A hybrid particle swarm optimization based fuzzy expert system for the diagnosis of coronary artery disease

S. Muthukaruppan a,*, M.J. Er b

a School of Mechanical and Aerospace Engineering, Nanyang Technological University, N3, 50 Nanyang Avenue, Singapore 639798, Singapore
b School of Electrical and Electronic Engineering, Nanyang Technological University, S1, 50 Nanyang Avenue, Singapore 639798, Singapore

ARTICLE INFO

Keywords:
Particle swarm optimization
Decision tree
Coronary artery disease
If–then rules
Membership function
Expert system

ABSTRACT

This paper presents a particle swarm optimization (PSO)-based fuzzy expert system for the diagnosis of coronary artery disease (CAD). The designed system is based on the Cleveland and Hungarian Heart Disease datasets. Since the datasets consist of many input attributes, decision tree (DT) was used to unravel the attributes that contribute towards the diagnosis. The output of the DT was converted into crisp if–then rules and then transformed into fuzzy rule base. PSO was employed to tune the fuzzy membership functions (MFs). Having applied the optimized MFs, the generated fuzzy expert system has yielded 93.27% classification accuracy. The major advantage of this approach is the ability to interpret the decisions made from the created fuzzy expert system, when compared with other approaches.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Cardiovascular diseases are a group of disorders of the heart and its blood vessels, including coronary artery disease (CAD), cerebrovascular disease, peripheral arterial disease, rheumatic heart disease, congenital heart disease, pulmonary embolism. Among those mentioned above, CAD is the most common type of cardiovascular disease and accounts for over 600,000 deaths each year in the European Union (Wilson et al., 1998). It is the largest killer disease of American males and females, which caused about one of every six deaths in the United States (US) in 2006. The estimated direct and indirect cost of CAD in the US in 2010 is $177.1 billion (American Heart Association, 2010). In the United Kingdom, CAD caused more than 120,000 deaths in 2001 (British Heart Foundation, 2003). Worldwide, coronary artery disease is becoming pandemic as developing countries experience the epidemiological transition from famine to degenerative disease. Moreover, CAD tends to affect the younger population and thus could negatively affect the productivity and workforce (Omran, 1979). The World Health Organization (WHO) estimates 11.1 million deaths from CAD in 2020.

In CAD, changes in one or more of the coronary arteries cause inadequate blood flow to the heart, which results in the development of atherosclerotic plaques within the walls of coronary arteries, narrowing of the lumen of the coronary artery, and subsequently, occlusion, and thus leading to myocardial infarction (MI) or sudden death. The identification of cardiovascular risk factors, preventive measures, its diagnosis and early treatment are of great importance to lessen the cardiac morbidity and mortality.

Several computer aided diagnosis methodologies have been proposed in the literature for the diagnosis of CAD. More specifically, the use of approaches like artificial neural networks (Patil & Kumaraswamy, 2009; Resul, Ibrahim, & Abdulkadir, 2009; Ture, Kurt, & Kurum, 2008), Naïve Bayes (Tu et al., 2009), support vector machines (Andreeva, 2006), decision trees (Palaniappan and Awang, 2008) have been previously reported.

Even though these approaches produce good classification accuracy, the interpretation of results is hard. They are popularly known as “Black Box” method since they focus only on the classification accuracy. Although rule based classifier systems, reported in Tsipouras et al. (2008) and Adeli and Neshat (2010) produces interpretable rules, they lack the robustness in the missing data.

Expert systems are a branch of artificial intelligence which solve the problems at the level of a human expert making use of specialized knowledge represented by a set of rules. The fuzziness and imprecision, which is inherited in the biomedical problems can be treated incorporating fuzzy logic. A fuzzy expert system (FES) is simply an expert system which include set of fuzzy rules and then rules of the FES, experts find it difficult to define the complete rule

*Corresponding author. Tel.: +65 93519126. E-mail address: muthukar1@e.ntu.edu.sg (S. Muthukaruppan).

0957-4174/$ - see front matter © 2012 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.eswa.2012.04.036
This paper proposes a new particle swarm optimization (PSO)-based fuzzy expert system that involves four stages. In the first stage, the missing data are imputed using nearest neighbour hot deck imputation, while in the second stage, decision tree induction and set of rules is extracted from it. In the third stage, the crisp rules are transformed into fuzzy rule base using fuzzy membership functions. Finally, in the fourth stage, the fuzzy membership functions are tuned by PSO. The fuzzy model with the optimized parameters results in the final FES. Since the generated FES is based on the set of rules, they are able to provide interpretations for their decisions. The use of decision tree in the first stage has the advantage of discovering new knowledge and is considered to be a very effective technique for the classification tasks (Pedrycz & Sosnowski, 2005; Quinlan, 1996). Furthermore, the development of the FES from the set of rules and tuning of the MFs, improve the accuracy. The incorporation of fuzzy logic deals with the uncertain situation and fuzziness which are inherent in biomedical classification problems (Tsoukalas and Uhrig, 1997).

The paper is organized as follows. Section 2 briefly introduces the datasets employed, decision tree algorithm. In Section 3, fuzzy inference system and optimization of the fuzzy parameters are presented. Details of the simulations conducted and the results are reported in Section 4. Section 6 discusses about the concluding remarks.

2. Decision tree algorithm

2.1. Datasets

The system is designed based on the Hungarian Institute of Cardiology, Budapest and the Cleveland Clinic Foundation datasets (Newman, Hettich, Blake, & Merz, 1998). These datasets are the part of collection of databases at the University of California, Irvine. It provides 597 records in total. The database contains 76 attributes. However, all the published experiments refer to 13 of them as inputs and 1 attribute as a result. The input variables are age, blood pressure, serum cholesterol, maximum heart rate, sex, chest pain type, fasting blood sugar, resting ECG, exercise induced angina, old peak, slope, fluoroscopy and thallium scan. The output variable is the angiographic status.

2.2. Missing data imputation

Many real world databases contain missing values arising due to many reasons such as data entry procedures, incorrect measurements and malfunction of the equipments or essential information has not been collected from the sources. With this incompleteness, it is difficult to generate useful knowledge from data, since many machine learning algorithms can only work with complete data. The simplest way of dealing with this missing data is to discard the record that contains missing values. This method is applicable only when the data contain relatively small number of missing values. However, when a large proportion of missing values is present, this approach may lead to wrong conclusions (Brown & Kros, 2003).

A possible approach to deal with this problem is to carry out data imputation that is defined as the process in which the missing data are estimated by appropriately computed values. One advantage of data imputation is that the missing value treatment is independent of the machine learning algorithm employed. This enables the user to select the most appropriate data imputation method for their application. Different approaches have been discussed in Grzymala-Busse and Hu (2001) and Su et al. (2008).

In this paper, nearest neighbour hot deck imputation has been employed owing to its superiority over other methods (Jonsson and Wohlin, 2004; Yu, 2005; Zhang et al., 2005). In this method, for each record that contains the missing values, the most similar record is found from the same data set and the missing values are imputed from that record. If the most similar record also contains the missing value for the same attribute, it is neglected, and the next closest record is found. This process is repeated until all the missing values of the entire database are imputed. There are several ways to find the most similar record to the record with the missing values (Rubin, 1987).

In this research, Heterogeneous Euclidean Overlap Metric (HEOM) distance function is presented, which uses the overlap method for categorical attributes and a normalized euclidean distance for numeric attributes (Farhangfar et al., 2004). This HEOM distance eliminates the effects of arbitrary ordering of the categorical attributes (Jerez et al., 2010). The HEOM distance between two input vectors x and y is given as follows:

\[
\text{HEOM}(x, y) = \sqrt{\sum_{a=1}^{m} d_a(x, y, a)^2}
\]

where \(d_a(x, y)\) is the distance between two values x and y of a given attribute ‘a’ and is given as follows:

\[
d_a(x, y) = \begin{cases}
1, & \text{if } x \text{ or } y \text{ is unknown}, \\
\text{overlap}(x, y), & \text{if } a \text{ is nominal}. \\
\text{nn}_a(x, y), & \text{else}
\end{cases}
\]

The overlap function assigns a value of 0 if both the categorical values are the same; otherwise the value is 1. The range normalized difference function is given as follows:

\[
\text{nn}_a(x, y) = \frac{|x - y|}{(\text{max}_a - \text{min}_a)}
\]

where \(\text{max}_a\) and \(\text{min}_a\) are the observed maximum and minimum values in the attribute a. The above definition for \(d_a\) returns a value in the range of 0–1 whether the input is categorical or numeric (Wilson & Martinez, 1997).

2.3. Decision tree induction

The decision tree algorithm is one of the most widely used data mining algorithms. It is an induction learning algorithm based on the training data, which has the advantages of simplicity, transparency and ability to extract decision rules. A decision tree is a classifier that can be expressed as a recursive partition of the instance space (Rokach & Maimon, 2008; Weihong et al., 2006). The learning system of a typical decision tree adopts a top–down strategy which ensures a simple tree but not necessarily the simplest tree will be found. The decision tree consists of nodes having only one incoming edge. A node with outgoing branches is referred to as a “test” node while all other nodes are called “terminal nodes”. Each test node splits the instance space into two or more subspaces according to the attribute values. Each terminal node is assigned to one class that represents the most appropriate target value. Every path to the terminal node in the decision tree represents a classification rule. The key to construct an efficient decision tree is to select good splitting criteria. Gini diversity index is chosen as splitting criterion. The Gini impurity measure \(d(t)\) at node t is calculated as follows:

\[
d(t) = 1 - S
\]

where \(S\) (the impurity criteria) = \(\sum p^2(j|t)\), for \(j = 0, 1, 2, \ldots, k\). \(k\) denotes the number of classes existing in that node and \(p(j|t)\) corresponds to the relative frequency of class \(j\) in node \(t\). The Gini diversity index of a node attains its maximum value when all the classes in the node occur with equal probability and is minimal.
when the node contains only one class (Breiman et al., 1984; Sun & Clark, 2009).

Generally speaking, a decision tree that is not complex is preferable since tree complexity has a serious effect on its accuracy. Tree complexity is controlled by the employed pruning method. Decision-tree pruning is the main task which simplifies the decision tree by discarding one or more parts of the tree (sub trees) and replacing them with the terminal nodes. The reduced error pruning (REP) method has been implemented in this study. This method, proposed by Quinlan (1987) is a conceptually simple and understandable method in decision tree pruning. For every sub-tree \(T \) with no terminal nodes in the original decision tree, the change in the misclassification error over the test set is examined. Misclassification errors would occur if this sub-tree is replaced by the most frequent class. If the error rate of the new tree would be equal to or smaller than that of the original decision tree, the \(T \) is replaced by that most frequent class. This process continues until any extra pruning would drastically decrease the accuracy. The main advantage of this method is its linear computational complexity since each node in the tree is visited only once to determine the opportunity of pruning it (Patil et al., 2010).

The problem with REP is its bias towards over pruning when the test set is much smaller than the training set but becomes less appropriate when the number of cases in the test set increases. The performance of REP is found to be better in terms of accuracy and size when compared with other methods (Esposito et al., 1997).

The impact of REP on the accuracy of the decision tree is illustrated in Fig. 1. When pruning begins, the tree is at its maximum size and lowest accuracy over the test data. As pruning proceeds, the number of nodes is reduced and accuracy over the test data increases.

The crisp set of rules from the decision tree is shown in Fig. 2.

3. Fuzzy inference system

3.1. Development of a fuzzy model

A fuzzy model is based on three basic aspects: the fuzzification process, fuzzy inference system (FIS) and defuzzification process. Different combinations of the realization of the aforementioned

![Fig. 1. Impact of reduced error pruning on accuracy.](image1)

![Fig. 2. Indicative crisp rules.](image2)

<table>
<thead>
<tr>
<th>Rule</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IF (T.S > 4.5 and Slope ≤ 1.5 and CP > 3.5 and Chol ≤ 240.5 and F.S ≤ 0.5)</td>
<td>THEN normal</td>
</tr>
<tr>
<td>IF (T.S > 4.5 and Slope ≤ 1.5 and CP > 3.5 and Chol ≤ 240.5 and F.S > 0.5)</td>
<td>THEN CAD</td>
</tr>
<tr>
<td>IF (T.S > 4.5 and Slope > 1.5 and CP ≤ 3.5 and ECG ≤ 1.5 and HR ≤ 188)</td>
<td>THEN CAD</td>
</tr>
<tr>
<td>IF (T.S > 4.5 and Slope > 1.5 and CP ≤ 3.5 and ECG ≤ 1.5 and HR > 188)</td>
<td>THEN normal</td>
</tr>
<tr>
<td>IF (T.S > 4.5 and Slope > 1.5 and CP ≤ 3.5 and ECG > 1.5 and F.S ≤ 0.5)</td>
<td>THEN normal</td>
</tr>
<tr>
<td>IF (T.S > 4.5 and Slope > 1.5 and CP ≤ 3.5 and ECG > 1.5 and F.S > 0.5)</td>
<td>THEN CAD</td>
</tr>
<tr>
<td>IF (T.S > 4.5 and Slope > 1.5 and CP ≤ 3.5 and BP ≤ 182 and O.P ≤ 2.4)</td>
<td>THEN normal</td>
</tr>
<tr>
<td>IF (T.S > 4.5 and Slope > 1.5 and CP ≤ 3.5 and BP ≤ 182 and O.P > 2.4)</td>
<td>THEN CAD</td>
</tr>
<tr>
<td>IF (T.S > 4.5 and Slope > 1.5 and CP > 3.5 and Chol > 240.5)</td>
<td>THEN CAD</td>
</tr>
<tr>
<td>IF (T.S > 4.5 and Slope > 1.5 and CP > 3.5 and BP > 182)</td>
<td>THEN CAD</td>
</tr>
<tr>
<td>IF (T.S > 4.5 and Slope > 1.5 and CP > 3.5)</td>
<td>THEN CAD</td>
</tr>
<tr>
<td>IF (T.S ≤ 4.5 and F.S > 0.5 and C.P ≤ 3.5)</td>
<td>THEN normal</td>
</tr>
<tr>
<td>IF (T.S ≤ 4.5 and F.S > 0.5 and C.P > 3.5)</td>
<td>THEN `CAD</td>
</tr>
<tr>
<td>IF (T.S ≤ 4.5 and F.S ≤ 0.5)</td>
<td>THEN normal</td>
</tr>
</tbody>
</table>

T.S = Thallium Scan, CP = Chest Pain type, BP = Blood Pressure, O.P = Old Peak, HR = Heart Rate, F.S = Fluoroscopy, ECG = Resting ECG, Chol = Serum Cholesterol
The fuzzification process, the crisp set of rules is transformed into components of the proposed fuzzy expert system.

The fuzzy rules and (4) The parameters in (2) and (3)

For the defuzzification process, center of gravity (COG) is employed, which is the most commonly used and capable of producing very accurate results (Shi et al., 1999).

As mentioned above, the important section of the fuzzy model is the fuzzy membership functions of each attribute. For this fuzzy model, there are 13 input variables and one output variable. They are given as follows.

Age: This input variable has been divided into 4 fuzzy sets namely “Young”, “Middle”, “Old” and “Very old”. Membership functions of these fuzzy sets are triangular. These fuzzy sets are shown in Table 1.

Blood pressure: This input variable is divided into four fuzzy sets. They are “Low”, “Medium”, “High” and “Very high”. Membership functions of these fuzzy sets are triangular. They are shown in Table 2.

Serum cholesterol: This input variable has four fuzzy sets (Low, Medium, High and Very high). Membership functions of these fuzzy sets are triangular. They are shown in Table 3.

Maximum heart rate: In this field, there are three fuzzy sets (Low, Medium and High). They are triangular membership functions. In Table 4, it has been shown.

Sex: This input field has two values (0 and 1) which correspond to female and male respectively.

Chest pain type: This input field supports four chest pain types. Each chest pain type is a fuzzy set. In this field, fuzzy sets do not have overlap. Chest Pain types with their values have been shown below.

- 1 = Typical Angina
- 2 = Atypical Angina
- 3 = Non-anginal pain
- 4 = Asymptomatic

Fasting blood sugar: This input field has two values (1 and 0) which correspond to the amount of blood sugar higher than 120 and lesser than 120 respectively.

Resting ECG: In this field, there are three values (0, 1 and 2) which correspond to normal, ST-T abnormality and left ventricular hypertrophy.

Exercise Induced Angina: This input field has just two values (0 and 1). When the exercise induced angina is present, it corresponds to 1. Otherwise, it corresponds to 0.

Old Peak: This input field has 2 fuzzy sets (low and high). These fuzzy sets have been shown in Table 5 with their ranges.

Fluoroscopy: This input field has four values (0, 1, 2 and 3) which correspond to the number of blood vessels coloured by fluoroscopy.
be the leader and each particle keeps track of its coordinates in the search space. This fitness value is stored and is called as pbest (personal best). Another “best” value that is tracked by the swarm is the best value, obtained so far by any particle in the neighbourhoods of the particle (local best lbest). When a particle takes all the particles in the populations as its topological neighbours, the best value is gbest. The values of pbest and gbest are updated for every time instant influences the interactions between the particles and the search process (Li and Engelbrecht, 2007; Paquet and Engelbrecht, 2003).

For each fuzzy membership function, there are three parameters as shown in (Fig. 4): C (centre), L (left) and R (right) corresponds to the original membership function, where C, L’ and R’ refers to the centre, left and right of the adjusted membership function.

For the adjustment of membership functions the following equations are defined:

\[
C' = (C + k_i) - w_i
\]

\[
L' = (L + k_i) - w_i
\]

\[
R' = (R + k_i) - w_i
\]

Being \(k_i\) and \(w_i\) adjustment coefficients, \(k_i\) makes each membership function move the membership function left or right with no distortion in the form. The membership function shrinks or expands through the parameter \(w_i\). These parameters take any integer either positive or negative value. PSO with inertia weight will be used to find the optimum values for \(k_i\) and \(w_i\) for the membership functions.

Table 6 shows the PSO parameter set for tuning the fuzzy membership functions.

The membership functions of the attributes such as age, blood pressure, maximum heart rate, old peak and serum cholesterol have been shown in Fig. 5.

4. Results and discussion

After tuning the defined MFs and generating the fuzzy rule base, the fuzzy toolbox available in MATLAB 7 was used for building FIS. Rule viewer of the generated FIS is shown in Fig. 6.

The rules were obtained from a training data set of 478 instances for which 278 instances were healthy and 200 instances were heart disease condition.

For testing the built fuzzy model a portion of the data (119 instances) called testing data was used. Among the 119 instances for testing, 74 instances were healthy and the remaining 45 instances were heart disease condition. Using the test set, the created FIS was evaluated and its performance was given as confusion matrix (C.M.). Table 7 shows the C.M. for the test set. The entries of the C.M. are given as follows

\[
\text{C.M.} = \begin{pmatrix}
TP & FP \\
FN & TN
\end{pmatrix}
\]

where TP, TN, FP and FN are the number of true positives, true negatives, false positives, and false negatives respectively. TP: disease status predicted as healthy when it actually is healthy. TN: disease status predicted as heart disease when it actually is heart disease. FP: disease status predicted as heart disease when it actually is healthy. FN: disease status predicted as healthy when it actually is heart disease.

Table 5
Classification of old peak.

<table>
<thead>
<tr>
<th>Input field</th>
<th>Range</th>
<th>Fuzzy set</th>
</tr>
</thead>
<tbody>
<tr>
<td>Old peak</td>
<td>0–4.2</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>2.55–7</td>
<td>High</td>
</tr>
</tbody>
</table>

Table 6
PSO parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_1)</td>
<td>0.5</td>
</tr>
<tr>
<td>(C_2)</td>
<td>0.8</td>
</tr>
<tr>
<td>Population size</td>
<td>50</td>
</tr>
<tr>
<td>(W_{\text{min}})</td>
<td>0.1</td>
</tr>
<tr>
<td>(W_{\text{max}})</td>
<td>0.9</td>
</tr>
<tr>
<td>Maximum generation</td>
<td>200</td>
</tr>
</tbody>
</table>

Fig. 4. Fuzzy membership parameters.
status predicted as heart disease when it actually is heart disease condition. FP: disease status predicted as healthy when it actually is heart disease condition. FN: disease status predicted as heart disease condition when it actually is healthy.

The number of correctly classified instances is shown in the diagonal elements in the C.M. In the first row, the first element shows the number of instances belonging to healthy and classified by FIS as healthy condition. The second element in the second row shows the instances belonging to heart disease and classified by FIS as heart disease condition. Sensitivity, specificity and accuracy based on the C.M. is given as follows:

\[
\text{Sensitivity} = \frac{TP}{TP + FN} = 93.2\% \\
\text{Specificity} = \frac{TN}{FP + TN} = 93.3\% \\
\text{Accuracy} = \frac{TP + TN}{TP + FN + FP + TN} = 93.3\%
\]

Sensitivity is thus a measure of accuracy of FIS of healthy condition instances, and specificity is a measure of accuracy of FIS of heart disease condition instances. Accuracy is the number of correctly classified instances divided by the total number of classifications.

The proposed particle swarm optimization (PSO)-based fuzzy expert system results have been compared with the similar

Fig. 5. Membership functions of (a) age (b) blood pressure (c) maximum heart rate (d) old peak and (e) serum cholesterol.
Fig. 5 (continued)

(d)

(e)

Fig. 6. Rule viewer for one of the test data.
researches (Table 8) which reveals that the proposed method achieves the higher accuracy.

5. Conclusions

In this study, a fuzzy expert system based on particle swarm optimization (PSO) was developed in Matlab's Simulink in order to classify heart disease and healthy condition. With this proposed approach, 93.27% correct classification on the test set could be achieved. The discovery of the significant attributes and fuzzy rules was achieved using the decision tree algorithm. The importance of discovering significant and relevant fuzzy rules without the aid of the experts opens the possibility of knowledge discovery. The main advantages of the FES as a knowledge acquisition tool are the following: (1) a small number of rules are obtained (2) the obtained rules can be easily interpreted. These results imply promising research areas employing decision trees and fuzzy expert system in several classification problems.

References

Table 7

Confusion matrix for test data.

<table>
<thead>
<tr>
<th>Predicted</th>
<th>Normal</th>
<th>Heart disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>69</td>
<td>3</td>
</tr>
<tr>
<td>Heart disease</td>
<td>5</td>
<td>42</td>
</tr>
</tbody>
</table>

Table 8

Comparison of the proposed system outcome with the similar researches.

<table>
<thead>
<tr>
<th>Author</th>
<th>Method</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cheung, 2001</td>
<td>BNNF</td>
<td>80.96</td>
</tr>
<tr>
<td>Cheung, 2001</td>
<td>C 4.5</td>
<td>81.11</td>
</tr>
<tr>
<td>Cheung, 2001</td>
<td>BNND</td>
<td>81.11</td>
</tr>
<tr>
<td>Cheung, 2001</td>
<td>Naive Bayes</td>
<td>81.48</td>
</tr>
<tr>
<td>Ster & Dobnikar, 1996</td>
<td>Fisher discriminant Analysis</td>
<td>84.2</td>
</tr>
<tr>
<td>Ster & Dobnikar, 1996</td>
<td>LDA</td>
<td>84.5</td>
</tr>
<tr>
<td>Ster & Dobnikar, 1996</td>
<td>Naive Bayes</td>
<td>82.5</td>
</tr>
<tr>
<td>Ster & Dobnikar, 1996</td>
<td></td>
<td>83.4</td>
</tr>
<tr>
<td>Kahramani & Allahverdi, 2008</td>
<td>Hybrid neural network system</td>
<td>86.8</td>
</tr>
<tr>
<td>Polat et al., 2007</td>
<td>Fuzzy-AIRS-Knn based system</td>
<td>87.00</td>
</tr>
<tr>
<td>Resul et al., 2009</td>
<td>Neural network ensembles</td>
<td>89.01</td>
</tr>
<tr>
<td>Jankowski and Kadirkamanathan, 1997</td>
<td>IncNet</td>
<td>90.00</td>
</tr>
<tr>
<td>Senthil Kumar, 2011</td>
<td>ANFIS</td>
<td>91.18</td>
</tr>
<tr>
<td>Senthil Kumar, 2012</td>
<td>Fuzzy resolution mechanism</td>
<td>91.83%</td>
</tr>
<tr>
<td>Proposed system</td>
<td>PSO based fuzzy expert system</td>
<td>93.27%</td>
</tr>
</tbody>
</table>

