Muyin Wang

Muyin Wang
University of Washington | UW · Cooperative Institute for Climate Ocean Ecosystem Studies

Doctor of Philosophy

About

142
Publications
67,547
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
10,160
Citations
Additional affiliations
July 2014 - present
University of Washington
Position
  • Researcher

Publications

Publications (142)
Article
It is widely accepted that Arctic Amplification (AA) - enhanced Arctic warming relative to global warming - will increasingly moderate cold-air outbreaks to the midlatitudes. Yet, some recent studies also argue that AA over the last three decades to the rest of the present century may potentially contribute to more frequent severe winter weather in...
Article
Full-text available
Arctic observations in 2023 provided clear evidence of rapid and pronounced climate and environmental change, shaped by past and ongoing human activities that release greenhouse gases into the atmosphere and push the broader Earth system into uncharted territory. This chapter provides a snapshot of 2023 and summarizes decades-long trends observed a...
Article
Full-text available
Plain Language Summary When comparing model simulations of Earth's recent warming to real‐world observations, differences may arise from several factors. Two important factors are the model errors in the simulated response to increased greenhouse gases, and natural fluctuations within the climate system that produced discrepancies between observati...
Article
Full-text available
An accurate simulation and projection of future warming are needed for a proper policy response to expected climate change. We examine the simulations of the mean global and Arctic surface air temperatures by the CMIP6 (Climate Models Intercomparison Project phase 6) climate models. Most models overestimate the observed mean global warming. Only se...
Preprint
Diagnosing the role of internal variability over recent decades is critically important for both model validation and projections of future warming. Recent research suggests that for 1980-2022 internal variability manifested as Global Cooling and Arctic Warming (i-GCAW), leading to enhanced Arctic Amplification (AA) and suppressed global warming ov...
Article
Full-text available
Since 1980, the Arctic surface has warmed four times faster than the global mean. Enhanced Arctic warming relative to the global average warming is referred to as Arctic Amplification (AA). While AA is a robust feature in climate change simulations, models rarely reproduce the observed magnitude of AA, leading to concerns that models may not accura...
Article
Full-text available
Arctic Amplification (AA) in the first decade of the 21st century has reached values between 4 and 5, with a subsequent decrease to current values of about 3.6, while the value was from 2 to 3 during the twentieth century. The ensemble mean of the CMIP6 models has difficulty in reproducing the recently observed high values of the AA. In this report...
Article
Full-text available
Rapid warming due to human-caused climate change is reshaping the Arctic, enhanced by physical processes that cause the Arctic to warm more quickly than the global average, collectively called Arctic amplification. Observations over the past 40+ years show a transition to a wetter Arctic, with seasonal shifts and widespread disturbances influencing...
Article
Full-text available
The Arctic is warming twice as fast as the global mean, making Arctic research essential for understanding the global climate system. For 50 years, researchers at the NOAA Pacific Marine Environmental Laboratory have sought to detect and understand the numerous changes the Arctic is undergoing, the Arctic’s connections with the Earth system, and th...
Article
By 2100 thermal habitat decreased by 88% for all but the most eurythermic taxa. Thermal habitat contracted to the north for all but the most eurythermic taxa. Cold-water, stenothermic taxa (“losers”) had virtually no thermal habitat by 2100. Losers were species that are prey for marine mammals and commercial flatfish. 92% of taxa were losers, indic...
Article
Our goal was to examine how the epibenthic invertebrate community in the Pacific Arctic Region might be affected by continued increases in ocean temperatures. We used epibenthic invertebrate catch and bottom temperature data collected on groundfish assessment and ecosystem surveys in the Bering and Chukchi seas from 2009 to 2018 to determine the “p...
Article
Full-text available
In this study we assessed the representation of the sea surface salinity (SSS) and liquid freshwater content (LFWC) of the Arctic Ocean in the historical simulation of 31 CMIP6 models with comparison to 39 Coupled Model Intercomparison Project phase 5 (CMIP5) models, and investigated the projected changes in Arctic liquid and solid freshwater conte...
Article
Full-text available
While the annual mean Arctic Amplification (AA) index varied between two and three during the 1970–2000 period, it reached values exceeding four during the first two decades of the 21st century. The AA did not change in a continuous fashion but rather in two sharp increases around 1986 and 1999. During those steps the mean global surface air temper...
Article
Full-text available
The jet stream over North America alternates between a more zonal direction and a wavy pattern (a more meridional flow) associated with persistent blocking patterns. To better understand these important patterns, we base our study on the frequency of winter (November–February) events during 1981–2020, based on four circulation regime types: blockin...
Article
Full-text available
Observations from uncrewed surface vehicles (saildrones) in the Bering, Chukchi, and Beaufort Seas during June – September 2019 were used to evaluate initial conditions and forecasts with lead times up to 10 days produced by eight operational numerical weather prediction centers. Prediction error behaviors in pressure and wind are found to be diffe...
Article
Three striking and impactful extreme cold weather events successively occurred across East Asia and North America during the mid-winter of 2020/21. These events open a new window to detect possible underlying physical processes. The analysis here indicates that the occurrences of the three events resulted from integrated effects of a concurrence of...
Article
Full-text available
Efforts to manage living marine resources (LMRs) under climate change need projections of future ocean conditions, yet most global climate models (GCMs) poorly represent critical coastal habitats. GCM utility for LMR applications will increase with higher spatial resolution but obstacles including computational and data storage costs, obstinate reg...
Article
Full-text available
More high-quality, in situ observations of essential marine variables are needed over the seasonal ice zone to better understand Arctic (or Antarctic) weather, climate, and ecosystems. To better assess the potential for arrays of uncrewed surface vehicles (USVs) to provide such observations, five wind-driven and solar-powered saildrones were sailed...
Article
Full-text available
Pronounced changes in the Arctic environment add a new potential driver of anomalous weather patterns in midlatitudes that affect billions of people. Recent studies of these Arctic/midlatitude weather linkages, however, state inconsistent conclusions. A source of uncertainty arises from the chaotic nature of the atmosphere. Thermodynamic forcing by...
Article
Full-text available
Understanding the atmospheric general circulation is, in a way, analogous to cleaning a large home [...]
Article
Full-text available
Siberia saw a heat wave of extreme monthly temperatures of +6°C anomalies from January through May 2020, culminating with near daily temperature records at the Arctic station of Verhojansk in mid‐June. This was a major Arctic event. The proximate cause for the warm extremes from January through April was the record strength of the stratospheric pol...
Article
Full-text available
Arctic sea ice experiences a dramatic annual cycle, and seasonal ice loss and growth can be characterized by various metrics: melt onset, breakup, opening, freeze onset, freeze-up, and closing. By evaluating a range of seasonal sea ice metrics, CMIP6 sea ice simulations can be evaluated in more detail than by using traditional metrics alone, such a...
Article
Full-text available
Public attention has recently focused on high-impact extreme weather events in midlatitudes that originate in the sub-Arctic. We investigate movements of the stratospheric polar vortex (SPV) and related changes in lower atmospheric circulation during the February-March 2018 “Beast from the East” cold winter event that dramatically affected much of...
Article
The rapid decrease in Arctic sea ice cover and thickness not only has a linkage with extreme weather in the mid-latitudes but also brings more opportunities for Arctic shipping routes and polar resource exploration, both of which motivate us to further understand causes of sea-ice variations and to obtain more accurate estimates of sea-ice cover in...
Preprint
Full-text available
Abstract. Arctic sea ice experiences a dramatic annual cycle, and seasonal ice loss and growth can be characterized by various metrics: melt onset, break-up, opening, freeze onset, freeze-up and closing. By evaluating a range of seasonal sea ice metrics, CMIP6 sea ice simulations can be evaluated in more detail than by using traditional metrics alo...
Article
Full-text available
The prospect of an ice-free Arctic in our near future due to the rapid and accelerated Arctic sea ice decline has brought about the urgent need for reliable projections of the first ice-free Arctic summer year (FIASY). Together with up-to-date observations and characterizations of Arctic ice state, they are essential to business strategic planning,...
Article
Full-text available
Over the past decade, the Arctic has warmed by 0.75°C, far outpacing the global average, while Antarctic temperatures have remained comparatively stable. As Earth approaches 2°C warming, the Arctic and Antarctic may reach 4°C and 2°C mean annual warming, and 7°C and 3°C winter warming, respectively. Expected consequences of increased Arctic warming...
Article
Full-text available
This article provides a synthesis of the latest observational trends and projections for the future of the Arctic. First, the Arctic is already changing rapidly as a result of climate change. Contemporary warm Arctic temperatures and large sea ice deficits (75% volume loss) demonstrate climate states outside of previous experience. Modeled changes...
Article
Full-text available
Winter weather in the subarctic and lower latitudes can be influenced by the repositioning of the polar vortex away from being centred near the North Pole, extending over regional locations of subarctic continents. One example was the “Beast from the East” event in Eurasia in March 2018, which brought snow to much of Europe. We are interested in ex...
Article
Full-text available
One observed fingerprint of Pacific Arctic environmental change, induced by climate warming and amplified local feedbacks, is a shift toward earlier onset of sea ice melt. Shorter freeze periods impact the melt season energy balance with cascading effects on ecological productivity and human presence in the region. Through this study, a non-linear...
Article
Full-text available
A regional biophysical model is used to relate projected large-scale changes in atmospheric and oceanic conditions from CMIP5 to the finer-scale changes in the physical and biological structure of the Bering Sea, from the present through the end of the twenty-first century. A multivariate statistical method is used to analyse the results of a small...
Article
Full-text available
Key observational indicators of climate change in the Arctic, most spanning a 47 year period (1971–2017) demonstrate fundamental changes among nine key elements of the Arctic system. We find that, coherent with increasing air temperature, there is an intensification of the hydrological cycle, evident from increases in humidity, precipitation, river...
Article
Full-text available
We investigate climatic changes that have occurred in the Arctic over the period 1982–2017 through examination of ten observational cryospheric time series, and develop a new quantitative composite Arctic climate change index (ACCI). Using Factor Analysis highlights joint trends of winter temperature increases and sea ice loss, tundra shifts, and s...
Article
Full-text available
The diminishing Arctic sea ice pack has been widely studied, but previous research has mostly focused on time-mean changes in sea ice rather than on short-term variations that also have important physical and societal consequences. In this study we test the hypothesis that future interannual Arctic sea ice area variability will increase by utilizin...
Article
Full-text available
Although standard statistical methods and climate models can simulate and predict sea-ice changes well, it is still very hard to distinguish some direct and robust factors associated with sea-ice changes from its internal variability and other noises. Here, with long-term observations (38 years from 1980 to 2017), we apply the causal effect network...
Article
Full-text available
Given ongoing large changes in the Arctic, high-latitude forcing is a new potential driver for sub-seasonal weather impacts at midlatitudes in coming decades. Such linkage research, however, is controversial. Some metrics find supporting evidence and others report no robust correlations. Model studies reach different conclusions. Case studies from...
Article
Projections of Arctic sea ice through the end of the twenty-first century indicate the likelihood of a strong reduction in ice area and thickness in all seasons, leading to a substantial thermodynamic influence on the overlying atmosphere. This is likely to have an effect on winds over the Arctic basin because of changes in atmospheric stability, s...
Article
Full-text available
The diminishing Arctic sea ice pack has been widely studied, but mostly focused on time-mean changes in sea ice rather than on short-term variations that also have important physical and societal consequences. In this study we test the hypothesis that future interannual Arctic sea ice area variability will increase by utilizing a set of 40 independ...
Article
Full-text available
There is intense public interest in whether major Arctic changes can and will impact midlatitude weather such as cold air outbreaks on the central and east side of continents. Although there is progress in linkage research for eastern Asia, a clear gap is conformation for North America. We show two stationary temperature/geopotential height pattern...
Article
Full-text available
Alaskan Arctic waters have participated in hemispheric-wide Arctic warming over the last two decades at over two times the rate of global warming. During 2008–13, this relative warming occurred only north of the Bering Strait and the atmospheric Arctic front that forms a north–south thermal barrier. This front separates the southeastern Bering Sea...
Article
With the sea-ice cover in the Arctic fast declining, changes to the timing of sea-ice break-up and freeze-up is an urgent economic, social, and scientific concern. Based on daily sea-ice concentration data we assess three variables: the dates of sea-ice break-up and freeze-up, and the annual sea-ice duration in the Pacific Arctic. The simulation re...
Article
Full-text available
Far-field temperature and geopotential height fields associated with eastern North American early winter (DEC-JAN) extreme cold events are documented since 1950. Based on 19 cases of monthly extreme cold events, two large-scale patterns emerge. First, a strong Alaskan Ridge (AR) can develop with higher 700 hPa geopotential heights and positive temp...
Article
Full-text available
The impacts of model physics and initial sea ice thickness on seasonal forecasts of surface energy budget and air temperature in the Arctic during summer were investigated based on Climate Forecast System, version 2 (CFSv2), simulations. The model physics changes include the enabling of a marine stratus cloud scheme and the removal of the artificia...
Article
Full-text available
We combined field data and the output from a climate-to-fish coupled biophysical model to calculate weekly climatologies and 1971-2009 time series of physical and biological drivers for 16 distinct regions of the eastern Bering Sea shelf and slope. We focus on spatial trends and physical-biological interactions as a framework to compare model outpu...
Article
Full-text available
There were extensive regions of Arctic temperature extremes in January and February 2016 that continued into April. For January, the Arctic-wide averaged temperature anomaly was 2.0 °C above the previous record of 3.0 °C based on four Reanalysis products. Midlatitude atmospheric circulation played a major role in producing such extreme temperatures...
Article
Full-text available
Three global climate simulations from the Intergovernmental Panel on Climate Change Fourth Assessment (AR4) were used as physical forcing to drive a regional model that includes both physical and biological elements of the Bering Sea. Although each downscaled projection indicates a warming of 1-2. °C between 2010 and 2040 on the Bering Sea shelf, t...
Article
Full-text available
Global warming and continued reduction in sea ice cover will result in longer open water duration in the Arctic, which is important for the shipping industry, marine mammals, and other components of the regional ecosystem. In this study we assess the length of open water duration in the Alaskan Arctic over the next few decades using the set of late...
Chapter
The meteorology of the Pacifi c Arctic (the Bering Sea through the Chukchi and southern Beaufort Seas) represents the transition zone between the moist and relatively warm maritime air mass of the Pacifi c Ocean to the cold and relatively dry air mass of the Arctic. The annual cycle is the dominant feature shifting from near total darkness with ext...
Article
Full-text available
The climate in the Arctic is changing faster than in mid-latitudes. This is shown by increased temperatures, loss of summer sea ice, earlier snow melt, impacts on ecosystems, and increased economic access. Arctic sea ice volume has decreased by 75 % since the 1980s. Long-lasting global anthropogenic forcing from CO2 has increased over the previous...
Article
Full-text available
Coupled physical/biological models can be used to downscale global climate change to the ecology of subarctic regions, and to explore the bottom-up and top-down effects of that change on the spatial structure of subarctic ecosystems—for example, the relative dominance of large vs. small zooplankton in relation to ice cover. Here we utilize a multiv...
Article
Ito, S-I., Okunishi, T., Kishi, M. J., and Wang, M. 2013. Modelling ecological responses of Pacific saury (Cololabis saira) to future climate change and its uncertainty. – ICES Journal of Marine Science, 70: 980–990. An ecosystem-based bioenergetics model was used to investigate the responses of Pacific saury (Cololabis saira) to global warming. Th...
Article
observed rapid loss of thick multiyear sea ice over the last 7 years and the September 2012 Arctic sea ice extent reduction of 49% relative to the 1979-2000 climatology are inconsistent with projections of a nearly sea ice-free summer Arctic from model estimates of 2070 and beyond made just a few years ago. Three recent approaches to predictions in...
Article
While a shift to a more meridional atmospheric climate pattern in the last decade contributed to recent reductions in summer Arctic sea ice extent, the increase in late summer open water area is, in turn, directly contributing to a modification of large scale atmospheric wind patterns. An anomalous meridional wind pattern with high sea level pressu...
Article
Full-text available
The last six years (2007-2012) show a persistent change in early summer Arctic wind patterns relative to previous decades. The persistent pattern, which has been previously recognized as the Arctic Dipole (AD), is characterized by relatively low sea-level pressure over the Siberian Arctic with high pressure over the Beaufort Sea, extending across n...
Article
Full-text available
Three years ago we proposed that the summer Arctic would be nearly sea ice free by the 2030s; “nearly” is interpreted as sea ice extent less than 1.0 million km2. We consider this estimate to be still valid based on projections of updated climate models (CMIP5) and observational data. Similar to previous models (CMIP3), CMIP5 still shows a wide spr...