
Scientific African 23 (2024) e02008

Available online 30 November 2023
2468-2276/© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Energy-efficient algorithms for lossless data compression schemes
in wireless sensor networks

Lucia K. Ketshabetswe, Adamu Murtala Zungeru *, Caspar K. Lebekwe,
Bokani Mtengi
Department of Electrical, Computer and Telecommunications, Faculty of Engineering & Technology, Botswana International University of Science and
Technology, Botswana

A R T I C L E I N F O

Editor: DR B Gyampoh

Keywords:
Wireless sensor networks
Data compression
Compression ratio
Decompression
Energy efficiency

A B S T R A C T

Wireless sensor networks (WSNs) are reliant on limited power resources, primarily provided by
small batteries within sensor nodes. Inefficient energy management within these networks can
lead to premature battery depletion during data transmission between sensor nodes, significantly
impacting network longevity. Data compression emerges as a viable strategy to mitigate energy
consumption by reducing data size before transmission and employing various compression and
decompression techniques. This work presents a comparative analysis of data compression al
gorithms tailored for WSNs. It studies and enhances two adaptive lossless data compression
techniques, namely ‘Adaptive Lossless Data Compression’ (ALDC) and ‘Fast and Efficient, Lossless
Adaptive Compression System’ (FELACS), as means to effectively manage energy consumption in
wireless sensor networks. ALDC and FELACS algorithms encode differences between consecutive
data readings, thereby reducing the number of bits required for encoding. ALDC employs Huff
man coding, while FELACS leverages the Golomb-Rice coding method. Encoding data samples by
using three Huffman tables interchangeably as an enhancement of the ALDC algorithm, resulted
in an improvement in energy saving from 73 % to 77 %. Analysis of FELACS unveiled the impact
of natural phenomena-induced anomalies on measured data, identified as outliers. The outliers
disrupt data patterns and ranges, subsequently altering the optimal coding parameters for data
samples, resulting in encoding and decoding errors. This study proposes a robust method for
identifying and replacing outliers within sensor data, significantly enhancing compression per
formance. A reduction of variations in dataset patterns facilitated more accurate sampling and
encoding of data. Consequently, fewer bits are required to encode data samples, rendering the
algorithm energy-efficient and suitable for applications demanding error-free data recovery or
meticulous error analysis. The proposed method was successfully applied to the modified ALDC
algorithm, exhibiting efficient performance. An optimum block size of sampled data was
discovered for Fishnet relative humidity deployment ensuring efficient transmission of environ
mental data real-world sensor network deployments like Fishnet, Lucerne, and Le Genepi. These
findings underscore the potential for significant energy savings and improved data accuracy
through adaptive lossless data compression techniques, making them valuable assets for appli
cations with stringent energy constraints or demanding data integrity.

* Corresponding author.
E-mail address: zungerum@biust.ac.bw (A.M. Zungeru).

Contents lists available at ScienceDirect

Scientific African

journal homepage: www.elsevier.com/locate/sciaf

https://doi.org/10.1016/j.sciaf.2023.e02008
Received 25 September 2023; Received in revised form 17 November 2023; Accepted 29 November 2023

mailto:zungerum@biust.ac.bw
www.sciencedirect.com/science/journal/24682276
https://www.elsevier.com/locate/sciaf
https://doi.org/10.1016/j.sciaf.2023.e02008
https://doi.org/10.1016/j.sciaf.2023.e02008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sciaf.2023.e02008&domain=pdf
https://doi.org/10.1016/j.sciaf.2023.e02008
http://creativecommons.org/licenses/by-nc-nd/4.0/

Scientific African 23 (2024) e02008

2

Introduction

Continuous monitoring in wireless sensor network deployments facilitates the collection of vast datasets, serving diverse purposes
in wireless sensor systems. These applications span ecological surveillance, healthcare monitoring, industrial operations, seismic
activity analysis, structural integrity assessments, and more [1–5]. Wireless sensor networks (WSNs) comprise mobile sensors and
wireless technology-enabled networks. These sensor nodes autonomously self-organize in a randomized manner, collectively moni
toring the deployed field. They employ radio communication to capture and transmit event information to a central point or desti
nation. Each node incorporates essential components: a battery for power, a sensor unit equipped with analog-to-digital converters and
various sensors for data collection, a processing unit housing a microcontroller and memory, and a communications unit responsible

Nomenclature

ADC Analogue to Digital Converter.
ALDC An Adaptive Lossless Data Compression Scheme.
ALEC Adaptive Lossless Entropy Compression.
AREDaCoT Adaptive Rate Energy-saving Data Collecting Technique
BLE Low Power Bluetooth
CoC Computational Complexity.
CR Compression Ratio.
CS Compressed/Compressive Sensing.
CT Compression Technique.
DA Data Aggregation.
DC Data Compression.
DSC Distributed Source Coding.
DSM Distributed Source Modelling.
DTC Distributed Transform Coding.
DWT Distributed Wavelet Transform.
ETDTR Energy efficient Two-layer Data Transmission Reduction
FELACS Fast and Efficient Lossless Adaptive Compression Scheme.
iid independently and identically distributed.
ID Identification.
IoP Internet of People.
IoT Internet of Things.
IP Internet Protocol.
JPEG Joint Photographic Experts Group.
LEC Lossless Entropy Compression.
LED Local Emergency Detection.
LoRa Long Range.
LZW Lempel Ziv.
MATLAB Matrix Laboratory.
MP3 MPEG Audio Layer 3.
MPEG Moving Pictures Expert Group.
MSPT Minimum Spanning Tree Projection.
NB_IoT Narrow Band Internet of Things.
PSNs Periodic Sensor Networks.
QoI Quality of Information.
QoS Quality of Service.
RA Routing Algorithm.
RIP Restricted Isometry Property.
RSS Received Signal Strength.
SNR Signal to Noise Ratio.
SR Sampling Ratio.
S-LZW LZW foe Sensor Nodes.
TMT Two Modal Transmission.
TTL Time to Live.
WAN Wide Area Network.
WBSNs Wireless Body Sensor Networks.
WSN Wireless Sensor Network.
WSS Wireless Sensor System.

L.K. Ketshabetswe et al.

Scientific African 23 (2024) e02008

3

for data exchange within the network. Advancements in technology have led to the miniaturization of sensor nodes, imposing con
straints on memory, bandwidth, battery capacity, and data processing capabilities.

Utilizing short-range, low-power wireless communication technologies such as Bluetooth, Wireless Hart, and Zigbee fosters con
nectivity and communication within WSNs. Notably, the longevity of these networks, hinges on the capacity of the sensor node’s
battery. Given the compact size of these batteries, strategic power management becomes essential for extending the network’s
operational lifespan [2]. Fig. 1(a and b) depict common node and network architectures employed in wireless sensor networks.

Effective techniques to manage power in wireless sensor networks (WSNs) with the intention to sustain or extend their lifespan,
should address the different ways in which energy is consumed in these networks. Energy consumption in WSNs is primarily attributed
to data sensing, processing, and transmission activities. Notably, data transmission, both sending and receiving, incurs more sub
stantial energy costs than data processing [6]. Addressing potential data conflicts during sensing is essential to mitigate data loss.
Considering the impracticality of recharging or replacing batteries in numerous and often hard-to-reach sensor nodes, effective energy
monitoring and management in WSNs assume paramount importance. This research endeavors to confront the pressing challenge of
energy consumption, which jeopardizes the longevity of WSNs. The core objective is to minimize data size before its transmission
across the network. To this end, we explore and employ efficient data transmission methods, focusing on adaptive lossless data
compression techniques. The need to develop adaptive lossless compression schemes was motivated by the ability of these schemes to
adjust their compression methods based on the characteristics of the data. The original content of data is preserved while the size of
data is reduced. They are useful in real time applications, where bandwidth is limited, processing power and memory are constrained
and where errors can be recovered in data transmission. These schemes ensure quick and efficient transmission of data. They lead to
savings in bandwidth and costs of data storage and efficient use of memory and processing power. Investigating algorithms helps to
discover efficient methods that save time and energy as well as gain insight in problem solving and optimization. Algorithms help to
effectively organize and manipulate data, making it easy to conduct complex simulations. The contributions of this study encompass
the following key aspects:

Fig. 1. (a) A wireless sensor node structure. (b) A wireless sensor network.

L.K. Ketshabetswe et al.

Scientific African 23 (2024) e02008

4

• Proposal of a novel method for detecting and replacing outliers within WSN data sets, specifically designed for WSN data
applications.

• Study and enhancement of ‘An Adaptive Lossless Data Compression Scheme’ (ALDC) [2] and ‘Fast and Efficient Lossless Adaptive
Compression Scheme’ (FELACS) [3].

• A comparative analysis of existing data compression algorithms tailored for wireless sensor networks.
• Discovery of the optimum block size of a dataset to ensure and provide efficient transmission of environmental data that is collected

from diverse deployments for WSN applications.

The subsequent sections outline the organization of the remaining paper: Section II provides a general overview of data compression
algorithms and conducts a comparative analysis of select algorithms. Furthermore, it delves into the detailed examination and
simulation of the ALDC and FELACS algorithms using MATLAB. Section III focuses on algorithm modification and enhancement,
presenting a novel algorithm and discussing its intricacies. Section IV offers an evaluation of the experimental results pertaining to all
investigated and modified data compression algorithms. Finally, Section V provides a summary and discussion of the research’s
conclusions. This research underscores the critical importance of energy-efficient data management in WSNs, aiming to extend their
operational lifespan and enhance their overall effectiveness in various applications.

Data compression techniques

Data compression stands out as an effective energy-saving strategy, demonstrating its efficiency through the reduction of data size
before transmission across the network. Importantly, this compression process should achieve data size reduction while optimizing
resource utilization. Furthermore, it should account for user-specific characteristics, considering the user’s ability to utilize the data
effectively [7]. In addition to data compression, several other energy-saving techniques are integral to wireless sensor networks. These
include data aggregation and the optimization of data routing. Data packets can be aggregated using various routing methods,
capitalizing on the inherent characteristics and statistics of data sets from sensor nodes, such as maximum, minimum, and average
values. Prior to transmission to the destination node, these characteristics are extracted and manipulated. Effective utilization of data
aggregation necessitates the seamless integration of routing methods and data compression strategies [6,8]. Fig. 2 provides a visual
representation of the interplay among these techniques. This research underscores the significance of considering various
energy-saving approaches in wireless sensor networks, ultimately contributing to the network’s efficiency, and prolonging its oper
ational lifespan.

As depicted in Fig. 2, during the data aggregation process, sensor nodes extract and aggregate minimum, maximum, and average
values from their data. This is represented by the set DA, situated above the routing algorithm RA. Through this aggregation, redundant

Fig. 2. Routing, aggregation, and compression – The relationship.

L.K. Ketshabetswe et al.

Scientific African 23 (2024) e02008

5

data is effectively eliminated, resulting in a reduced volume of data for network transmission. However, this compression of data may
alter the original data arrangement, a challenge that can be addressed through the application of data compression algorithms, as
denoted by set DC in Fig. 2. These algorithms extend the data compression techniques, dispersing compression processes throughout
the network. Specifically, set CT autonomously compresses data at each local sensor node without relying on a routing method or a
densely interconnected network [6]. Data compression involves transforming data from its original representation into a more
compact form, from which the original or near-approximate data can be reconstructed. This reconstruction process is termed
decompression. Data compression yields several benefits, including enhanced processor efficiency by reducing data storage re
quirements, faster internet download speeds, and reduced resource costs. The reduction in data size is achieved by eliminating data
redundancy, making it more convenient for file transfer and storage. Additionally, data compression simplifies and economizes
hardware systems. The processes of data compression and decompression are collectively known as encoding and decoding [9].

Fig. 3 provides a visual representation of the data compression process. In this illustration, raw source data is encoded into
compressed codes, eliminating redundant data, and subsequently reducing the data’s storage or transmission size. The reverse of this
process, decompression, involves reconstructing the original source data from the data codes.

Diverse data formats can undergo encoding and decoding processes utilizing a variety of compression and decompression algo
rithms. The key to efficient data compression lies in the exploration and analysis of data characteristics to identify suitable patterns
that enable the representation of raw data in more manageable sizes. In the design of data compression algorithms, it is crucial to
consider both their effectiveness and efficiency. Data compression can be applied to various data formats, including video, text, and
audio. The process involves data modelling, which aims to recognize, extract, and describe inherent data redundancies. A comparison
between the data and its model is conducted, and the resulting residuals or differences are subjected to a coding phase where they are
encoded in binary form. This coding can be executed using various statistical methods, such as variable-sized codes, prefix codes,
Golomb codes, Huffman codes, and numerous others. These methods play a pivotal role in achieving efficient data compression across
a wide range of data formats.

Classification of data compression techniques

Data compression algorithms are typically categorized into two main classes: Lossy and Lossless data compression algorithms.
These categories can be further subdivided into Data Aggregation [7,10-15], Local or Regional Data Compression, and Distributed or
Across-the-Board Data Compression algorithms or protocols, as outlined in Table 1. This research specifically centers on lossless data
compression algorithms, which find prominent applications in compressing text, programs, or strings. In the realm of lossless
compression, the original data can be faithfully reconstructed through the application of decompression algorithms, ensuring data
integrity and accuracy.

Data aggregation compression techniques involve the use of aggregator nodes to selectively gather crucial data from neighboring
nodes [10,11]. Within this approach, sensor nodes compute essential statistics such as maximum, minimum, and average values and
subsequently apply aggregation methods [12,13]. In contrast, local data compression techniques capitalize on the temporal correlation
inherent in the collected data, enabling compression at each local sensor node, either in a lossless or lossy manner. Distributed data
compression techniques leverage the spatial correlation of data collected from sensor nodes in densely interconnected networks [6,7,
32].

Related works

Table 2 is a discussion of literature that relates to lossless data compression techniques dating back from 2006 to 2023. The
description of the research papers has been provided as well as highlights on their merits, demerits, and unique features. Recent related
works recommended by reviewer [33–44] were reviewed and some [33,34,41-43]have been included in the table for comparison with
other existing works. The proposed approach is included at the bottom of the list in Table 2 for comparisons with existing related
works.

A variety of data compression algorithms have been developed, tailored to the nature or structure of the data being compressed.
This research investigates and compares two of these algorithms to identify a superior strategy for transmitting data with minimal

Fig. 3. Illustration of compression and decompression of data.

L.K. Ketshabetswe et al.

ScientificAfrican23(2024)e02008

6

Table 1
Data compression techniques classification.

FEATURE DISTRIBUTED DATA COMPRESSION LOCAL/REGIONAL DATA COMPRESSION DATA AGGREGATION

DSC. DSC-
Multirate.
[16].

DSM [17]. CS [18 Adaptive
CS [19] Bayesian
CS [20,21].

DCT KLT [22].
DWT-lifting
[23]. DWT
Harr [24].

TMT LEC [25] ALDC [2] FELACS [3]. PEGASIS [26,
27] .

LEACH [28,
29].

PEDAP [30].

1. Compression rate. NA NA Depends on data
sparsity.

Depends on
SNR.

@ 40 %. @ 45–75 % 52.8 to 73.9 % 41 to 73.8 % NA NA NA

2. Energy saved:
minimized
transmission

NA YES YES YES @ 40 %. @ 53 % NA NA NA

3. Processing Complexity Low cost Low cost Low cost Low cost 4 additions. 2
integer
multiplications. 2
shifts., 2
comparisons.

12
instructions
per saved bit.

Simple. Lightweight. High High High

4. Net Energy Saving 50.7 % YES YES YES @ 36 % @ 32 % NA More than
55 %

NA NA NA

4. Structure/Type Source
Modelling.

Source
Modelling.

Compressive
Sensing.

Image Text Text. Text Chain based. Cluster based. Tree based.

5. Limitations Precise
knowledge of
correlation
among nodes
needed [31].

Restricted to
specific
applications
[31].

Needs suitable
transformation to
improve sparsity
for real world data
[31].

Blocks
artifacts. Low
scalability[7].

No spatial
correlations
exploitation [6].

No spatial
correlations
exploitation
[6].

No spatial
correlations
exploitation
[6].

No spatial
correlations
exploitation
[31].

High overhead
and the levels
of scalability
and robustness
are low. [7].

Assumes
nodes are
homogenous
[7].

Operation is
centralized and
requires prior
global
knowledge of
sensor nodes
[7].

L.K. Ketshabetsw
e et al.

Scientific African 23 (2024) e02008

7

Table 2
Comparative analysis of related works.

CITATION Paper Year Description Merits De-merits Uniqueness

1. [11] Data aggregation
techniques in sensor
networks: A survey.

2006 A study of efficient
strategies of electing
aggregation nodes with
the aim of reducing
transmission data in
WSNs.

The size of sensed data is
significantly reduced
before it is sent to the sink.

Data that has been
compressed through
data aggregation
techniques is typically
irretrievable.

Compares different
algorithms and highlights
the trade-offs between
latency, lifetime of the
network and accuracy of
data.

2. [10] Data compression
techniques in
wireless sensor
networks.

2012 Explores and compares
string based, image
based, distributed source
coding, compressed
sensing, and data
aggregation techniques.

A thorough examination
of techniques for data
compression. Lossless
data compression
provided by string based,
CS, DSC so that data can
be recovered at the sink.

Image based techniques
may experience minor
losses of sensed data.
Data that has been
compressed through
data aggregation
techniques is typically
irretrievable.

A comprehensive study of
data compression
techniques, showing
classification and
comparisons.

3. [2] An adaptive lossless
data compression
scheme for wireless
sensor networks.

2012 A data compression
algorithm that is lossless
and can acclimatize to
alterations in the
properties of the source
data, compressing blocks
of data by employing
two code options using
Huffman coding.

Significantly reduce the
size of data by
compressing the
differences between data
samples, instead of
compressing the actual
samples.

Does not leverage spatial
correlations within the
data.

A straightforward and
lightweight compression
technique, appropriate
for real-time applications
and communications that
tolerate delay.

4. [6] Practical data
compression in
wireless sensor
networks: A survey.

2012 Provides a thorough
review of data
compression protocols in
WSNs. Classifies and
defines compression
schemes and unveil what
real-world WSN data
compression is supposed
to be. Comparison of the
performance, limitation
and well-suited
deployments of the
schemes is presented.

Presents typical
limitations in WSN that
need to be considered
when designing data
compression algorithms
as well as distinct criteria
associated with the design
tailored for specific real-
world application.

Further exploration of
the efficiency of data
compression algorithms
for specific WSN
applications is still
needed.

Review and analysis of
data compression
approaches was based on
the requirements
observed from practical
WSN applications.

5. [7] Compression in
wireless sensor
networks: A survey
and Comparative
evaluation.

2013 Discovered that the
benefits of data
aggregation are
determined by the
distance among the
sources aggregated data,
contrasting the distance
between the sink and the
sources, and considering
the volume of
summarized data in
relation to original data.

Prompted consideration
of aggregation structures
and exploration of
optimal methods of
integrating data.

Data that has been
compressed through
data aggregation
techniques is typically
irretrievable.

Presents a holistic view of
a survey of literature on
data compression
approaches and
frameworks.

6. [3] Fast and efficient
lossless adaptive
compression scheme
for wireless sensor
networks.

2015 A fast data compression
algorithm that is lossless
and can acclimatize to
alterations in the
properties of the source
data, compressing blocks
of data by employing
Golomb-Rice coding.

The algorithm minimizes
network load resulting in
fewer collisions and
repeated
communications. It is well
suited for applications
that are highly rated,
where sensed data is of
high fidelity.

Does not leverage spatial
correlations within the
data.
Does not consider
appearance of outliers in
sensed data.

A fast algorithm that
demonstrates high
robustness to loss of data
packets.

7. [33] Data Transmission
protocol for
reducing the energy
consumption in
wireless sensor
networks.

2018 Proposes a data
transmission algorithm
that minimizes energy
consumption in wireless
sensor networks by
dividing the network
into distinct periods. It is
applied locally within
sensor nodes. It uses
Modified k-Nearest
Neighbour techniques

Improved accuracy in
data that is received at the
sink node.

Does not leverage spatial
correlations within the
data.

Partitioning of the
network into distinct
periods.

(continued on next page)

L.K. Ketshabetswe et al.

Scientific African 23 (2024) e02008

8

Table 2 (continued)

CITATION Paper Year Description Merits De-merits Uniqueness

for enhancement of
WSNs lifetime.

8. [34] Energy-efficient two-
layer data
transmission
reduction protocol
in periodic sensor
networks of IoTs

2020 Proposed a two-layer
data reduction scheme
that uses less energy by
leveraging on temporal
and spatial redundancy
within sensed data in
periodic sensor networks
(PSN). It implements
clustering in a bottom-
up hierarchy at cluster
heads to minimize the
amount of data reaching
aggregator nodes before
being sent to the base
station.

Rapid grouping method
selects representation of
entire data to send to the
base station and
minimizes transmission
load.

There is need to adjust
the period size
dynamically so that the
data reduction feature of
the ETDTR protocol is
optimized.
There is need to
implement a scheduling
approach for sensor
nodes with similar
readings.

Leverages both spatial
and temporal
correlations of sensed
data.

9. [41] Adaptive rate
energy-saving data
collecting technique
(AREDaCoT) for
health monitoring in
wireless body sensor
networks

2020 A method that intends to
minimize the volume of
sensed data in wireless
body sensor networks
(WBSNs) and
additionally allow
sensor nodes to alter
their frequency of
sampling considering
the changing nature of
the level of the danger
faced by a patient within
an observed field.

Decrease in pointless data
that come because of
unwarranted sampling
results in the preservation
of sensor node energy.

Demonstration of the
performance approach
looking at energy
consumption, sustaining
integrity of data and
improving decision can
be attained by gathering
data using several
different sensors.

Provides Local
Emergency Detection
(LED) and evaluates the
level of severity of danger
to the patient.

10. [31] Data Compression
Algorithms for
Wireless Sensor
Networks: A Review
and Comparison.

2021 A survey and
comparison of data
compression techniques.
Modification of the use
of Huffman tables used
for coding data in [2] to
further reduce energy
consumption in wireless
sensor networks.

Compression performance
was improved further.
The approach can be used
to compress real word
data sets.

Does not leverage spatial
correlations within the
data.

A straightforward and
lightweight compression
technique, appropriate
for real-time applications
and communications that
tolerate delay.

11. [42] Distributed Energy
efficient Data
Reduction Approach
based on Prediction
and Compression to
reduce data
transmission in IoT
networks.

2022 Presents an approach
that relies on prediction
and data reduction in
IoT networks.

It partitions time into
periods and predicts data
for subsequent periods
employing a prediction
approach to determine
whether to send the data
for the current period.

Not purely for WSNs.
Strategies of predicting
missing data can be
explored to increase
data accuracy.

The ability to send data
only when it is necessary
contributes to minimized
energy consumption.

12. [43] A distributed
prediction
compression-based
mechanism for
energy saving in IoT
networks.

2023 Proposes a distributed
prediction compression-
based mechanism
(DiPCoM) for energy
saving in IoT networks.
It employs ARIMA
(Autoregressive
Integrated Moving
Average) prediction
technique for each
period to forecast data
for the next and
determine whether the
data at hand should be
transmitted to the
gateway, thereby
eliminating redundancy.

Algorithm works in
periods to determine the
necessity to send data. It
uses less energy and is
more accurate than other
algorithms compared
against it.

Size of data between the
gateway and cloud can
be minimized by
application of Machine
and Deep learning
approaches. This will
also improve the quality
of data.

It integrates various data
transmission
compression strategies

13. The Proposed
Algorithm

2023 A comparative analysis
of data compression
algorithms tailored for
WSNS. Also studies and
enhances ALDC and

Improvement on energy
saving because of
reduction of number of
bits used to encode data
samples.

The proposed approach
does not leverage on
sparsity of measured
sensor data.
There is need to explore

Can be applied across
different adaptive lossless
data compression
algorithms depending on
the required or desired

(continued on next page)

L.K. Ketshabetswe et al.

Scientific African 23 (2024) e02008

9

energy consumption. The following section, Section B, delves into a detailed exploration of these techniques through coding, math
ematical analysis, and simulation performed using MATLAB.

Study and review of lossless data compression schemes

1. Analyzing ‘An Adaptive Lossless Data Compression Scheme’ (ALDC) [2].

The ALDC algorithm, as introduced by [2], is designed with the purpose of enhancing adaptability to changes in data properties
collected from sensors, ultimately contributing to the prolonged lifetime of sensor networks. This algorithm exhibits versatility by
accommodating various code options simultaneously and supporting diverse types of data. It employs Huffman coding for data sample
encoding. ALDC operates through two Adaptive Lossless Entropy Compression (ALEC) options, each employing distinct sets of
Huffman tables. These options are known as 2-Huffman Table ALEC and 3-Huffman ALEC. Utilizing entropy coding, ALDC achieves
notable energy savings, resulting in a higher compression ratio. To establish the Huffman tables, practical datasets with diverse data
property measurements were employed. Notably, the ALDC algorithm under investigation adopts the Decision Region method from the
two ALEC code options, as opposed to the Brute Force method. This choice is motivated by the former’s lower memory requirements,
reduced complexity, and decreased energy consumption. The ALDC algorithm also incorporates prediction coding, a technique that
efficiently extracts critical information from data samples. This prediction method relies on the difference between consecutive
environmental data samples within a block, simplifying the algorithm and data processing. The anticipated data sample is determined
based on the sample observed at the end of the previous observation.

These features collectively contribute to the effectiveness and energy efficiency of the ALDC algorithm in handling sensor data with
changing properties, ultimately enhancing the sustainability of sensor networks.

Anticipated sample n̂i = Previous sample ni − − 1 (1)

The successive sample differences (diffs)are obtained from the differences between the Present Reading ni and the Anticipated
sample ni – 1, which is represented by,

diffs = ni − ni − 1, (2)

To be able to obtain the difference at the start diff0, it is assumed that,

diff 0 = 2DYRange− 1 (3)

The dynamic range (DYRange) of symbols is determined by the shift from maximum to minimum values within the incoming data,
signifying the variations in symbol values that serve as input to the encoder.

In the Decision Region method, the sum of all the differences in sample values within the data, for a block of a samples, denoted as
DiffSum, is computed. This sum is then compared against three predefined decision levels to identify the boundary region, denoted as
H. The selection of the most suitable Huffman ALEC code option is based on this boundary region determination.

The calculation of the sum of differences is expressed as follows:

DiffSum =
∑a

i=1
|diffs| (4)

The class region H that falls within the decision boundary can be determined from the following:

1. 2-Huffman Table ALEC code option is selected for region H ≤ 3a.
2. 3-Huffman Table ALEC code option is selected for region 3a < H ≤ 21a.

Table 2 (continued)

CITATION Paper Year Description Merits De-merits Uniqueness

FELACS with the
intention to minimize
energy consumption and
extend sensor network
lifetime. Proposes a
robust approach for
identifying and
replacing outliers within
sensor data significantly
enhancing compression
performance.
Provides efficient
transmission of
environmental data that
is collected from diverse
deployments for WSN.

More accurate sampling
and encoding of data
accomplished from
minimization of
variations in data patterns
brought about by
replacing outliers.
Facilitates data error
detection and promotes
accurate transmission of
data.

methods for
independently encoding
outlier bits, apart from
the cleaned compressed
data, and subsequently
integrating them with
the cleaned compressed
data before
decompression. This will
facilitate the seamless
restoration of sensor
network data to its
original form while
maintaining energy
efficiency.

applications. Well suited
for applications
demanding error free
data recovery.
Ensures efficient
transmission of
environmental data as it
can determine optimum
block sizes for encoding
and decoding data from
WSN deployments.

L.K. Ketshabetswe et al.

Scientific African 23 (2024) e02008

10

3. 2-Huffman Table ALEC code option is selected for region 12a < H.

The selected class regions are computed to determine the best code option to encode differences. Its associated identifier ID will be
generated as either 0 or 1 for either 2-Huffman Table ALEC or 3-Huffman Table ALEC. Pseudocode 3 is used to generate the encoded
bitstream.

The encoded output is made up of

I. The code identifier ID, indicating the Table ALEC code option used (either 2-Huffman Table ALEC or 3-Huffman Table ALEC).
II. A table identifier ID indicating the Huffman coding Table used (either Tables 1–3) to encode the sample blocks with the selected

code option.
III. The Huffman group code for the difference sample.
IV. The binary representation of the difference sample. This representation is not needed when the differences value is zero.

This information in the output bitstream is needed by the encoder so that it can recreate the raw bitstream out of the code.
Pseudocode I is used to calculate the differences diffs between the consecutive readings. Pseudocode II calculates the sum of absolute
values of differences, determines the boundary region and generates the code option ID.

Pseudocode I: Function diffs (data, DYRange, diff0, diff)
//data >> the stream of raw data.
//DYRange >> symbolic diversity of source data.
Calculating the first difference.
//diff0 >> the initial residue
diff(n) → source(n) – xo.
//Calculate the differences for entire bitstream.
OUTPUT diff.
Pseudocode II: Function Adaptive (F, K, ID).
//Function Adaptive sets the decision region limit.
//Calculate the sum of absolute values for differences F.
//K >> the residue length.
Call Function Residual (); Calculate K.
//Set the F region.
IF F< 3 K
//ASSIGN code ID to use of Huffman Tables A and B
ID → ‘0′.
ELSE
IF 3K< F <= 12 K
//ASSIGN code ID to use of Huffman tables A, B, and C
ID → ‘1′.
CLOSE IF
OUTPUT ID.

Analyzing ‘Fast and efficient lossless adaptive compression scheme’ (FELACS) [3]

Another noteworthy lossless adaptive compression technique, introduced by [3], operates on sample blocks and is known as the
’Fast and Efficient Lossless Adaptive Compression Scheme (FELACS).’ FELACS employs Golomb-Rice coding for both data encoding
and decoding processes and is designed to prioritize lightweight implementation with reduced complexity. One of FELACS ’s key
strengths lies in its resilience against data packet loss. It achieves this by independently compressing source information in discrete
blocks. The utilization of Golomb-Rice coding contributes to its speed, enabling faster data encoding. These codes are derived from a
set of prefix codes with exponential growth, a concept originally devised by Golomb and later independently rediscovered by Rice,
hence the name ’Golomb-Rice’ [45]. FELACS stands out as an efficient and lightweight solution for lossless data compression, making it

Table 3
ALDC Selection of Tables for encoding.

Sample Table No. of bits

10 3 2
0 1 2
0 1 2
− 1 1 2
1 1 2
0 1 2
0 1 2
6 3 2

L.K. Ketshabetswe et al.

Scientific African 23 (2024) e02008

11

particularly suitable for applications where complexity and speed are critical considerations.
For a parameter ∂ that is a non-negative integer, and a known value s, the Golomb codes encode the non-negative integer ∂ in unary

as ⌊∂⁄s⌋. The split part is encoded as the modulus of ∂ and s. The Golomb-Rice codes utilized by FELACS are particularly well-suited for
sources that exhibit geometric distributions, where they yield optimal compression results. In the case of FELACS, to maintain minimal
overhead costs for the ID sequence, the options for Golomb-Rice codes are restricted to a set of 8 codes, each represented using just 3
bits. This limitation contributes to the efficiency and effectiveness of FELACS in handling various data sources with geometric
characteristics.

This sets s to 2t for a non-negative integer t. When t is known, the term that precedes the integer’s code ∂ is made up of repre
sentation in unary of ⌊∂/2t⌋ and translates to ⌊∂/2t⌋ number of zeros (0) with a one (1) at the end.

The word ending suffix is made up of binary representation of ∂, particularly its t least significant bits, meaning that the modulus of
∂ and 2t uses t bits binary representation of ∂. A block of samples is encoded by sending an identity (ID) bit sequence along with the
encoded bit stream as an indication to the decoder, the option of the code that was used to encode the samples. This ID pattern
represents t in binary representation form, using ⌈log2R⌉, where R is a sequence of R-bits symbols to be encoded. Rice coding ac
commodates and handles changes in source data statistics and as such it can allow different code options to be used for every sample
block. The Golomb-Rice code length of t is denoted by,

lt = ⌊∂/2t⌋ + 1 + t (5)

This code length lt was used to compute the code length minima and t, the associated optimum coding parameter, that were
eventually used to draw a table of code options for selected non-negative integers. The sum of samples ∂i = δ1 δ2…∂q in a block of Q
samples is calculated as

Qsum =
∑Q

i=1
∂i (6)

In the FELACS approach, the computed sum is compared to pre-calculated decision regions to determine the optimal parameter ’t.’
Notably, in FELACS, instead of relying on tabulated information, bit shift operations are employed, enhancing the algorithm’s speed.
This efficiency is facilitated by the presence of powers of 2 that multiply the Q samples, aligning with the decision region boundaries.
FELACS incorporates predictive coding to ensure that the original data sources exhibit geometric distributions. It employs a linear
prediction model that operates on the differences between successive sampled data points. This simplifies the processing, making it
well-suited for sensor nodes with limited computational capacity.

The anticipated sample is defined the same way as realized in ALDC by Eq. (1). In the same way, the successive sample differences
diffs are as in Eq. (2). Unlike in ALDC, to obtain the first difference value, it is assumed that the initial difference is determined by,

diff 0 = 0 (7)

In the development of the FELACS algorithm, it was presumed that each sample value falls within the range [0, 2N-1], where ‘N’’
corresponds to the resolution of the analog-to-digital converter (ADC) utilized by the sensor node. To adapt Golomb-Rice coding for
implementation within wireless sensor networks (WSNs), certain modifications were made to align the coding scheme with the specific
requirements and constraints of WSNs.

The encoding procedure

The coding options in FELACS are deliberately limited to eight (8) Golomb-Rice family codes, where ’t’ takes on values from 0 to 7.
This constraint ensures that the bit sequence required for the ID remains at a minimum of 3 bits, calculated as ⌈log₂ 8⌉. This design
choice effectively enables compression for data sets with source entropy ranging from 1.5 to 9.5. Importantly, data blocks are inde
pendently encoded to enhance data packet robustness and mitigate packet loss. To transform the differences of the samples, computed
using Eq. (2), from a Laplacian distribution to a geometric distribution (∂i) a Rice mapping function is employed. The transformation is
defined as follows:

∂i =

⎧
⎨

⎩

2 diffs 0 ≤ diffs ≤ θ
2|diffs| − 1 − θ ≤ diffs < 0
θ + |diffs| otherwise,

[45] (8)

Here, θ is determined as the minimum value between the anticipated sample and 2R-1 minus the anticipated sample. The resulting
samples form a sequence of mapped differences. The optimal code value ’t’ is determined by evaluating the sum of these mapped
differences, excluding the first sample, against predefined decision levels.

The first sample is directly encoded in its natural R-bits binary form, serving as the reference sample. Subsequently, the remaining
samples are encoded using both Unary and Split-part representations. The resulting codewords are concatenated. The codeword for the
reference sample is appended to the resultant codeword of the remaining samples, forming the encoded bitstream. The optimal code
value ’t’ is converted to binary and appended as the first 3 bits to the encoded bitstream. This comprehensive encoding process in
FELACS ensures efficient data compression while accommodating a range of data properties and facilitating robust data packet
transmission.

L.K. Ketshabetswe et al.

Scientific African 23 (2024) e02008

12

The decoding procedure

To decode the incoming data stream, the decoder requires information about the sample number, the ADC resolution, and the 3-bit
sequence number of the ID. The decoding process unfolds as follows: a) The first 3 bits from the bitstream are extracted and converted
into decimal form, representing the optimal coding option ’t.’ b) The subsequent R-bits represent the reference sample and are con
verted into decimal form. c) The remaining samples are decoded using the Golomb-Rice coding method, following these steps: i. To
determine the sample that follows the reference sample, the decoder counts the number of consecutive zeros that precede a one (1).
This count is converted into its binary representation, and the subsequent ’t’ bits are appended to this binary representation. ii. The
resulting binary number is then converted into decimal form. iii. The above procedure is repeated for the remaining samples until the
entire data packet is fully decoded.

The mapped differences obtained through this decoding process are subsequently reverse mapped into sample differences using the
inverse of Eq. (8), leading to the formulation of Eq. (9).

This decoding method ensures the accurate reconstruction of the original data samples, effectively reversing the compression
process.

di =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

[
∂i

2

]

0 ≤ ∂i ≤ θ

|∂i|

2
+ 1 − θ ≤ ∂i < 0

θ − |∂i| otherwise

(9)

The reverse mapping function yields the differences of the original data stream. To generate the original samples, these differences
are added to the previously read samples using (Eqs. 2 and 7). These resultant values are then appended to the reference decimal,
forming the decoded stream, which effectively represents the reconstructed original bitstream. The entire encoding and decoding
procedures are systematically illustrated in the accompanying flowchart, as depicted in Fig. 4. This flowchart serves as a visual

Fig. 4. FELACS flowchart – Encoding and decoding.

L.K. Ketshabetswe et al.

Scientific African 23 (2024) e02008

13

representation of the step-by-step processes involved in both encoding and decoding, ensuring the accuracy and integrity of the data
throughout the compression and decompression cycles.

The proposed algorithm

As emphasized by the authors in [32], the hallmark of an efficient lossless compression technique lies in its ability to utilize an
average number of bits that align with the information entropy of the source to encode the source’s output. Information entropy
represents the inherent uncertainty or unpredictability of the source’s data. The difference between the information entropy and the
average length of the source’s encoding is referred to as information redundancy. This metric serves as a measure of the efficiency of
the encoding scheme. In essence, the smaller the information redundancy, the more efficient the code, as it minimizes the additional
bits required to represent the source’s data accurately. This underscores the importance of achieving high compression efficiency while
preserving data integrity in lossless compression techniques.

Description of the modified ALDC scheme

This research endeavor presents an enhancement to the ALDC algorithm, focusing on the modification of the application of
Huffman coding tables, which has led to a noteworthy reduction in energy consumption. In contrast to the previous work in [2], which
utilized two code options involving three Huffman coding tables, our proposed algorithm adopts a strategy that selects shorter codes
from these three tables for encoding data samples. This approach of choosing tables with shorter codes significantly diminishes the
number of bits required for encoding data samples. The outcome is a more energy-efficient algorithm, which aligns with the goal of
optimizing energy consumption in wireless sensor networks. Modification is made by addition of Pseudocode III, ‘Huff_4′ which uses a
modified encoder function ‘My_Encoder’, in Pseudocode IV.

Pseudocode III, Function Huff_4 (diff_vector, T-A, T-B, T-C, codeword_1)
//My_Encoder() >> function to encode.
//codeword_1 >> the output bitstream of N diff_vector.
//* indicates chain or concatenation
//Encoding a block of N diff_vector utilizing all three Huffman Tables.
CALL Function My_Encoder() to obtain Tables A, B and C and a block of N diff_vector and outputting ci1. ciA → ci1
// append encoded bitstream ciA to codeword_1
codeword_1 → codeword_1* ciA
OUTPUT codeword_1
Pseudocode IV: Function My_encoder(diff_value, TABLE,ci_code) [2].
// TABLE >> Encoding Huffman table.
// bi >> number showing set of diff_value and the minimum number of bits that are required in encoding the diff_value.
// ci_code >> output bitstream.
// hi >> Huffman code to encode the set of diff_value.
// li >> integer code to encode the position of the pointer for the set of diff_value.
// * indicates chain or concatenation
// (index)| bi indicates the binary form of index over bi bits
// calculate diff_value class
IF diff_value = 0
ASSIGN bi TO 0
ELSE
ASSIGN bi TO _log2 (|diff_value|)_
CLOSE IF
// Obtain code hi from TABLE
ASSIGN hi TO TABLE [bi]
// Create ci
IF bi = 0 THEN
// li is not needed
ASSIGN ci TO hi
ELSE
// Create li
ASSIGN li TO (index)| bi
// Create ci
ASSIGN ci TO hi * li
CLOSE IF
OUTPUT ci
Table 3 demonstrates how the different samples were selected from the three Huffman tables for every sample, indicating the bit

numbers which were used for encoding the samples.

L.K. Ketshabetswe et al.

Scientific African 23 (2024) e02008

14

Description of the proposed FELACS algorithm

Environmental data collected from sensor networks is vulnerable to the influence of natural phenomena, which can result in
substantial variations in data patterns. These variations often manifest as values that fall well outside the typical range of the dataset
and are commonly referred to as outliers. These outliers can have a detrimental impact on the compressibility of data, potentially
leading to misrepresentations or difficulties in restoring the data to its original form.

The proposed FELACS algorithm addresses this issue by introducing a method for detecting and replacing outliers. It operates under
the assumption that temperature readings measured at a given time exhibit uniformity and should not deviate significantly from one
another, unless an environmental disturbance occurs, causing spikes or altering the data’s range and uniformity. The analysis involves
a stream of data, and it examines the presence of outliers at various points within the data stream, including the beginning (first data
point), the end (last data point), and intermediate positions (between the first and last data points). For instance:

term = [1930 1801 1807 1806 1804 1910].
To assess whether the first term (i = 1930) is an outlier, we evaluate whether 10 times the absolute difference between term 1807

and term 1801 is less than the absolute difference between term 1930 and term 1801. If the former is less than the latter, term 1930 is
deemed an outlier. In such cases, it is replaced by the sum of the subsequent term (1801) and a random number between − 5 and 5,
which represents noise or an error that may either amplify or attenuate the term. If the former is greater, term i retains its value of 1930
and is not classified as an outlier.

For assessing middle terms as outliers, the algorithm resets term i and assigns k = 0. It checks for a condition where term i + 1, now
representing the new term i (1801), is less than or equal to the number of terms in the stream, excluding one term, and greater than 1. If
the absolute value of the difference between term 1801 and the preceding term i-1 is greater than ten times the absolute difference
between term 1807 and the previous term 1801, and if k is equal to 0, k takes on the value of term i (1801). Term 1801 is then classified
as an outlier and replaced by the median value of the terms on either side of it (term i-1 and term i + 1), with the addition of a random
value between − 5 and 5. If the previous term i-1 equals k, term i retains its value of 1801, indicating it is not an outlier. The variable k is
subsequently reset to 0. If i-1 does not equal k, term i again retains its value of 1801 and is not considered an outlier.

To assess whether the last term (1910) is an outlier, a comprehensive evaluation is conducted across the entire dataset. It checks if
the absolute difference between 1910 and its preceding term (1804) exceeds ten times the absolute difference between term 1804 and
its previous term i-2 (1806). If this condition is met, 1910 is identified as an outlier and replaced by its preceding term (1804) added to
a random value between − 5 and 5. If the condition is not met, 1910 remains unchanged and is not classified as an outlier.

These outlier detection and replacement processes are implemented using MATLAB through Pseudocode V, ensuring the robustness
and accuracy of the data.

Pseudocode V: Function Remove_Outlier (term, k, Cterm)
//term >> a vector of terms of data.
//k >> value that resets term i when the length of the term is reduced by 1 and the terms after the first term are tested.
//Cterm >> output showing replaced outliers.
//Testing the first term.
Initialize a vector Cterm to store output.
FOR i being the entire length of term
IF i is an outier
IF 10 x abs(diff(term i + 2 and term i + 1)) is less than abs(diff(term i and term i + 1)).
ASSIGN Cterm i TO term i + 1 plus random number between − 5 and 5.
ELSE
ASSIGN Cterm i TO term i.
END
END
RESET k TO 0.
//Testing middle terms.
IF i is less or equal to number of terms excluding 1 term AND i is greater than 1.
IF abs(diffs(term i and term i-1)) is greater than10 x abs(diffs(term i + 1) and term i-1)) AND k is 0
ASSIGN k TO term i.
ASSIGN Cterm i TO round(median(term i-1 and term i + 1) plus a random number between − 5 and 5).
ELSEIF
term i-1 is k
ASSIGN Cterm i TO term i.
RESET k
ELSE
ASSIGN Cterm i TO term i.
END
END.
//Testing the last term.
IF i is all terms.
IF abs(diffs(term i and term i-1)) is greater than 10 x abs(diffs(term i-1 and term i-2))

L.K. Ketshabetswe et al.

Scientific African 23 (2024) e02008

15

ASSIGN Cterm i TO term i-1 plus a random number between − 5 and 5.
ELSE
ASSIGN Cterm i TO term i.
END
END
END
END.
Fig. 5 provides a visual representation of the workflow employed to implement the modified algorithm. As depicted in the diagram,

the process begins by subjecting the data term to outlier detection. Any identified outliers are subsequently replaced using the method
outlined, resulting in the formation of Cterm. Encoding operations are then carried out on various blocks of Cterm to ascertain the
optimal coding parameters for each block size. Finally, the decoding phase is executed to restore the cleaned original data, which has
been purged of outliers. This workflow encapsulates the key steps involved in the algorithm’s operation, from outlier identification and
replacement to encoding and, ultimately, data restoration.

In FELACS, the Golomb-Rice coding method is employed to encode data samples. During this coding process, the unary code is
determined based on the mapped differences and the optimal coding parameter. Specifically, if the optimal coding parameter is zero,
the unary code is equal to the value of the mapped differences. This condition holds true even when the unary code value itself is zero.
Notably, the original algorithm did not account for these conditions in the encoding and decoding of data samples. To rectify this
oversight, the proposed algorithm introduces enhancements through Pseudocode V1, ensuring that these specific conditions are
appropriately addressed during the encoding and decoding phases.

Pseudocode V1: (mapped_diffs, Option_k, unaryCoding(u,m,y)).
//u is the codeword for unary representation in Golomb-Rice coding method.
//m is the position of u, where u is equal to 0.
//y is the number of bits for values of m.
CREATE zero vectors to store values of u, m and y.
// Compute unary representation code
FOR i number of mapped_diffs
IF u == 0 THEN
SET m(i) TO i
ELSE
SET m(i) TO 0
ENDIF

Fig. 5. Modified FELACS CODEC workflow.

L.K. Ketshabetswe et al.

Scientific African 23 (2024) e02008

16

SET y TO mapped_diffs
END
RETURN
Fig. 6 illustrates the encoding stage of the modified algorithm.
At the decoding stage, the algorithm also checks for these conditions and addresses them as illustrated by the decoder flow chart in

Fig. 7.

Fig. 6. Modified FELACS encoder flowchart.

L.K. Ketshabetswe et al.

Scientific African 23 (2024) e02008

17

Fig. 7. Modified FELACS decoder flowchart.

Table 4
Main properties of datasets.

Dataset Fishnet_101 Luce_84 LG_20

FELACS
09/08/2007 to 31/08/2007.
12,652

23/11/2006 to 17/12/2006.
64,913.

04/09/2007 to 03/10/2007.
21,523.

Date
Number of Samples

Proposed
22/11/2006 to 09/05/2007.
14,721.

06/08/2007 to 02/09/2007.
447,772.

27/08/2007 to 31/10/2007.
43,059.

Date
Number of Samples.

L.K. Ketshabetswe et al.

Scientific African 23 (2024) e02008

18

Evaluation and experimental results

Datasets

The datasets employed in this research were sourced from three distinct deployments: HES-SO Fishnet, Le Genepi, and LUCE, which
form part of the Sensorscope practical environmental monitoring wireless sensor network. These deployments feature TinyNode nodes
equipped with an MSP430 microcontroller from Texas Instruments, an XE1205 radio transmitter from Xemics, and an SHT75 sensor
module manufactured by Sensirion. The sensors are integrated with a 12-bit analogue-to-digital converter for relative humidity
measurements and a 14-bit converter for temperature measurements. For reference, Table 4 provides a summary of the key properties
of these datasets along with their respective acquisition dates.

The parameters under examination in this study included Relative Humidity, Ambient Temperature, and Surface Temperature. The
research involved a comparative analysis of the algorithm’s performance proposed in this work with that of the algorithm presented in
[3]. This comparative assessment allowed for an evaluation of the effectiveness and efficiency of the proposed algorithm in relation to
the existing one.

Evaluation metrics used

To gauge the efficacy of the ALDC algorithm, two key metrics were employed: Compression Ratio (CR) and Energy Saving. The
parameter setting for Relative Humidity, Fishnet_101 dataset is as shown in Table 5.

Energy Saving quantifies the amount of energy conserved by encoding the differences between data samples, as opposed to
encoding the raw data. It is quantitatively expressed as follows:

Energy Saving =
Energy saved through Compression Ecomp

Energy consumed without Compression EUncomp
%.[46] (10)

If we were to utilize binary representations for encoding these samples, each sample would necessitate 14 bits, as demonstrated
below:

Energy Saving =
Average number of bits saved per sample Nb

Number of bits per sample of original data N
%. (11)

Energy saving can also be expressed as

Compression Ratio CR =

(

1 −
Compressed data

raw data

)

x 100. (12)

[2]
To evaluate the effectiveness of the proposed ALDC algorithm, these expressions were utilized to calculate compression ratios for

varying sizes of data blocks. The results were then visualized through graphical representations to unveil the relationship between
them.

Similarly, for the FELACS scheme, the assessment was based on three key metrics: Compression Rate, Energy Saving, and Entropy.
Table 6 demonstrates the parameter settings for Relative Humidity measurements from Fishnet_101 dataset.

The Compression Rate signifies the rate at which data is compressed and is computed as the ratio of the number of compressed data
bits to the number of original data samples. This metric is expressed as follows:

Compression rate =
number of bits of compressed data

number of samples of the original data.
(13)

Entropy serves as a metric for quantifying the average number of binary symbols necessary to encode the output of a data source. It
characterizes the typical self-information contained within random experiments and hinges on the sequential arrangement of data
samples. The FELACS algorithm gauges the optimal lossless compression of source data by computing information entropy for both the
original data and pre-processed data. The formula for entropy is articulated as follows:

H =
∑R

i=1
p(xi) . log2(p(xi)), (14)

Table 5
Parameter settings-modified ALDC.

PARAMETER VALUE

Number of samples 20
Sample Block Size N = 1 to 20.
ADC Resolution DR = 14
First difference 2DR− 1

Decision Region F >12N

L.K. Ketshabetswe et al.

Scientific African 23 (2024) e02008

19

where R represents a count of the ADC’s potential values xi and p(xi) is the probabilistic mass function of xi.

Experimental results

When the data remains unaffected by natural phenomena, the disparity between consecutive data points tends to be minimal and
diminishes even further as the sampling rate of the data increases. In such cases, the ALDC algorithm transmits the binary repre
sentation of these differences instead of conveying the binary representation of the actual data points. This approach effectively
conserves energy. To illustrate this, consider the following stream of Relative Humidity samples from the Fishnet_101 deployment in
Example 1 below:

data = [9910, 9519, 9518, 9518, 9518, 9518, 9518, 9517, 9517, 9517, 9517, 9517, 9517, 9517, 9517, 9517, 9516, 9516, 9516,
9516].

If we were to utilize binary representations for encoding these samples, each sample would necessitate 14 bits, as demonstrated
below:

Encoding Bits = [’10011010110110′’10010100101111′’10010100101110′’10010100101110′’10010100101110′, ……….’10010
100101100′].

Consequently, we would end up with a lengthy 280-bit binary number, demanding substantial memory space and considerable
energy for transmission. Assuming the use of a 14-bit ADC for encoding, the initial data sample is configured as 214− 1 = 213 = 8192.
ALDC, on the other hand, encodes the disparities between consecutive differences, which can be enumerated as follows:

ALDC data differences =
[1718, − 391, − 1, 0, 0, 0, 0, − 1, 0, 0, 0, 0, 0, 0, 0, 0, − 1, 0, 0, 0].
These differences represent smaller values, which in turn require shorter bit lengths for encoding. Consequently, the ALDC-encoded

word is significantly more compact, comprising just 71 bits, as shown below:
Encoded word = {’01101110101110101101101101110110010000000000100000000000000000010000000′}
In contrast to the original 280-bit number, transmitting the encoded word will demand significantly less energy, and it will also

occupy less storage space. In total, 209 bits have been conserved.
The ALDC baseline algorithm was subjected to simulation using the numerical example provided in [2]. The necessary number of

bits for encoding the temperature samples was curtailed from 112 bits to 30 bits. The alterations made to ALDC, as described in Section
A, further reduced the bit count to 26 bits. The results have been visualized in Fig. 8.

Table 6
Parameter settings - Proposed FELACS.

Parameter Value

Number of samples 14,720
Sample Block Size 20, 100, 500, 1000, 5000, 14,720.
ADC Resolution 15
Coding Parameter
First difference 0
Entropy (source) 9.2781

Fig. 8. Compression ratio vs block sizes for improved ALDC [31].

L.K. Ketshabetswe et al.

Scientific African 23 (2024) e02008

20

As indicated in Table 3, only 2 bits were necessary to encode each symbol. Figs. 9 and 10 visually demonstrate the reduced bit count
achieved with the modified ALDC and the corresponding energy savings resulting from this reduction compared to the original scheme.

Smaller block sizes result in lower measurement precision, a smaller number of potential codewords, and lower code option values.
Smaller block sizes lead to less complex processing, faster operations, and reduced susceptibility to data errors or loss. On the other
hand, as block length increases, there is more room to identify data patterns and redundancies. Increased block length also expands the
dynamic range of data and results in higher code option values. While this can improve precision and maintain a steady compression
performance, it also introduces a higher risk of data loss or distortion and increases processing complexity.

Using the first example as reference, when compressing a block of 20 samples, the dynamic range was 14, the code option region H
was 2112, which falls within ALDC region 12a<H, and the algorithm utilized the 2-Huffman coding table to encode the block of data.
The achieved compression ratio was 74.6 %. In contrast, when compressing a block of 8 samples, the dynamic range remained at 14,
but the code option region decreased to 2111, still within the code option region 12a<H. Larger block sizes resulted in a higher
number of bits required, leading to lower compression ratios compared to smaller block sizes.

Table 7 presents a comprehensive view of the compression performance, including the processing time for various block lengths.
In the FELACS scheme, datasets underwent an outlier detection and cleaning process using the proposed method before being

encoded and decoded with different block sizes. The results for both the baseline and modified algorithms are presented in Tables 8 and
9, for block sizes of the Fishnet_101 Relative Humidity dataset.

The results demonstrate that the encoded word size for different block sizes was larger for the baseline FELACS algorithm compared
to the modified version. This indicates that the outlier replacement process reduced the size of the original data and improved the
compression rate. According to Eq. (13), a smaller number of compressed bits leads to a better compression rate. When outliers are not
identified and cleaned from the data, the code option changes according to the decision region determined by the Rice Mapping
function in Eq. (8). This function utilizes the sum of the absolute values of the mapped differences to determine the optimal code for the
data block. Cleaning outliers smoothens the mapped differences and maintains the code option at a consistent level. Larger block sizes
provide more time to observe data patterns, improving precision. The processing time for the modified algorithm is slightly higher than
that of the baseline due to the additional time required for outlier processing.

Entropy, as expressed in Eq. (14), measures the amount of randomness in data. Raw data contains more information compared to
compressed data, as indicated by the lower entropy demonstrated by the modified FELACS. Compression eliminates data redundancy,
reducing entropy. Larger compressed block sizes exhibit higher entropy than smaller ones, indicating more information content in
larger blocks. The relationship between compression rate and different block sizes is illustrated in Fig. 11 to compare the two
algorithms.

The comparison between the baseline algorithm and the modified algorithm with outlier replacement for encoding the given
Relative Humidity samples clearly demonstrates the impact of outlier removal on the encoding process. In the baseline algorithm, as
the block size increased from 2 to 10 samples, the number of bits required for encoding also increased. This was due to the changing
optimum coding parameter, which accommodated larger block sizes by selecting a different code parameter. However, the baseline
coding did not correctly handle the condition where the value of the unary code was 0, resulting in codewords that did not accurately
represent the original data.

On the other hand, the modified algorithm, which included outlier replacement, significantly reduced the number of bits required
for encoding. By replacing the first data point (9910) with 9522 and reducing the large variation between successive terms, the
codeword size decreased from 93 to 43 bits. The baseline 93-bit codeword:

’110010011010110110000000000000100110110000011000000100000010000001000000100000110000001000000′.
The modified algorithm 43 bits codeword:

Fig. 9. Energy saving vs no. of bits encoded.

L.K. Ketshabetswe et al.

Scientific African 23 (2024) e02008

21

Fig. 10. Number of bits saved vs energy saving. [31].

Table 7
Improved ALDC Results for different block lengths.

Block Size a No. of bits Compressed Compression Ratio Code Option H Processing time (µs)

1 22 92.1 1718 32.7
2 32 88.6 2109 33.3
3 35 87.5 2110 38.2
4 37 86.8 2110 37.7
5 39 86.1 2110 32.9
6 41 85.4 2110 45.2
7 43 84.6 2110 39.5
8 46 83.6 2111 43
9 48 82.9 2111 35.2
10 50 82.1 2111 37.1
11 52 81.4 2111 35.4
12 54 80.7 2111 37.1
13 56 80 2111 37
14 58 79.3 2111 34.1
15 60 78.6 2111 35.5
16 62 77.9 2111 39.7
17 65 76.8 2112 35.3
18 67 76.1 2112 37.2
19 69 75.4 2112 40.3
20 71 74.6 2112 39.5

Table 8
Fishnet_101 relative humidity baseline FELACS.

Block Size No. of Bits Coded word Processing Time (s) Compression Rate Code Option Entropy

20 156 1.07 7.8 5 1.92
40 261 1.19 6.53 4 1.91
60 351 1.22 5.85 3 1.88
80 431 0.98 5.39 3 2.07
100 510 1.23 5.1 2 2.16
120 570 1.21 4.75 2 2.23
140 630 1.32 4.5 2 2.34
160 690 1.1 4.31 2 2.36
180 750 1.15 4.17 1 2.4
200 806 1.16 4.03 1 2.54
220 846 1.17 3.85 1 2.59
240 886 1.34 3.69 1 2.74
260 926 0.99 3.56 1 2.89
280 966 1.12 3.45 1 3.02
300 1006 1.5 3.35 1 3.14

L.K. Ketshabetswe et al.

Scientific African 23 (2024) e02008

22

’0000100101001100100000010010101010100101010′
The binary numbers highlighted in green identify the binary representation of the selected optimum coding parameter. The ones

highlighted in blue are the binary representation of the reference sample, while the rest represent the sample codes. This reduction was
achieved because the modified coding addressed the change in the decision region to an optimum code option of zero for the block size
of 10, satisfying the equations below.

Unary Code =
⌊
∂/20⌋ = ∂

Split Part Code =modulus(∂, 20) = ∂.
This demonstrates the effectiveness of outlier removal in improving compression efficiency and ensuring that the encoded data

more accurately represents the original data. The proposed algorithm, which includes outlier removal and addresses optimum
parameter conditions in its coding process, demonstrates its effectiveness in accurately representing the original data while achieving
reduced compression rates and improved compression efficiency. This is evident in the results for Fishnet_101 Ambient Temperature
and Le Genepi_20 Surface Temperature datasets as displayed in Tables 10-13.

In these tables, the modified algorithm consistently outperforms the baseline algorithm in terms of compression rate, energy saving,
and entropy. The reduced number of bits required for encoding and improved entropy values indicate that the modified algorithm
provides a more efficient compression process, resulting in a better representation of the original data. Figs. 12 and 13 further illustrate
the performance of both algorithms, with the modified algorithm consistently showing better results across different block sizes.
Overall, the proposed algorithm’s ability to handle outliers and adapt to changing coding conditions leads to improved compression
efficiency, making it a valuable approach for data compression in wireless sensor networks.

Table 9
Fishnet_101 relative humidity modified FELACS.

Block Size No. of Bits Coded word Processing Time
(s)

Compression Rate Code Option Entropy

20 60 2.86 3 0 1.92
40 108 3.12 2.7 0 1.91
60 144 3.63 2.4 0 1.88
80 182 5.27 2.28 0 2.07
100 230 6.26 2.3 0 2.16
120 271 3.34 2.26 0 2.23
140 310 6.49 2.21 0 2.34
160 351 4.54 2.19 0 2.36
180 392 3.09 2.18 0 2.4
200 423 2.96 2.12 0 2.55
220 469 5.7 2.13 0 2.59
240 512 2.88 2.13 0 2.77
260 547 5.34 2.1 0 2.9
280 595 3.19 2.13 0 3.02
300 631 3.11 2.1 0 3.14

Fig. 11. Fishnet_101 relative humidity
compression rate vs block sizes.

L.K. Ketshabetswe et al.

Scientific African 23 (2024) e02008

23

The two datasets exhibit a consistent compression rate across both algorithms, primarily due to the dataset’s stable patterns within
the tested block sizes, signifying the absence of outliers in the dataset. This underscores the proposed method’s utility in data error
validation.

Further investigations were made for block sizes of 20, 100, 500, 1000 and 5000 using relative humidity dataset of Fishnet_101

Table 10
Fishnet ambient temperature baseline FELACS.

Block Size No. of Bits Coded word Processing Time
(s)

Compression Rate Code Option Entropy

20 101 1.19 5.05 3 3.88
40 177 2.14 4.43 2 4.9
60 242 2.95 4.03 2 5.43
80 300 1.24 3.75 1 5.74
100 348 4 3.48 1 6.03
120 406 1.68 3.38 1 6.38
140 454 1.01 3.24 1 6.59
160 497 1.35 3.11 1 6.68
180 538 1.29 2.99 1 6.73
200 579 1.34 2.9 1 6.83
220 620 1.29 2.82 1 6.84
240 969 0.94 4.04 0 6.86
260 1016 1.42 3.91 0 6.91
280 1062 1.04 3.79 0 6.97
300 1107 1.27 3.69 0 7

Table 11
Fishnet ambient temperature modified FELACS.

Block Size No. of Bits Coded word Processing Time
(s)

Compression Rate Code Option Entropy

20 101 3 5.05 3 3.88
40 177 3.53 4.43 2 4.9
60 242 3.34 4.03 2 5.43
80 300 3.54 3.75 1 5.74
100 348 5.82 3.48 1 6.03
120 406 3.64 3.38 1 6.38
140 454 4.31 3.24 1 6.59
160 497 5.36 3.11 1 6.68
180 538 4.99 2.99 1 6.73
200 579 6.98 2.9 1 6.83
220 620 5.1 2.82 1 6.84
240 969 3.51 4.04 0 6.86
260 1016 4.63 3.91 0 6.91
280 1062 3.53 3.79 0 6.97
300 1107 4.65 3.69 0 7

Table 12
Le Genepi surface temperature baseline FELACS.

Block Size No. of Bits Coded word Processing Time
(s)

Compression Rate Code Option Entropy

20 89 3.13 4.45 2 2.76
40 142 3.89 3.55 1 2.996
60 192 2.79 3.2 1 3.31
80 248 3.05 3.1 1 3.59
100 398 4.68 3.98 0 3.83
120 473 4.67 3.94 0 4.07
140 513 4.82 3.66 0 4.02
160 589 4.39 3.68 0 4.16
180 640 4.87 3.56 0 4.23
200 704 3.97 3.52 0 4.37
220 755 4.15 3.43 0 4.41
240 795 4.63 3.31 0 4.36
260 846 3.39 3.25 0 4.39
280 897 7.04 3.2 0 4.45
300 950 3.13 3.17 0 4.5

L.K. Ketshabetswe et al.

Scientific African 23 (2024) e02008

24

deployment. The compression performance for the different block sizes were plotted as shown in Figs. 14-16 to determine the optimum
block size for this dataset. Results indicate that the optimum block size is 1000. Compared to other block sizes. It demonstrates lower
compression rates, adequate sampling rates and reasonable processing time. The processing time increases from 4 to 12 s as the number
of samples increase from 1000 to 14,000. This confirms that it takes longer to sense and process a bigger block of data than it takes for a
smaller one. A bigger block allows observation of patterns of data and is most likely to suffer natural phenomena disturbances.
Although block sizes of 100 have higher sampling rates, their compression rates are higher and begin to fall when the number of
samples reach 1000 and above. The block size of 5000 exhibit lower compression rates, but the sampling rate is very low for 14,720
samples and compromises the precision for data encoding and decoding.

The proposed method additionally holds the potential to augment the modified ALDC algorithm’s performance by proactively
detecting outliers before the encoding process. This capability was demonstrated when compressing ten Fishnet_101 Relative Humidity
samples (Source), resulting in an encoded word length of 50 bits using the modified ALDC algorithm.

Source = [9910 9519 9518 9518 9518 9518 9518 9517 9517 9517].
Codeword=
‘01,101,110,101,110,101,101,101,101,110,110,010,000,000,000,100,000′
Upon implementing the proposed outlier replacement method on the same source stream, it successfully identified the first source

term, 9910, as an outlier and subsequently replaced it. The resulting cleaned stream was as follows:
ALDC_Cterm = [9522 9519 9518 9518 9518 9518 9518 9517 9517 9517]
The encoded output was a 43-bit codeword =
’0100000001110100110010110010000000000100000′.
Substituting outliers with more representative data diminishes the compression load since it narrows the variations between data

Table 13
Le Genepi surface temperature modified FELACS.

Block Size No. of Bits Coded word Processing Time
(s)

Compression Rate Code Option Entropy

20 89 2.83 4.45 2 2.76
40 142 2.78 3.55 1 2.996
60 192 3.17 3.2 1 3.31
80 248 2.12 3.1 1 3.59
100 398 2.76 3.98 0 3.83
120 473 4.63 3.94 0 4.07
140 513 5.77 3.66 0 4.02
160 589 5.67 3.68 0 4.16
180 640 6.74 3.56 0 4.23
200 704 7.47 3.52 0 4.37
220 755 3.66 3.43 0 4.41
240 795 5.29 3.31 0 4.36
260 846 5.16 3.25 0 4.39
280 897 5.68 3.2 0 4.45
300 950 3.64 3.17 0 4.5

Fig. 12. Fishnet ambient temperature
compression rate vs block sizes.

L.K. Ketshabetswe et al.

Scientific African 23 (2024) e02008

25

readings, thereby necessitating fewer bits for encoding. Utilizing the ALDC Eq. (3) with a 14-bit resolution analogue-to-digital con
verter, a sample block containing 10 relative humidity dataset readings attained compression ratios of CR =

(
1 − 50

140
)
×100% = 64.2 %

for compression without detection and cleaning of outliers, and CR =
(
1 − 43

140
)
× 100 % = 69.2 %, for compression with outlier

cleaning. Compression performance was improved by outlier cleaning. Fig. 17 demonstrates the reduced number of bits for the
encoded word with outlier cleaning on the different block sizes.

Experimental results show that the proposed method outperformed the two algorithms that were analyzed. On the Modified ALDC it
demonstrated improved compression ratio from 64.2 % to 69.2 % using the experimental example shown on page 20. The same was
evidenced with the FELACS algorithm where compression rate was significantly reduced from a range of 7.8 to 3.35 for 300 samples
that were sampled in block sizes of 20 as shown in Table 8 on page 17 and Fig. 11 on page 18, showing better compression performance.
The proposed approach was not experimented on other recent literature that are available under Table 2 of related works because it
was more focused on the two adaptive lossless data compression schemes under analysis. However, enhancement of both ALDC and
FELACS is an indication that this robust approach can be universally applied across other data compression schemes to further reduce
the size of data and improve energy efficiency. Identification of optimum block sizes for encoding and decoding data can also ensure
efficient transmission of environmental data from various WSN deployments.

It was noted that when data is sampled at an adequate rate, consecutive data readings tend to follow a consistent pattern. However,

Fig. 13. LeGenepi_20 surface temperature
compression rate vs block sizes.

Fig. 14. Performance comparison for block size of 20, 100 and 500 samples.

L.K. Ketshabetswe et al.

Scientific African 23 (2024) e02008

26

longer intervals between data sampling result in significant fluctuations between data readings. The presence of outliers in the data
introduces these large variations in the data sequence, increasing data size, reducing compressibility, and distorting the original data
representation. Additionally, outliers elevate data entropy, which poses challenges for compression algorithms in effectively encoding
the data. The outlier replacement technique proves valuable in scenarios where clean, compressed data is required without an
emphasis on error detection. Conversely, for applications that demand the identification of errors or faults in data, such as seismic data
applications, the outlier bits can be transmitted independently with minimal bit overhead. These outlier bits can then be reintegrated
during the decompression stage to recover the true raw data. This approach offers a more energy-efficient solution compared to
transmitting the entire data, including the outliers, which would result in a heavier data load.

Conclusions

In conclusion, this study has addressed a critical concern in wireless sensor networks—energy efficiency—by examining and
enhancing two adaptive lossless data compression algorithms, ALDC and FELACS. The primary objective was to extend the operational
lifetime of wireless sensor networks while ensuring the efficient transmission of environmental data, specifically temperature and
relative humidity, collected from diverse field deployments, including Fishnet, Lucerne, and Le Genepi. Both ALDC and FELACS have
demonstrated their effectiveness in reducing the data payload by encoding variations between consecutive data readings, leading to a
reduction in the number of bits required for transmission. In particular, the modified ALDC algorithm, which employed optimized

Fig. 15. Performance comparison for block size of 1000 samples.

Fig. 16. Performance comparison for block size of 5000 samples.

L.K. Ketshabetswe et al.

Scientific African 23 (2024) e02008

27

Huffman coding tables, achieved an impressive 77 % improvement in energy efficiency. The analysis of FELACS revealed the impact of
natural phenomena-induced anomalies on sensor data, necessitating a novel approach. We introduced a robust method for identifying
and replacing outliers within the sensor data, significantly enhancing compression performance. This approach not only reduced the
compression overhead but also improved the precision of data encoding and decoding. To ensure the accurate encoding and decoding
of data samples, we incorporated adjustments to the selection of the optimum coding parameters using MATLAB coding, thereby
further enhancing the energy efficiency of both ALDC and FELACS. The study has also identified 1000 as the optimum block size for
transmission of relative humidity data from Fishnet_101 deployment.

The applicability of these proposed algorithms can be adapted to a range of wireless sensor network applications, depending on the
specific data patterns and nature of the deployed sensors. Our research contributes to the efficient management of energy resources in
wireless sensor networks. As a direction for future research, we suggest exploring methods for independently encoding outlier bits,
apart from the cleaned compressed data, and subsequently integrating them with the cleaned compressed data before decompression.
This approach aims to facilitate the seamless restoration of sensor network data to its original form while maintaining energy
efficiency.

We believe that the findings and methodologies presented in this study hold significant promise for advancing the field of wireless
sensor networks and data compression, contributing to the development of more sustainable and effective sensor network
deployments.

Author contributions

All co-authors of this manuscript have equally contributed to the content of this manuscript. Lucia K Ketshabetswe – Conceived
idea, designed and performed the simulation work, and took the lead in writing the manuscript. Adamu Murtala Zungeru – Senior
author who conceived the idea, supervised the project and co-written the manuscript. Caspar K. Lebekwe – Also, conceived the idea,
supervised the project and co-written the manuscript, and provided critical feedback and helped shape the research, analysis. Bokani
Mtengi– Also, conceived the idea, supervised the project and co-written the manuscript, and provided critical feedback and helped
shape the research, analysis.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

The authors thank Botswana International University of Science and Technology for the assistance, resources and opportunities
that were made available to make this research work a success. Many thanks to the Department of Electrical, Computer, and Tele
communications for the continuous sustenance, patience and motivation offered from time to time when needed.

Fig. 17. ALDC outlier cleaning vs no outlier cleaning.

L.K. Ketshabetswe et al.

Scientific African 23 (2024) e02008

28

References

[1] L.K. Ketshabetswe, A.M. Zungeru, M. Mangwala, J.M. Chuma, B. Sigweni, Communication protocols for wireless sensor networks: a survey and comparison,
Heliyon 5 (5) (2019) e01591.

[2] J.G. Kolo, S.A. Shanmugam, D.W.G. Lim, L.M. Ang, K.P. Seng, An adaptive lossless data compression scheme for wireless sensor networks, J. Sensors 2012
(2012).

[3] J.G. Kolo, S.A. Shanmugam, D.W.G. Lim, L.M. Ang, Fast and efficient lossless adaptive compression scheme for wireless sensor networks, Comput. Electr. Eng.
41 (C) (2015) 275–287.

[4] F. Marcelloni, M. Vecchio, A simple algorithm for data compression in wireless sensor networks, IEEE Commun. Lett. 12 (6) (2008) 411–413.
[5] N. Kimura, S. Latifi, A survey on data compression in wireless sensor networks, Int. Conf. Inf. Technol. Coding Comput. ITCC 2 (2005) 8–13.
[6] T. Srisooksai, K. Keamarungsi, P. Lamsrichan, K. Araki, Practical data compression in wireless sensor networks: a survey, J. Netw. Comput. Appl. 35 (1) (2012)

37–59.
[7] M.A. Razzaque, C. Bleakley, S. Dobson, Compression in wireless sensor networks: a survey and comparative evaluation, ACM Trans. Sens. Netw. 10 (1) (2013).
[8] (University of Nebraska), Introduction to, Third Edit. 2006.
[9] Y. Arora, “Literature Survey on Image and Text Compression Techniques,” vol. 3, no. 09, pp. 626–630, 2017.

[10] Y.C. Wang, Data compression techniques in wireless sensor networks, Pervasive Comput. 6 (1) (2012) 61–86.
[11] R. R, P. Varshney, Data-aggregation techniques in sensor networks: a survey, IEEE Xplore, no. IEEE Commun. Surv. Tutorials 8 (4) (2007) 48–63.
[12] S. Ozdemir, Y. Xiao, Secure data aggregation in wireless sensor networks: a comprehensive overview, Comput. Netw. 53 (12) (2009) 2022–2037.
[13] H. Karl, A. Willig, Protocols and Architectures for Wireless Sensor Networks, Protoc. Archit. Wirel. Sens. Netw. (2006) 1–497.
[14] N. Sadagopan, B. Krishnamachari, Maximizing data extraction in energy-limited sensor networks, IEEE Infocom 3 (2004) 1717–1727.
[15] F. Ordóñez, B. Krishnamachari, Optimal information extraction in energy-limited wireless sensor networks, IEEE J. Sel. Areas Commun. 22 (6) (2004)

1121–1129.
[16] W. Wang, D. Peng, H. Wang, H. Sharif, H.H. Chen, Cross-layer multirate interaction with distributed source coding in wireless sensor networks, IEEE Trans.

Wirel. Commun. 8 (2) (2009) 787–795.
[17] R.K. S, H.V. Joel B Predd, A collaborative training algorithm for distributed learning, IEEE Trans. Inf. THEORY. 55 (4) (2009).
[18] G. Quer, R. Masiero, D. Munaretto, M. Rossi, J. Widmer, M. Zorzi, On the interplay between routing and signal representation for Compressive Sensing in

wireless sensor networks, Inf. Theory Appl. Work. ITA (2009) 206–215. March2009.
[19] C.T. Chou, R. Rana, W. Hu, Energy efficient information collection in wireless sensor networks using adaptive compressive sensing, in: Proc. - Conf. Local

Comput. Networks, LCN, no. October, 2009, pp. 443–450.
[20] S. Ji, Y. Xue, L. Carin, Bayesian compressive sensing, IEEE Trans. Signal Process. 56 (6) (2008) 2346–2356.
[21] J. Kho, L. Tran-Thanh, A. Rogers, N.R. Jennings, Decentralised control of adaptive sampling and routing in wireless visual sensor networks, Proc. Int. Jt. Conf.

Auton. Agents Multiagent Syst. AAMAS 2 (212) (2009) 1208–1209.
[22] A. Amar, A. Leshem, M. Gastpar, Recursive implementation of the distributed Karhunen-Love transform, IEEE Trans. Signal Process. 58 (10) (2010) 5320–5330.
[23] A. Ciancio, A. Ortega, A distributed wavelet compression algorithm for wireless multihop sensor networks using lifting, ICASSP, IEEE Int. Conf. Acoust. Speech

Signal Process. - Proc. IV (2005) 825–828.
[24] G. Shen, A. Ortega, Transform-based distributed data gathering, IEEE Trans. Signal Process. 58 (7) (2010) 3802–3815.
[25] P. Elias, Predictive coding-part, IRE Trans Inf Theory (1) (1955) 16–24.
[26] S. Lindsey, C.S. Raghavendra, PEGASIS: power-efficient gathering in sensor information systems, IEEE Aerosp. Conf. Proc. 3 (2002) 1125–1130.
[27] S. Lindsey, C. Raghavendra, K. Sivalingam, P.O. Box, Data gathering in sensor networks using the energy * delay metric, Washington State University 00 (C)

(2001) 0–7.
[28] W.R. Heinzelman, A. Chandrakasan, H. Balakrishnan, Energy-efficient communication protocol for wireless microsensor networks, Proc. 33rd Annu. Hawaii Int.

Conf. Syst. Sci. (2000) 10, vol.1c.
[29] W.B. Heinzelman, A.P. Chandrakasan, H. Balakrishnan, An application-specific protocol architecture for wireless microsensor networks, IEEE Trans. Wirel.

Commun. 1 (4) (2002) 660–670.
[30] H.Ö. Tan, I. Körpeoǧlu, Power efficient data gathering and aggregation in wireless sensor networks, SIGMOD Rec. 32 (4) (2003) 66–71.
[31] K.L. Ketshabetswe, A.M. Zungeru, B. Mtengi, C.K. Lebekwe, S.R.S. Prabaharan, Data Compression Algorithms for Wireless Sensor Networks: a Review and

Comparison, IEEE Access 9 (2021) 136872–136891.
[32] K. Sayood, Introduction to Data Compression, 3rd Edit, Univ. Nebraska.: Morgan Kaufmann Series in Multimedia Information and Systems, Nebraska, USA,

2006.
[33] R. Alhussaini, A.K. Idrees, M.A. Salman, Data transmission protocol for reducing the energy consumption in wireless sensor networks, Commun. Comput. Inf.

Sci. 938 (2018) 35–49. October.
[34] A.K. Idrees, R. Alhussaini, M.A. Salman, Energy-efficient two-layer data transmission reduction protocol in periodic sensor networks of IoTs, Pers. Ubiquitous

Comput. 27 (2) (2023) 139–158.
[35] A.S. Jaber, A.K. Idrees, Energy-saving multisensor data sampling and fusion with decision-making for monitoring health risk using WBSNs, Softw. - Pract. Exp.

51 (2) (2021) 271–293.
[36] Z. Boulouard, M. Ouaissa, M. Ouaissa, and S. El Himer, AI and IoT for sustainable development in emerging countries, vol. 105, no. October. 2022.
[37] A.K. IDREES, M.S. Khlief, Efficient compression technique for reducing transmitted EEG data without loss in IoMT networks based on fog computing, SSRN

Electron. J. (2022).
[38] K.K. Al-Nassrawy, D. Al-Shammary, A.K. Idrees, High performance fractal compression for EEG health network traffic, Procedia Comput. Sci. 167 (2019) (2020)

1240–1249.
[39] A.K. Idrees et al., “An edge-fog computing enabled lossless EEG data compression with epileptic seizure detection in IoMT networks to cite this version : HAL Id :

hal-04257358,” 2023.
[40] A. Kadhum Idrees, M. Saieed Khlief, A new lossless electroencephalogram compression technique for fog computing-based IoHT networks, Int. J. Commun. Syst.

36 (15) (2023) 1–21.
[41] A. Shawqi Jaber, A. Kadhum Idrees, Adaptive rate energy-saving data collecting technique for health monitoring in wireless body sensor networks, Int. J.

Commun. Syst. 33 (17) (2020) 1–16.
[42] A.M. Hussein, A.K. Idrees, R. Couturier, Distributed energy-efficient data reduction approach based on prediction and compression to reduce data transmission

in IoT networks, Int. J. Commun. Syst. (2022) 1–23. March.
[43] A.M. Hussein, A.K. Idrees, R. Couturier, A Distributed Prediction–Compression-Based Mechanism For Energy Saving in IoT Networks, 79, Springer US, 2023.
[44] A.K. Idrees, L.W. jawad, Energy-efficient data processing protocol in edge-based IoT networks, Ann. des Telecommun. Telecommun. 78 (5–6) (2023) 347–362.
[45] R.F. Rice, P.S. Yeh, W. Miller, Algorithms for a very high speed universal noiseless coding module, JPL Publ. Lab. 91 (1) (1991) 1–30.

L.K. Ketshabetswe et al.

http://refhub.elsevier.com/S2468-2276(23)00462-3/sbref0001
http://refhub.elsevier.com/S2468-2276(23)00462-3/sbref0001
http://refhub.elsevier.com/S2468-2276(23)00462-3/sbref0002
http://refhub.elsevier.com/S2468-2276(23)00462-3/sbref0002
http://refhub.elsevier.com/S2468-2276(23)00462-3/sbref0003
http://refhub.elsevier.com/S2468-2276(23)00462-3/sbref0003
http://refhub.elsevier.com/S2468-2276(23)00462-3/sbref0004
http://refhub.elsevier.com/S2468-2276(23)00462-3/sbref0005
http://refhub.elsevier.com/S2468-2276(23)00462-3/sbref0006
http://refhub.elsevier.com/S2468-2276(23)00462-3/sbref0006
http://refhub.elsevier.com/S2468-2276(23)00462-3/sbref0007
http://refhub.elsevier.com/S2468-2276(23)00462-3/sbref0010
http://refhub.elsevier.com/S2468-2276(23)00462-3/sbref0011
http://refhub.elsevier.com/S2468-2276(23)00462-3/sbref0012
http://refhub.elsevier.com/S2468-2276(23)00462-3/sbref0013
http://refhub.elsevier.com/S2468-2276(23)00462-3/sbref0014
http://refhub.elsevier.com/S2468-2276(23)00462-3/sbref0015
http://refhub.elsevier.com/S2468-2276(23)00462-3/sbref0015
http://refhub.elsevier.com/S2468-2276(23)00462-3/sbref0016
http://refhub.elsevier.com/S2468-2276(23)00462-3/sbref0016
http://refhub.elsevier.com/S2468-2276(23)00462-3/sbref0017
http://refhub.elsevier.com/S2468-2276(23)00462-3/sbref0018
http://refhub.elsevier.com/S2468-2276(23)00462-3/sbref0018
http://refhub.elsevier.com/S2468-2276(23)00462-3/sbref0019
http://refhub.elsevier.com/S2468-2276(23)00462-3/sbref0019
http://refhub.elsevier.com/S2468-2276(23)00462-3/sbref0020
http://refhub.elsevier.com/S2468-2276(23)00462-3/sbref0021
http://refhub.elsevier.com/S2468-2276(23)00462-3/sbref0021
http://refhub.elsevier.com/S2468-2276(23)00462-3/sbref0022
http://refhub.elsevier.com/S2468-2276(23)00462-3/sbref0023
http://refhub.elsevier.com/S2468-2276(23)00462-3/sbref0023
http://refhub.elsevier.com/S2468-2276(23)00462-3/sbref0024
http://refhub.elsevier.com/S2468-2276(23)00462-3/sbref0025
http://refhub.elsevier.com/S2468-2276(23)00462-3/sbref0026
http://refhub.elsevier.com/S2468-2276(23)00462-3/sbref0027
http://refhub.elsevier.com/S2468-2276(23)00462-3/sbref0027
http://refhub.elsevier.com/S2468-2276(23)00462-3/sbref0028
http://refhub.elsevier.com/S2468-2276(23)00462-3/sbref0028
http://refhub.elsevier.com/S2468-2276(23)00462-3/sbref0029
http://refhub.elsevier.com/S2468-2276(23)00462-3/sbref0029
http://refhub.elsevier.com/S2468-2276(23)00462-3/sbref0030
http://refhub.elsevier.com/S2468-2276(23)00462-3/sbref0031
http://refhub.elsevier.com/S2468-2276(23)00462-3/sbref0031
http://refhub.elsevier.com/S2468-2276(23)00462-3/sbref0032
http://refhub.elsevier.com/S2468-2276(23)00462-3/sbref0032
http://refhub.elsevier.com/S2468-2276(23)00462-3/sbref0033
http://refhub.elsevier.com/S2468-2276(23)00462-3/sbref0033
http://refhub.elsevier.com/S2468-2276(23)00462-3/sbref0034
http://refhub.elsevier.com/S2468-2276(23)00462-3/sbref0034
http://refhub.elsevier.com/S2468-2276(23)00462-3/sbref0035
http://refhub.elsevier.com/S2468-2276(23)00462-3/sbref0035
http://refhub.elsevier.com/S2468-2276(23)00462-3/sbref0037
http://refhub.elsevier.com/S2468-2276(23)00462-3/sbref0037
http://refhub.elsevier.com/S2468-2276(23)00462-3/sbref0038
http://refhub.elsevier.com/S2468-2276(23)00462-3/sbref0038
http://refhub.elsevier.com/S2468-2276(23)00462-3/sbref0040
http://refhub.elsevier.com/S2468-2276(23)00462-3/sbref0040
http://refhub.elsevier.com/S2468-2276(23)00462-3/sbref0041
http://refhub.elsevier.com/S2468-2276(23)00462-3/sbref0041
http://refhub.elsevier.com/S2468-2276(23)00462-3/sbref0042
http://refhub.elsevier.com/S2468-2276(23)00462-3/sbref0042
http://refhub.elsevier.com/S2468-2276(23)00462-3/sbref0043
http://refhub.elsevier.com/S2468-2276(23)00462-3/sbref0044
http://refhub.elsevier.com/S2468-2276(23)00462-3/sbref0045

	Energy-efficient algorithms for lossless data compression schemes in wireless sensor networks
	Introduction
	Data compression techniques
	Classification of data compression techniques
	Related works
	Study and review of lossless data compression schemes

	Analyzing ‘Fast and efficient lossless adaptive compression scheme’ (FELACS) [3]
	The encoding procedure
	The decoding procedure

	The proposed algorithm
	Description of the modified ALDC scheme
	Description of the proposed FELACS algorithm

	Evaluation and experimental results
	Datasets
	Evaluation metrics used
	Experimental results

	Conclusions
	Author contributions
	Declaration of Competing Interest
	Acknowledgments
	References

