC). Genomic 
GRBE motif matches could be partitioned into 
discrete sequence classes, each comprising 
an identical, and distinct, combination of 
consensus nucleotides. Within each class of 
identical sequence elements, occurrence of 
member genomic sequences in a range of pre-
hormone DNase I–sensitivity environments 
(from inaccessible to hyperaccessible) enabled quantification of the effect of chromatin context on the probability of post-hormone glucocorticoid receptor 
occupancy. Ranking specific GRBE sequence classes by CCC revealed graded sensitivity to chromatin context, from highly context-dependent elements that 
engender glucocorticoid receptor occupancy only when situated in accessible chromatin, to relatively context-independent elements associated with sites 
where glucocorticoid receptor occupancy induces chromatin remodeling. (d) Model illustrating the contribution of chromatin accessibility to transcription 
factor binding. CCC encodes the occupancy potential of different GRBE sequence classes relative to accessibility. GR, glucocorticoid receptor.
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GRBE and AP-1 motifs. We found GRBEs in >80% of reprogrammed 
sites compared to only 29% of preprogrammed sites (P < 10−100) 
(Fig. 4c and Supplementary Fig. 9), compatible with direct engage-
ment of DNA following chromatin penetration. By contrast, we found 
consensus AP-1 sites in ~10% of reprogrammed sites compared to 
26% of preprogrammed sites (P < 10−80), and AP-1 and glucocorticoid 
receptor motifs were mutually exclusively distributed such that only 

4.8% of preprogrammed sites had both (data not shown). In AtT-20 
cells, we identified consensus HNF3 motifs in 34% of preprogrammed 
sites compared to 21% in reprogrammed glucocorticoid receptor sites 
(P < 0.003) (Fig. 4c and Supplementary Fig. 9). We observed mutual 
exclusivity between GRBEs and HNF3 in preprogrammed sites (only 
5.8% of sites had both; P < 10−11), which is analogous to the results 
with AP-1 in 3134 cells (data not shown). Taken together, these data 

c All GR occupancy sites
(motif enrichment)

%
 s

ite
s 

w
ith

 m
ot

if

90.0

80.0

70.0

60.0

50.0

40.0

30.0

20.0

10.0

0
GR AP-1 AML1 UNKN NFkB HNF3 TAL1

3134 preprogramed
3134 reprogrammed
AtT-20 preprogramed
AtT-20 reprogrammed

NF1

b AtT-20 GR sites
(de novo discovery)

2.0
1.0

0
5 10

bi
ts

2.0
1.0

0
5

bi
ts

2.0
1.0

0
5 10 15

bi
ts

2.0
1.0

0
5 10 15

bi
ts

GR
2.0
1.0

0
5 10 15

bi
tsGR

HNF3

TAL1

NF1

Preprogrammed Reprogrammed

a 3134 GR sites
(de novo discovery)

Preprogrammed

GR
2.0
1.0

0

2.0
1.0

0

5

5

10 15

2.0
1.0

0
5 10 1520

bi
ts

bi
ts 2.0

1.0
0

5

bi
ts

bi
ts

2.0
1.0

0
5

bi
ts

2.0
1.0

0
5

bi
ts

2.0
1.0

0
5 10

bi
ts

AP-1

GR

AP1

AML1

UNKN

NFkB

Reprogrammed

Figure 4  Regulatory motifs in glucocorticoid receptor–occupied regions differ substantially between cell types. (a,b) Results of de novo motif discovery 
(Supplementary Note) performed on the top 500 glucocorticoid receptor occupancy sites identified in 3134 (a) and AtT-20 (b) cells. The glucocorticoid 
receptor sites were further separated into preprogrammed (glucocorticoid receptor occupancy within pre-hormone accessible chromatin) and reprogrammed 
(glucocorticoid receptor occupancy within pre-hormone inaccessible chromatin) sites. Shown are motifs with highly significant enrichment (P < 10−5).  
In all cases, the GRBE was the most highly enriched single motif (E = 8.6 × 10−753). Notably, AP1 and AML1 motifs were enriched in 3134 cells (a), 
whereas HNF3 and NF1 were correspondingly enriched in AtT-20 cells (b). (c) Motif occurrence patterns across all glucocorticoid receptor occupancy sites. 
Bar plots show percentage of all glucocorticoid receptor occupancy sites (8,236 sites in 3134 cells compared to 3,242 sites in AtT-20 cells) that harbor 
significant matches to the de novo–identified motifs from a and b. Note that canonical GRBEs are highly enriched in reprogrammed sites compared to 
preprogrammed sites (>80% of reprogrammed sites compared to <30% of preprogrammed sites; P < 10−4).

G
R

 C
hI

P
-s

eq
D

N
as

eI
-s

eq

Pre-
dex

100

1

1

1

100

100

100

50

100

50

100

1

1

1

1

1

100

Ch12 3,940,000 3,945,000 3,950,000 3,955,000 3,960,000 3,965,000Ch11 68,925,00068,920,00068,915,00068,910,00068,905,000

1

1

1

100

100

100

50

100

50

100

1

1

1

1

1

Post-
dex

Pre-
dex

Post-
dex

Pre-
dex

Post-
dex

Pre-
dex

Post-
dex

3134

AtT-20

3134

AtT-20

3134

AtT-20

3134

AtT-20

3134

Efr3b

AtT-20

3134

AtT-20

3134

AtT-20

3134

AtT-20

POMC

a c

d

e

b

* shown at 5X scale

GR occupancy at
pre-accessible
sites (3,077 sites)

GR occupancy at
weak or inaccessible
sites (138 sites)

3,242 GR
occupancy sites

(0.02% of genome)*

Accessible chromatin
(DNase I–sensitive)
post-dexamethasone
(2.6% of genome)

Accessible chromatin
(DNase I–sensitive)
pre-dexamethasone

(2.5% of genome)

Pituitary
(AtT-20)

2.6% of
genome

Mammary
(3134)

2.1% of
genome

0.8% of
genome

DNase I–sensitive chromatin
pre-dexamethasone

Mammary
(3134)

8,236
GR sites

Pituitary
(AtT-20)
3,242

GR sites

GR occupancy
post-dexamethasone

371
GR sites

Figure 3  Cell-specific chromatin landscapes determine cell-selective glucocorticoid receptor occupancy. (a,b) Pituitary- 
specific glucocorticoid receptor occupancy dictated by pituitary-specific DNase I–sensitivity transitions. Shown are  
examples of DNase I sensitivity and glucocorticoid receptor occupancy patterns in relation to hormone exposure comparing  
mouse mammary (3134) and pituitary (AtT-20) cells (see Fig. 1 legend and Supplementary Fig. 8a–c for additional examples).  
(c) Global glucocorticoid receptor occupancy compared to the chromatin accessibility landscape in pituitary cells. In pituitary cells, virtually all sites 
of glucocorticoid receptor occupancy (94.9%, or 3,079 out of 3,242 sites) occurred within pre-hormone accessible chromatin. The small fraction 
of reprogrammed glucocorticoid receptor sites (138 glucocorticoid receptor ChIP peaks, 4.2% of total) is shown in red. As in mammary cells, only a 
small fraction of pre-hormone accessible chromatin was occupied (for legibility, the glucocorticoid receptor circle is shown at ×5 scale). (d) Significant 
differences in the genomic distribution of pre-hormone DNase I sensitivity in mammary (gray) compared to pituitary (green) cells; only 0.78% of the 
genome (20.5 Mb) was accessible in both cell types. (e) Glucocorticoid receptor occupancy is highly cell selective. Only 371 glucocorticoid receptor 
occupancy sites are shared between mammary and pituitary cells (4.5% of 3134 cell sites and 11.4% of AtT-20 cell sites).



©
20

11
 N

at
u

re
 A

m
er

ic
a,

 In
c.

  A
ll 

ri
g

h
ts

 r
es

er
ve

d
.

Nature Genetics  ADVANCE ONLINE PUBLICATION	 �

l e t t e r s

suggest that in both cell types, common regulatory factors including 
AP-1 (3134 cells) and HNF3 (AtT-20 cells)—or possibly other factors 
acting through the same cognate motifs—may be mediating glucocor-
ticoid receptor occupancy within a subset of pre-hormone accessible 
chromatin. However, this effect is quantitatively minor compared with 
that conferred by chromatin accessibility itself. For example, of the 
34,587 positions in the mouse genome where AP-1 motifs and GRBEs 
co-occur, only 1.8% are occupied by glucocorticoid receptor post-
hormone in 3134 cells, compared with the ~80% of glucocorticoid 
receptor binding that occurs within accessible chromatin generically 
(Supplementary Fig. 10f–g).

In summary, our results reveal the marked dominant effect of pre-
existing chromatin structure on de novo regulatory-factor binding. 
This effect may be secondarily modulated by local sequence features 
such as variations in regulatory factor recognition elements or the 
presence of accessory sequence motifs for well-known regulators. 
However, even considered collectively, these additional sequence 
features likely account for only a minority of the overall effect.

Because of the dramatic dependence of regulatory factor binding on 
preexisting chromatin architecture, substantial variations in the base-
line pattern of chromatin accessibility between different cell types are 
expected to expose distinct patterns and genomic locations of regula-
tory factor recognition sequences. The distribution of such exposed 
binding elements should, in turn, dictate the genomic distribution of 
de novo regulatory factor binding.

Corticosteroids are one of the most commonly used pharmaceu-
ticals, and they exhibit widely differing effects on different tissues 
despite the fact that most human cell types contain the same glucocor-
ticoid-response machinery4. Our results provide a simple explanation 
for these effects, namely, that they are a direct consequence of cell 
type–specific patterns of baseline (pre-hormone) chromatin acces-
sibility and exposed glucocorticoid receptor recognition sequences.

A further implication of our results is that sequential factor occu-
pancy during development and differentiation may be largely pre-
specified by the chromatin landscape as a form of cellular memory. 
Reprogramming of the chromatin structure at a limited number of sites 
may incrementally alter this pattern and create new potential occupancy 
sites for subsequently available factors, resulting in a directional process 
that is difficult to reverse without extraordinary measures such as the 
simultaneous introduction of multiple potent regulators25.

Methods
Methods and any associated references are available in the online 
version of the paper at http://www.nature.com/naturegenetics/.

Accession codes. All DNase I and ChIP-seq data are available through 
the UCSC browser (http://genome.ucsc.edu/) and through NCBI 
Sequence Read Archive (SRA) under study number SRP004871 and 
the following accession codes: SRX034804, SRX034802, SRX034811, 
SRX034818, SRX034860, SRX034861, SRX034862, SRX034863, 
SRX034864, SRX034865, SRX034837, SRX034838, SRX034867, 
SRX034868, SRX034869, SRX034870, SRX034871 and SRX034872. 
All expression array data are available from the Gene Expression 
Omnibus (GEO) database under study number GSE26189 and the 
following accession codes:  GSM642864, GSM642865, GSM642866, 
GSM642867, GSM642868, GSM642869, GSM642870, GSM642871, 
GSM642872, GSM642873, GSM642874, GSM642875, GSM642876, 
GSM642877, GSM642878.

Note: Supplementary information is available on the Nature Genetics website.
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ONLINE METHODS
Cell lines and culture conditions. The 3134 cell line was derived by transfor-
mation of the C127 cell line, which was originally isolated from a mammary 
adenocarcinoma tumor of the RIII mouse. The AtT-20 cell line is an anterior 
pituitary corticotroph of mouse origin (ATCC). Both cell lines were maintained 
in Dulbecco’s Modified Eagle Medium (DMEM) (Invitrogen) supplemented 
with 10% FBS (Gemini), 2 mM L-glutamine, 1 mM sodium pyruvate, 0.1 mM 
non-essential amino acids and 5 mg/ml penicillin-streptomycin (Invitrogen) 
and kept at 37 °C in an incubator with 5% CO2. Cells were transferred to 10% 
charcoal-dextran–treated, heat-inactivated FBS for 48 h before hormone treat-
ment (1 h with 100 nM dexamethasone)26.

ChIP assays. Chromatin immunoprecipitations were performed as per stan
dard protocols (Upstate)27. Briefly, cells were treated with either vehicle or  
100 nM dexamethasone for 1 h. Cells were crosslinked for 10 min at 37 °C in 
1% formaldehyde followed by a quenching step for 10 min with 150 mM gly-
cine. A single chromatin immunoprecipitation contained 400 µg of sonicated, 
soluble chromatin and a cocktail of antibodies to the glucocorticoid receptor 
(7.5 µg of PA1-511A antibody, ABR, 15 ug of MA1-510 antibody, ABR and 3 µg 
of sc-1004; Santa Cruz). The ChIP reaction was scaled ×5 for ChIP-seq. DNA 
isolates from immunoprecipitates were used as templates for real-time quantita-
tive PCR amplification or sequenced as described below. All ChIP experiments 
were performed at least two times.

Digital DNase I mapping. Digital DNase I mapping was performed essentially 
as described in reference 28. Briefly, 3134 and AtT-20 cells were grown as 
described above. We pelleted 1 × 108 cells and washed them with cold phos-
phate-buffered saline. We resuspended cell pellets in Buffer A (15 mM Tris-Cl 
(pH 8.0), 15 mM NaCl, 60 mM KCl, 1 mM EDTA (pH 8.0), 0.5 mM EGTA (pH 
8.0), 0.5 mM spermidine and 0.15 mM spermine) to a final concentration of  
2 × 106 cells/ml. Nuclei were obtained by dropwise addition of an equal volume 
of Buffer A containing 0.04% NP-40 to the cells, followed by incubation on ice 
for 10 min. Nuclei were centrifuged at 1,000g for 5 min and then resuspended 
and washed with 25 ml of cold Buffer A. Nuclei were resuspended in 2 ml of 
Buffer A at a final concentration of 1 × 107 nuclei/ml. We performed DNase I  
(Roche, 10–80 U/ml) digests for 3 min at 37 °C in 2 ml volumes of DNase I 
buffer (13.5 mM Tris-HCl pH 8.0,  87 mM NaCl, 54 mM KCl, 6 mM CaCl2,  
0.9 mM EDTA, 0.45 mM EGTA, 0.45 mM Spermidine). Reactions were termi-
nated by adding an equal volume (2 ml) of stop buffer (1 M Tris-Cl (pH 8.0), 5 M 
NaCl, 20% SDS and 0.5 M EDTA (pH 8.0), 10 µg/ml RNase A, Roche) and incu-
bated at 55 °C. After 15 min, we added Proteinase K (25 µg/ml final concentra-
tion) to each digest reaction and incubated for one hour at 55 °C. After DNase 
I treatments, careful phenol-chloroform extractions were performed. Control 
(untreated) samples were processed as above except for the omission of DNase I.  
DNase I double-cut fragments and sequencing libraries were constructed as 
described in references 29 and 30.

High-throughput sequencing data analysis. High-throughput sequencing 
output was processed similarly for both DNase I and ChIP data. Twenty-
seven base pairs of Illumina sequence reads were mapped to the human 
genome (UCSC HG18), and only uniquely mapping read positions were 
considered. For DNase I sequence tags, the 5′ ends represent in vivo 
cleavage events. Significantly enriched regions were identified in both 
DNase I and glucocorticoid receptor ChIP-seq datasets using a version of  
the Hotspot algorithm31 (and Thurman et al., in preparation; see also 
description below). Motifs in GR ChIP peaks were identified using the 
MEME algorithm32.

Delineation of DNase I–sensitive regions. DNase I cleavage sites were repre-
sented computationally as the single base pair from the 5′ end of each sequence 
tag. Enrichment of tags along the genome was gauged in a small window 
(200–300 bp) relative to a local background model based on the binomial 
distribution and using the observed tags in a 50-kb surrounding window. Each 
mapped tag was given a z-score (explained below) relative to the surrounding 
small and background windows centered on the tag. A ‘hotspot’ was defined 
as a succession of neighboring tags within a 250-bp window, each of whose 
z-score was greater than 2. Once a hotspot was identified, the hotspot itself 

was assigned a z-score relative to the small and background windows centered 
on the average position of the tags forming the hotspot.

z-score calculation. Suppose n observed tags are mapped to the small window, 
and N total tags are mapped to the 50-kb surrounding background window  
(N ≥ n). Each tag in the background window is considered an ‘experiment’ 
with a favorable outcome if it falls in the smaller window. Assuming each base 
in the 50-kb window is equally likely, the probability of success for each tag is 
therefore P = 250/50,000 . Not all bases in the 50-kb window may be uniquely 
mappable by 27 mers (the tag length for our data), however, so p was adjusted 
to account for the number of uniquely mappable bases for that window. Under 
these assumptions, the binomial distribution applies, and the expected number 
of tags falling in the smaller window is µ = Np.

The standard deviation of this expected value is s = −Np p( )1 .Finally, the 
z-score for the observed number of tags in the smaller window is z = n − µ/σ.

We also computed the expected number of tags and the z-score using the 
entire genome as background, rather than the 50-kb window, and, to be con-
servative, reported the lower of the two z-scores.

Correction for regional DNase I–sensitivity background. In regions of very high 
enrichment, the resulting hotspots can inflate the background for neighbor-
ing regions and deflate neighboring z-scores. The effect of this is that regions 
of otherwise high enrichment can be shadowed by a neighboring extreme 
hotspot. To address this problem, we implemented a two-pass procedure. After 
the first round of hotspot detection, we deleted all tags falling in the first-pass 
hotspots. We then computed a second round of hotspots with this deleted 
background. The hotspots from the first and second passes were combined, 
and all hotspots were rescored using the deleted background: the number of 
tags in each hotspot was computed using all tags, but the 50-kb background 
windows used only the deleted background.

Identification of DNase I hypersensitive peaks. Hotspots were resolved 
into discrete 150-bp peaks using a peak-finding procedure. First, neighbor-
ing hotspots within 150 bp of each other were merged. We computed a sliding 
window tag density (tiled every 20 bp in 150-bp windows) and then perform 
peak finding of the density in each merged hotspot region. Each 150-bp peak 
was assigned the z-score from the unmerged hotspot that contains it. Peak 
finding proceeded in two phases so that each hotspot has at least one peak. 
Phase-I peaks are local maxima occurring in regions above the ninety-ninth 
percentile of the density and satisfying certain ad hoc criteria for ensuring a 
sustained increase to or decrease from the local maxima. For each hotspot 
that does not contain at least one phase-I peak, a phase-II peak was simply 
defined as the maximum density value in the hotspot. For details, see the code 
available from the authors.

False discovery rate (FDR) calculations. We assigned FDR z-score thresholds 
to a given hotspot set using random data. As a null model, we computationally 
generated tags uniformly over the uniquely mappable bases of the genome. 
We used the same number of tags for observed and random data. The random 
data also coalesced into hotspots, which we identified and scored as usual. For 
a given z-score threshold T, the FDR for the observed hotspots with z-score 
greater than T was estimated as

FDR T
z T
z T

( )
#
#

≅
≥
≥

of random hotspots with
of observed hotspots with

As the numerator, which was calculated on a dataset that is entirely null, 
likely overestimates the number of false positives in the observed data, this 
is likely a conservative estimate of the FDR. Hotspots with FDR of 0% were 
constructed by taking all hotspots with a z-score greater than the maximum 
z-score attained in the paired random set. We constructed FDR-thresholded 
peak sets by performing peak finding in FDR-thresholded hotspots.

Generation of tables of DNase I sensitive regions and DHSs for pre- and 
post-hormone datasets. We observed that Dex DNase I hotspots (DNase I 
sensitive regions) that occur outside of Dex+ DNase I hotspots are generally 
of low intensity and significance. We therefore restricted our published tables 
of Dex hotspots and peaks to those that also intersect Dex+ hotspots. For 3134 
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cells, we pooled samples from two replicates for each condition (Dex− and 
Dex+), whereas for AtT-20 cells, we used a single replicate per condition. See, 
however, the section on replicate concordant sets below, which details methods 
for defining DNase I sets for CCC analysis and aggregate plots.

Analysis of ChIP-seq data. The preceding sections describe procedures for 
handling DNase I tag data. Modifications were made to this process to account 
for unique properties of ChIP data. For one, duplicate tags (tags mapped to the 
same location) were used for DNase I but unique tags were only retained for 
ChIP calculations. This was because multiple tags mapping to the same position 
for DNase I provided biological meaning (the more tags at a given position, the 
more locally accessible the chromatin is at that location), whereas for ChIP data 
we expected the relevant information to be only the locations of measured bind-
ing. The most important difference between the processing of DNase I and ChIP 
data is the use of sequence data for the ChIP input experiment, which gives, for 
each ChIP experiment, a measure of the non-binding background signal, which 
can be significant. We used input tags at the scoring phase for ChIP hotspots. 
Once two-pass hotspots had been identified as usual, we scored each hotspot 
by first subtracting the number of tags in the paired input experiment from the 
observed ChIP tags in the hotspot window before applying the binomial model. 
We normalized the number of input tags subtracted in each window by a factor 
that brings the total number of input tags to the same number of ChIP tags. We 
did not subtract input tags from the surrounding 50-kb background window, 
so the scoring should be conservative.

Adjusted scoring for maximum sensitivity analyses using deep sequenc-
ing data. When scoring the deeper, 100-million-tag datasets, we strove for 
maximum sensitivity in detecting accessible chromatin, and therefore we 
made two adjustments in scoring hotspots. First, instead of taking the lower 
of the two z-scores from using a 50-kb local background and the genome-wide 
background, we used the greater of the two; and second, we lowered the initial 
z-score threshold for hotspot detection from two to one.

For additional methods, see the Supplementary Note.
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