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Artificial Neural Network Models of Daily Pan Evaporation
M. Erol Keskin1 and Özlem Terzi2

Abstract: Artificial neural network �ANN� models are proposed as an alternative approach of evaporation estimation for Lake Eğirdir.
This study has three objectives: �1� to develop ANN models to estimate daily pan evaporation from measured meteorological data; �2� to
compare the ANN models to the Penman model; and �3� to evaluate the potential of ANN models. Meteorological data from Lake Eğirdir
consisting of 490 daily records from 2001 to 2002 are used to develop the model for daily pan evaporation estimation. The measured
meteorological variables include daily observations of air and water temperature, sunshine hours, solar radiation, air pressure, relative
humidity, and wind speed. The results of the Penman method and ANN models are compared to pan evaporation values. The comparison
shows that there is better agreement between the ANN estimations and measurements of daily pan evaporation than for other model.
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Introduction

Although there is always continuous exchange of water molecules
to and from the atmosphere, the definition of evaporation is lim-
ited to the net transfer of water molecules to the atmosphere. This
change in state requires an exchange of approximately 600 cal for
each gram of water evaporated. If the temperature of the surface
is to be maintained, these large quantities of heat must be supplied
by radiation and conduction from the overlying air or at the ex-
pense of energy stored below the surface �Linsley et al. 1982�.

In hydrological practice, the estimation can be achieved by
direct or indirect methods. Indirect methods based on meteoro-
logical data have been used to estimate evaporation on a water
body by many researchers. Stewart and Rouse �1976� determined
the summertime evaporation from a shallow lake using energy
budget and equilibrium models. They showed that the actual
evaporation could be determined within 10% over periods of
2 weeks using these models. Warnaka and Pochop �1988� com-
pared six equations—the Kohler–Nordenson–Fox, Kohler–
Parmele, Linacre, Priestley–Taylor, Stewart–Rouse, and deBruin
equations—to estimate evaporation using climatologic data. They
showed that the equations vary greatly in their ability to define the
magnitude and variability of evaporation. On the other hand, de
Bruin �1978� used a simplified model by combining the Priestley–
Taylor and Penman equations to estimate evaporation. He indi-
cated that the model would produce good results for periods of
10 days or more. Andersen and Jobson �1982� estimated evapo-
ration using Morton’s model and the evaporation map by Linsley
et al. �1982� They determined that this map was slightly better to

1Professor, Faculty of Engineering-Architecture, Suleyman Demirel
Univ., Isparta 32260, Turkey. E-mail: merol@mmf.sdu.edu.tr

2Technical Education Faculty, Suleyman Demirel Univ., Isparta
32260, Turkey. E-mail: ogencer@tef.sdu.edu.tr

Note. Discussion open until June 1, 2006. Separate discussions must
be submitted for individual papers. To extend the closing date by one
month, a written request must be filed with the ASCE Managing Editor.
The manuscript for this paper was submitted for review and possible
publication on May 14, 2003; approved on March 1, 2005. This paper is
part of the Journal of Hydrologic Engineering, Vol. 11, No. 1, January 1,

2006. ©ASCE, ISSN 1084-0699/2006/1-65–70/$25.00.

JOURNAL OF HYDR

 J. Hydrol. Eng., 2006
estimate annual lake evaporation in the United States than Mor-
ton’s model. A modified model was used to estimate annual
evaporation from a lake, based on monthly observations of tem-
perature, humidity, and sunshine duration by Morton �1979�. The
results of the model are compared with those of the water budget
for lakes. The comparison showed that there was a good agree-
ment between the results of the model and the water budget ap-
proach. On the other hand, direct methods such as evaporation
pan have also been used and compared to estimate evaporation by
researchers �Choudhury 1999; McKenzie and Craig 2001; Vallet-
Coulomb et al. 2001; Abtew 2001�.

Many researchers have investigated the applicability of artifi-
cial neural networks �ANN� to problems in the hydrological and
meteorological areas. Solar radiation has been estimated using a
radial basis function and multilayer perceptron ANN �Dorvlo
et al. 2002�. They used latitude, longitude, altitude, sunshine
hours, and the month of the year as inputs. The results of these
methods are compared with the observed values, and the radial
basis function is found to be a reasonable model. Also, ANN
models have been used to estimate river flow, rainfall-runoff,
short-term streamflow, rainfall, etc. �Imrie et al. 2000; Zealand
et al. 1999; Luk et al. 2000; Tokar and Johnson 1999�.

This study has three objectives: �1� to develop ANN models to
estimate daily pan evaporation from measured climatic data; �2�
to compare the ANN models with the Penman model; and �3� to
evaluate the potential of ANN for estimating daily pan evapora-
tion. It may be noted that Penman method agrees most closely
with the pan evaporation values �Xu and Singh 1998�.

Methods

Artificial Neural Networks

Neural networks are composed of simple elements operating in
parallel. These elements are inspired by biological nervous sys-
tems. As in nature, the network function is determined largely by
the connections between elements. A neural network can be
trained to perform a particular function by adjusting the values of
the connections �weights� between the elements. Commonly, neu-

ral networks are adjusted, or trained, so that a particular input
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leads to a specific target output. Such a situation is shown in
Fig. 1. Here, the network is adjusted, based on a comparison of
the output and the target, until the sum of square differences
between the target and output values becomes the minimum.
Typically, many such input/target output pairs are used to train a
network. Batch training of a network proceeds by making weight
and bias changes based on an entire set �batch� of input vectors.
Incremental training changes the weights and biases of a network
as needed after the presentation of each individual input vector.
Neural networks have been trained to perform complex functions
in various fields of application, including pattern recognition,
identification, classification, speech, vision, and control systems.
Today, neural networks can be trained to solve problems that are
difficult for conventional computers or human beings �Demuth
and Beale 2001�.

Feed-forward ANNs comprise a system of neurons that are
arranged in layers. Between the input and output layers, there
may be one or more hidden layers. The neurons in each layer are
connected to the neurons in a subsequent layer by a weight w,
which may be adjusted during training. A data pattern comprising
the values xi presented at the input layer i is propagated forward
through the network toward the first hidden layer j. Each hidden
neuron receives the weighted outputs wijxij from the neurons in
the previous layer. These are summed to produce a net value,
which is then transformed to an output value upon the application
of an activation function �Imrie et al. 2000�. A typical three-layer
feed-forward ANN is shown in Fig. 2.

Fig. 1. Basic principle of artificial neural networks

Fig. 3. Ma
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In Fig. 2, a typical ANN consists of three layers, namely, the
input, hidden, and output layers. The input layer neurons are
xo ,x1 ,x2 . . .xn; the hidden layer neurons are h1 ,h2 . . .hm; and the
output layer neurons are o1 ,o2 . . .ok.

A neuron consists of multiple inputs and a single output. The
sum of the inputs and their weights lead to a summation operation
of

NETj = �
i=1

n

wijxij �1�

in which wij =established weight; xij =input value; and
NETj =input to a node in layer j.

The output of a neuron is decided by an activation function.
There are a number of activation functions that can be used in
ANNs, such as step, sigmoid, threshold, linear, etc. The sigmoid
activation function, f�x�, commonly used, can be formulated
mathematically as

f�x� = 1/�1 + exp�− x�� �2�

OUTPUTj = f�NETj� = 1/�1 + exp�− NETj�� �3�

The back-propagation learning algorithm is one of the most
important historical developments in neural networks. It has re-
awakened the scientific and engineering community to the

Fig. 2. Typical three-layer feed-forward ANN

ake Eğirdir
p of L
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modeling and processing of many quantitative phenomena using
neural networks. This learning algorithm is applied to multilayer
feed-forward networks consisting of processing elements with
continuous and differentiable activation functions. Such networks
associated with the back-propagation learning algorithm are also
called back-propagation networks. Given a training set of input–
output pairs, the algorithm provides a procedure for changing the
weights in a back-propagation network to classify the given input
patterns correctly. The basis for this weight update algorithm is
simply the gradient-descent method as used for simple percep-
trons with differentiable neurons.

For a given input-output pair, the back-propagation algorithm
performs two phases of data flow. First, the input pattern is propa-
gated from the input layer to the output layer, and as a result of
this forward flow it produces an output pattern with minimum
sum of square differences between the output and target data.

Table 1. Values of Cross-Validation Errors of Different ANN
Architectures

Network
structure

Number
of

hidden
neurons

Average
cross-

validation
MSE

Network
structure

Number
of

hidden
neurons

Average
cross-

validation
MSE

Two inputs
�Ta ,Tw�

2 0.012943 Five inputs
�Ta ,Tw ,Rc ,

Pa ,n�

2 0.008282

3 0.012334 3 0.009679

4 0.011423 4 0.009235

5 0.010157 5 0.009933

6 0.012197 6 0.010927

7 0.010376 7 0.012640

8 0.010872 8 0.015955

9 0.011785 9 0.012123

10 0.012552 10 0.018392

11 0.012968 11 0.018741

12 0.011745 12 0.025287

Three inputs
�Ta ,Tw ,Rc�

2 0.010999 Six inputs
�Ta ,Tw ,Rc , Pa ,

n ,Rh�

2 0.010259

3 0.010968 3 0.011238

4 0.010485 4 0.011184

5 0.010765 5 0.014222

6 0.009803 6 0.020503

7 0.011908 7 0.015718

8 0.011669 8 0.015373

9 0.011533 9 0.024594

10 0.012603 10 0.01885

11 0.01564 11 0.037630

12 0.021028 12 0.027854

Four inputs
�Ta ,Tw ,Rc , Pa�

2 0.01334 Seven inputs
�Ta ,Tw ,Rc , Pa ,

n ,Rh ,U2�

2 0.009821

3 0.010715 3 0.012123

4 0.011631 4 0.011959

5 0.019477 5 0.011016

6 0.013970 6 0.018849

7 0.014646 7 0.015697

8 0.013387 8 0.026724

9 0.016585 9 0.017987

10 0.016227 10 0.025477

11 0.020929 11 0.021583

12 0.019538 12 0.026325

Note: Ta=air temperature; Tw=water temperature; Rc=solar radiation;
Pa=air pressure; n=sunshine hours, Rh=relative humidity;
and U2=wind speed.
Then, the error signals resulting from the difference between the
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output pattern and an actual output are back-propagated from the
output layer to the previous layers for them to update their
weights �Lin and Lee 1995�.

Penman Method

In 1948, Penman presented a theory and formulas for the estima-
tion of evaporation from weather data. The theory is based on two
requirements, which must be met provided that continuous evapo-
ration occurs. These requirements are that: �1� there must be a
supply of energy to provide latent heat of vaporization; and �2�
there must be some mechanism for removing the vapor, once
produced. The formula has been checked in many parts of the
world and gives good results. Being based on physical principles,
it is of general application and gives values that should serve for
most project studies until supplemented by actual evaporation
measurements. The Penman formulas can be given as follows:

E = ��/�� + ���Rn + ��/�� + �����6.43�1 + 0.536U2��ew − ea��/��

�4�

in which E=evaporation �mm/day�; �=slope of the vapor pres-
sure versus temperature curve �kPa/°C�; �=psychometric con-
stant �kPa/°C�; �=latent heat of vaporization �°C�; U2=wind
speed at 2 m height �m/s�; Rn=net radiation �cal/cm2/day�;
ew=saturation vapor pressure of air at temperature Ta �kPa�;
and ea=actual vapor pressure of air at temperature Ta �kPa�;
�Wilson 1990�.

Application

Lake Eğirdir is a freshwater lake located in the Lakes District of
Turkey; it is the second largest lake in the country with a
47,000 hm2 surface area and a volume of 4,360�109 dm3 �see
Fig. 3�. It is used as a drinking and irrigation water source. Lake
Eğirdir is of tectonic origin and geographically lies on a 50 km
stretch in the northern part of Eğirdir County. The altitude of the
lake is 916 m with a depth of around 1.8 m. The mean depth of
the lake is 9 m and the deepest point is 15 m. In the southern part,
the width of the lake reaches a maximum of 16 km.

Meteorological data to develop the ANN model are obtained
from the Automated GroWeather Meteorological Station set up
near Lake Eğirdir. Meteorological parameters include air and
water temperature, relative humidity, solar radiation, wind speed,
air pressure, and sunshine hours, which are logged every 2 h. Two
hourly data are integrated subsequently to obtain daily data, be-
cause the pan evaporation values used as output in the ANN mod-

Table 2. Coefficient of Determination �R2� and Mean Square Error
�MSE� of ANN Models

Number of
input neurons

Training data set Testing data set

MSE R2 MSE R2

2 0.011516 0.684 0.011874 0.629

3 0.009693 0.734 0.007359 0.770

4 0.008991 0.753 0.008667 0.729

5 0.008825 0.758 0.007451 0.767

6 0.008521 0.766 0.006795 0.787

7 0.008296 0.772 0.006789 0.788
els are daily measurements obtained from the Directorate of State
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Hydraulic Works, Turkey. The data to develop the ANN models
includes 490 daily observations from March 1 to October 31 in
the years 2001 and 2002.

The relationships between meteorological variables and pan
evaporation were investigated first using statistical analyses. The
effective variables on pan evaporation are arranged in the order of
air temperature, water temperature, solar radiation, air pressure,
sunshine hours, relative humidity, and wind speed according to
degree of effectiveness. ANN models with two, three, four, five,
six, and seven inputs were developed according to the statistical
analyses results. For example, the model with two inputs included
air and water temperature variables, whereas the model with three
inputs consisted of air and water temperature and solar radiation.
In this paper, ANN�i , j ,k� indicates a network architecture with i,
j, and k neurons in the input, hidden, and output layers, respec-
tively. Herein, i runs from 2 to 7, j assumes values of 2–12, and
k=1 is adopted in order to decide the best ANN model alternative.

Prior to execution of the model, standardization is done ac-
cording to the following expression such that all data values fall
between 0 and 1:

X = �Xi − Xmin�/�Xmax − Xmin� �5�

where X=standardized value of Xi; and Xmax and
Xmin=maximum and minimum values in the all observation se-
quence. The main reason for standardizing the data is that the
variables are usually measured in different units. By standardizing
the variables and recasting them into dimensionless units, the ar-
bitrary effect of similarity between objects is also removed
�Sudheer et al. 2002�.

An alternative model selection method often referred to in the
neural networks literature is cross-validation. It may be noted that
uncertainty is not completely removed by cross-validation. The
motivation for this model selection is similar to the line of argu-
ments leading to information criteria. Model complexity does not
necessarily result in a better description of the underlying func-
tion, due to increasing estimation error. In order to find an appro-
priate degree of complexity, it is appealing to compare the mean
squared errors �MSE� of different model specifications in
standardized data units. Such prediction errors are obtained by
sampling the data into M subsets with n observations each. The
simplest case is M =3, but for a better approach in this paper
M =5 is adopted. In practice, odd numbers of data sets are se-
lected. From the M available sets of observed data, �M-1� are
used to train the ANN. The training is finished when the least sum

Fig. 4. Comparison of daily pan evaporati
of error squares is reached and the result is compared to the

68 / JOURNAL OF HYDROLOGIC ENGINEERING © ASCE / JANUARY/FEB
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observed data. This procedure is repeated M times, once for each
training data set. The average MSE on the M subsets that have
been left out defines the cross-validation error. If, for instance, a
large value of this error is obtained, the point excluded during the
training process is important and its absence will produce an
ANN with poor estimation and generalization capabilities. On the
other hand, if the associated error is small, it means that the data
set has enough support from its neighbors that its presence is not
very important. �Anders and Korn 1999; Sudheer et al. 2002�. The
average cross-validation errors for various model structures are
given in Table 1. The model with the lowest cross-validation error
is finally chosen.

The number of hidden layers considered after trial and cross-
validation is only 1 in all the structures proposed, and the num-
bers of hidden neurons are five, six, three, two, two, and two.
These structures are represented by ANN�2,5,1�, ANN�3,6,1�,
ANN�4,3,1�, ANN�5,2,1�, ANN�6,2,1�, and ANN�7,2,1�, respec-
tively. The values of the cross-validation errors are least for the
selected models as compared with other structures �Table 1�. The
learning rate and momentum are the parameters that affect the
speed of convergence of the back-propagation algorithm. A stop-
ping criteria is employed at 10,000 for training. A learning rate of
0.001 and a momentum of 0.1 are fixed for the selected network
after training and model selection is completed for year 2001. The
trained networks are used to run a set of test data for the year
2002.

The results of the statistical analyses are given in Table 2. As
seen from Table 2, comparison of ANN�3,6,1�, ANN�6,2,1�, and

h ANN�3,6,1� model and Penman method

Fig. 5. Modeled and measured evaporation
on wit
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ANN�7,2,1� model performances indicates that these models have
more or less similar performances. The R2 values of the
ANN�3,6,1�, ANN�6,2,1�, and ANN�7,2,1� models are 0.770,
0.787, and 0.788 for the testing set, respectively. The difference
between these three models is only in the input variables. The
ANN�3,6,1� model depends on daily mean values of air tempera-
ture, water temperature, and solar radiation, but ANN�6,2,1� is
based on air pressure, sunshine hours, and relative humidity, and
ANN�7,2,1� depends on wind speed and six parameters. This
could lead to the conclusion that using daily values of air tem-
perature, water temperature, and solar radiation for estimating
evaporation would not significantly reduce the performance. This
observation may help to reduce drastically the data requirement
for estimating evaporation from meteorological variables. The
performance of the ANN�3,6,1� model suggests that the evapora-
tion could be estimated easily from available data using the ANN
approach. This result is of significance in a situation where a
hydrological model is to be developed with limited data.

In order to expose the performance of ANN�3,6,1�, the
ANN�3,6,1� model and the Penman method are plotted versus
daily pan evaporation in Fig. 4 for the whole data values. As seen
in Fig. 4, the Penman method underestimates evaporation values.
R2 and MSE values of the Penman method are obtained as 0.548
and 0.0161, respectively. Also, the ANN�3,6,1� model comparison
plot is around a 45° straight line, which implies that there are no
bias effects. The results of ANN�3,6,1� and the Penman method
and daily pan evaporation are presented in Fig. 5, where
ANN�3,6,1� matches daily pan evaporation more closely than the
Penman method.

Conclusions

The aim of this research is to develop an ANN model to estimate
daily pan evaporation for Lake Eğirdir when the measurement
system has failed or to estimate missing daily pan evaporation
data. Convenient models with various inputs are developed and
compared to the Penman method. In the analyses, ANN models
have higher R2 and lower MSE values for both the training and
testing data sets than the Penman method. It was shown that the
ANN�6,2,1� and ANN�7,2,1� models are superior among the ANN
models. Comparing the performance of the ANN�6,2,1�,
ANN�7,2,1�, and ANN�3,6,1� models, it can be observed that they
are performed in a similar way. The difference between them is
only in the input variables considered. The performance of the
ANN�3,6,1� model with air and water temperature and solar ra-
diation inputs suggests that the evaporation could be estimated
from easily available data using the ANN approach. Finally, ANN
models can be put into place with existing methods for estimating
daily pan evaporation in hydrological modeling studies.

Notation

The following symbols are used in this paper:
E � evaporation;
ea � actual vapor pressure of air at temperature Ta;
ew � saturation vapor pressure of air at temperature

Ta;
f�x� � sigmoid function;

hi � hidden layer neuron;
i � neurons in input layer;

j � neurons in hidden layer;
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k � neurons in output layer;
M � subsets with n observations each;

NETj � input to neuron in hidden layer j;
n � sunshine hours;

OUTPUTj � output to neuron in hidden layer j;
oi � output layer neuron;

Pa � air pressure;
Rc � solar radiation;
Rh � relative humidity;
Rn � net radiation;
Ta � air temperature;
Tw � water temperature;
U2 � wind speed at 2 m height;
w � weight;

wij � established weight;
X � standardized value of Xi;
Xi � measured values;

Xmax � maximum value in all observation sequence;
Xmin � minimum value in all observation sequence;

xi � input layer neuron;
xij � input value;
� � psychometric constant;
� � slope of vapor pressure versus temperature

curve; and
� � latent heat of vaporization.
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