About
569
Publications
50,408
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
8,168
Citations
Introduction
Miguel V. Andrés is responsible for the leadership and management of the Group of Fiber Optics at the University of Valencia (www.uv.es/lfo). Since 1983, he has successively served as Assistant Professor, Lecturer, and Professor in the Department of Applied Physics, University of Valencia, Spain. After a postdoctoral stay (1984-1987) at the Department of Physics, University of Surrey, U.K., he founded the Group of Fiber Optics at the University of Valencia.
Additional affiliations
October 1984 - August 1987
October 1979 - November 2015
Publications
Publications (569)
In this article, we report the application of a commercial supercontinuum light source for testing fiber optics components in a broad optical range. We demonstrate that this kind of light can be successfully used to measure the parameters of a number of passive fiber components, such as fiber Bragg gratings, fiber couplers, wavelength division mult...
In this work, we present a passively modelocked all-fiber laser that fully retains polarization with a fundamental repetition rate of 1 GHz. The whole cavity consists of a 106 mm-long highly-Tm-doped polarization-maintaining fiber with a dichroic mirror on one end and a semiconductor saturable absorber mirror on the other. We experimentally charact...
In this paper, we present the results of an experimental study on the characterization of holmium-doped silica fiber. A standard acousto-optic modulator controls the output power of the ytterbium-doped fiber laser operating at 1134.5 nm and serving as a pump source of the holmium-doped fiber under test. This technique allows us to measure the lifet...
The development of applications based on forward-stimulated Brillouin scattering (FSBS) in optical fibers has experienced a considerable increase in recent years, particularly in the area of fiber optic sensors. In this work, we present an experimental investigation to explore the limits of this physical mechanism in telecom optical fibers, whose r...
We investigate the potential of forward-stimulated Brillouin scattering in optical fibers to detect changes of the fiber diameter with nanometer resolution.
The conventional detection of Forward Brillouin Scattering (FBS) in optical fibers requires of interferometric techniques using lengths of tens of meters. In this paper, we demonstrate an alternative approach that provides efficient and high-resolution detection of FBS signals, while using just a 20 cm length section of bare fiber. It consists of a...
The multifrequency character of nonlinearity dispersion is often dismissed because, in principle, it increases the computational load exceedingly rendering an impractical modeling and, typically, nonlinearities barely depend on frequency. Nonetheless, nonlinearity dispersion has recently enabled a solution to a long-standing challenge in optics. To...
We investigated experimentally and theoretically the buildup of light pulses in an erbium-doped sub-MHz all-fiber laser modelocked by nonlinear polarization rotation. We were able to study the buildup of two different emission regimes: standard solitons and noise-like pulses. In each case, we were able to determine the round-trips required to achie...
An experimental study using a fiber tip interferometer (FTI) to characterize traveling flexural acoustic waves (TFAWs) along an optical fiber is reported. The measurements carried out with the FTI are performed following two different procedures: one of them relies on adjusting the interferometer at the quadrature condition and the other extracts t...
https://doi.org/10.1016/j.csfx.2024.100114
The nonlinear coefficient dependence on multiple frequencies is rigorously incorporated into the propagation equation so that the resulting nonlinear term is still straight-forwardly computed. Readily observable consequences due to this multifrequency dispersion are predicted.
We present an experimental study of spheroidal mechanical mode resonances of a silica microsphere. These modes were generated by a pulsed laser via electrostriction and they were detected using optical whispering-gallery modes of the sphere.
In this paper, we show that a continuous-wave ytterbium-doped fiber laser implemented in the conventional
configuration of a Fabry-Perot cavity with two fiber Bragg gratings as selective reflectors and a moderate output
power (tens of watts) generates two groups of photons, each of which is characterized by its own statistics. The
statistics of the...
A general technique for obtaining the soliton number, and hence the nonlinear coefficient, in wave-guides with high dispersion and loss is derived and demonstrated numerically and experimentally in a kilometer-long standard silica fiber pumped close to 2 µm.
A new approach to detect and analyze transverse acoustic mode resonances (TAMRs), responsible for forward Brillouin scattering in optical fibers, is reported using optical whispering gallery modes (WGMs). TAMRs generate perturbations in the geometry and the dielectric permittivity of the fiber that couples the acoustic and optical resonances. This...
Rapid, reliable and low cost techniques to fabricate biosensors is a hot topic nowadays. Here, we present a BIO-grating fabricated by means of local, selective denaturing of molecules using UV radiation. A phase-mask is used to generate an interferometric pattern of 1420 nm pitch that, when illuminating a biolayer of BSA molecules lead to its perio...
Opto‐mechanical interactions in different photonic platforms as optical fibers and optical microresonators are raising great attention, and new exciting achievements have been reported in the last few years. Transverse acoustic mode resonances (TAMRs) in optical fibers –which can be excited optically via electrostriction and generate forward Brillo...
U-shaped tight curvatures in optical fibers lead to resonant couplings between the fundamental and higher order modes that are sensible to different parameters, such as strain or temperature, for example. The optical response of the sensor consists on the shift of the resonant wavelength of the coupling. In the case of singlemode fibers, the coupli...
In this work, it is demonstrated numerically that an asymmetric Moiré fiber grating operated in reflection can provide the required spectral response to implement an all-optical fractional differentiator. In our case, the accumulated phase shift is not associated with a point phase shift, as when working with fiber Bragg gratings and long-period gr...
In this work, we compare the operation of a passively modelocked polarization-maintaining emission in two thulium-doped fiber lasers pumped at 1561 nm, with emission at wavelengths of 1.951 μm in one case and 2.07 μm in the other. We obtained a sequence of light pulses at 15.6 MHz, whose temporal width was 81 ps at 1.95 μm, and a sequence of light...
Accurate knowledge of the nonlinear coefficient is extremely important to make reliable predictions about optical pulses propagating along waveguides. Nevertheless, determining this parameter when dispersion and loss are as important as nonlinear effects brings both theoretical and experimental challenges that have not yet been solved. A general me...
Citation: Sánchez, L.A.; Díez, A.; Cruz, J.L.; Andrés, M.V. Recent Advances in Forward Brillouin Scattering: Sensor Applications. Sensors 2023, 23, 318. https:// Abstract: In-fiber opto-mechanics based on forward Brillouin scattering has received increasing attention because it enables sensing the surrounding of the optical fiber. Optical fiber tra...
Tapered optical fibres are well-established devices for different applications, in order to exploit nonlinear effects, manage dispersion, excite azimuthal resonances in microresonators (so-called Whispering Gallery Modes). Also, the micro- or nanofibres guide optical-fields with large evanescent fields. In this talk, we will focus on the combinatio...
Whispering Gallery Mode (WGM) hollow microcavities turn out to be the site of an extremely rich and complex phenomenological scenario when pumped with a continuous-wave laser source. The coexistence of numerous non-linear and optomechanical effects have been reviewed in this paper. In our previous works we have investigated and described non-linear...
Switchable multi-wavelength laser emission from a thulium-doped all-fiber laser is reported by implementing a tapered and a non-tapered multi-modal interference (MMI) filters. The MMI structure relies on a coreless optical fiber spliced in between two single-mode optical fibers. For the non-tapered case, a minimum insertion loss of 12.60 dB is achi...
The nanostructuration of biolayers has become a paradigm for exploiting nanoscopic light-matter phenomena for biosensing, among other biomedical purposes. In this work, we present a photopatterning method to create periodic structures of biomacromolecules based on a local and periodic mild denaturation of protein biolayers mediated by UV-laser irra...
In this paper, we discuss the effective reflection of a fiber Bragg grating and its dependence on laser power when it is used as an output coupler of an ytterbium-doped fiber laser (here the effective reflection is considered to be a part of intracavity laser power reflected by the grating back to the laser cavity). We propose and discuss an experi...
Here we present a self-started passively mode-locked thulium-doped fiber laser with in-band pumping at 1561 nm that fully retains polarization and emits beyond 2 um. We obtained a sequence of light pulses at 13.084 MHz, where the pulse and spectral widths were 94 ps and 70 pm, respectively, at 2069.5 nm. The measured instantaneous angular frequency...
We discuss a method to determine both the group delay and the phase of a given pulse in the Fourier optics domain. The proposal is based on the measurement of two intensity spectra, before and after a known quadratic phase modulation. A simple analytical equation is then used to determine the group delay in one step. If necessary, the spectral phas...
We have developed a passively mode-locked, all-polarization maintaining, low-repetition-rate thulium-doped fiber laser (PM TDFL) emitting at 1951 nm and pumped by an erbium-ytterbium-doped all-fiber laser at 1561 nm. The PM TDFL was developed with a 44.67 m long polarization-maintaining all-fiber resonator Fabry-Perot using a semiconductor saturabl...
A novel method that enables simultaneous and discriminative measurement of strain and temperature using one single optical fiber is presented. The method is based on the properties of transverse acoustic mode resonances (TAMRs) of the optical fiber. In particular, it is based on the different sensitivity to temperature and strain that exhibit the r...
In this work, we present the numerical and experimental investigation of the polarization dynamics in a free birefringence mode-locked fiber laser. The laser includes a double-pass Erbium-doped fiber amplifier and 20-m long bi-twisted fiber at a twist rate of ± 6 turns m−1 to mitigate both, linear and circular birefringence effects. We found ellipt...
We report the activation of optomechanical chaotic oscillations in microbubble resonators (MBRs) through a blue-side excitation of its optical resonances. We confirm the sequence of quasi-periodical oscillation, spectral continuum and aperiodic motion; as well as the transition to chaos without external feedback or modulation of the laser source. I...
A rigorous Surface Impedance (SI) formulation for planar waveguides is presented. This modal technique splits the modal analysis of the waveguide in two steps. First, we obtain the modes characteristic equations as a function of the SI and, second, we need to obtain the surface impedance values using either analytical or numerical methods. We valid...
We report the activation of optomechanical chaotic oscillations and chaos transfer from a strong pump to a very weak probe in microbubble resonators, both signals follow the same route to chaos.
A new technique for the observation of forward Brillouin scattering in the cladding of optical fibers is reported. The method consists on exciting optical whispering gallery modes whose effective indexes are modulated by acoustic resonances.
Simultaneous control of the spectral bands produced by FWM and PMI over a wide wavelength range is reported. Tuning of the PMI/FWM sidebands is achieved by fine-tuning the chromatic dispersion of a microstructured optical fiber.
Transverse acoustic mode resonances enable a high accuracy determination of Poisson’s ratio and elastic properties of optical fibers. An all-optical pump and probe technique is used for efficient excitation and accurate characterization of both, radial and torsional-radial acoustic resonances of optical fibers. Simple and precise algebraic expressi...
The experimental demonstration of a gain-switched pulsed fiber laser with low repetition rate emission in the 2 µm wavelength region is presented. The laser cavity is based on the figure-9 shape, where the gain-switched operation of the laser is obtained by using a double-clad Tm-doped fiber (DCTDF) as gain medium and a commercial pulsed laser diod...
Q-switched mode locking (QML) noise-like pulse (NLP) emission from an all-fiber thulium-doped laser based on the nonlinear polarization rotation effect is reported. The QML emission is obtained in a cavity with net anomalous dispersion in a pump power interval in between the CW laser threshold and the threshold of the NLP regime. Highest-energy QML...
Generation of widely spaced polarization modulation instability (PMI) sidebands in a wide collection of photonic crystal fibers (PCF), including liquid-filled PCFs, is reported. The contribution of chromatic dispersion and birefringence to the net linear phase mismatch of PMI is investigated in all-normal dispersion PCFs and in PCFs with one (or tw...
Electromagnetic whispering gallery modes (WGM) are surface waves guided by the curvature of an interface. Microspheres, microdisks and microcylinders –as for example standard optical fibers– are high quality microresonators for the WGM. In fact, they can be regarded as compact and small ring resonators. Here, we present a comparison between wave pr...
In this paper, we present a brief review of the noise operation mode of fiber lasers. These lasers were studied recently by collaborative group that includes researchers, professors, and Ph.D. students from the Centro de Investigaciones en Optica, A.C. (Leon, Guanajuato, Mexico) and from the Universidad de Valencia (Valencia, Spain). Meanwhile, the...
In this article, a symmetrical nonlinear optical loop mirror (NOLM) exhibiting a polarization-dependent transmission is evaluated to generate optical pulse emission in a figure-eight fiber laser in the soliton and noise-like pulse (NLP) regimes. The NOLM structure relies on a 50:50 fiber coupler, a loop with highly twisted single-mode optical fiber...
In this work we report on the measurement, with record accuracy, of the absolute modal effective refraction index (phase index) of single-mode optical fibers by using Bragg gratings. We also demonstrate a new method to measure the group index of the fibers from the grating’s Bragg wavelength. We present as well the characterization of the thermo-op...
Optical fiber characterization using whispering gallery mode resonances of the fiber itself has been demonstrated to be a powerful technique. In this work, we exploit the thermal sensitivity of whispering gallery mode resonances to characterize the pump-induced temperature increment in holmium doped and holmium-ytterbium codoped optical fibers. The...
In this work, we present the spectral polarization properties of a fiber optic loop mirror (FOLM) which includes a 50/50 coupler and 25-cm long highly birefringent (hi-bi) fiber. The modulation depth of the reflection/trans-mission spectra can be adjusted by twisting the hi-bi fiber at the splices by means of two azimuth rotators (AR). The results...
Discovering nanoscale phenomena to sense biorecognition events introduces new perspectives to exploit nanoscience and nanotechnology for bioanalytical purposes. Here we present Bio Bragg Gratings (BBGs), a novel biosensing approach that consists of diffractive structures of protein bioreceptors patterned on the surface of optical waveguides, and ta...
In the present paper, we show the experimental measurement of the growth of a microbubble created on the tip of a single mode optical fiber, in which zinc nanoparticles were photodeposited on its core by using a single laser source to carry out both the generation of the microbubble by photothermal effect and the monitoring of the microbubble diame...
A novel optical fiber probe has been developed to provide mechanical stability to microbubbles generated in fluids, the tip of the fiber is etched with hydrofluoric acid to pierce a truncated horn that fastens the microbubbles to the fiber tip and prevents misalignment or detachment caused by convection currents, vibrations or shocks in the liquid....
We report on the experimental analysis of parametrical optomechanical oscillations and photo-acoustical applications such as flow cytometers in hollow phoxonic whispering gallery mode resonators. Both phenomena can be enchanced or suppressed and showed chaotic behavior.
Geometrical and material — i.e., external and internal — scaling symmetries are exploited to obtain approximated analytical expressions for the mode effective index, group index, and chromatic dispersion of a scaled fiber. Our results include material refractive index scaling that changes the numerical aperture. First, the analytical expressions ar...
In this work, we review our recent investigations on the behavior of a polarization-maintaining passively mode-locked ytterbium-doped laser in two different cavity configurations, namely: fiber-ring (FR) and Fabry-Perot (FP). Opposed to standard configurations that rely on the use of strong filtering within the cavity by including an ad hoc compone...