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A B S T R A C T   

Wireless sensor networks (WSNs) are reliant on limited power resources, primarily provided by 
small batteries within sensor nodes. Inefficient energy management within these networks can 
lead to premature battery depletion during data transmission between sensor nodes, significantly 
impacting network longevity. Data compression emerges as a viable strategy to mitigate energy 
consumption by reducing data size before transmission and employing various compression and 
decompression techniques. This work presents a comparative analysis of data compression al
gorithms tailored for WSNs. It studies and enhances two adaptive lossless data compression 
techniques, namely ‘Adaptive Lossless Data Compression’ (ALDC) and ‘Fast and Efficient, Lossless 
Adaptive Compression System’ (FELACS), as means to effectively manage energy consumption in 
wireless sensor networks. ALDC and FELACS algorithms encode differences between consecutive 
data readings, thereby reducing the number of bits required for encoding. ALDC employs Huff
man coding, while FELACS leverages the Golomb-Rice coding method. Encoding data samples by 
using three Huffman tables interchangeably as an enhancement of the ALDC algorithm, resulted 
in an improvement in energy saving from 73 % to 77 %. Analysis of FELACS unveiled the impact 
of natural phenomena-induced anomalies on measured data, identified as outliers. The outliers 
disrupt data patterns and ranges, subsequently altering the optimal coding parameters for data 
samples, resulting in encoding and decoding errors. This study proposes a robust method for 
identifying and replacing outliers within sensor data, significantly enhancing compression per
formance. A reduction of variations in dataset patterns facilitated more accurate sampling and 
encoding of data. Consequently, fewer bits are required to encode data samples, rendering the 
algorithm energy-efficient and suitable for applications demanding error-free data recovery or 
meticulous error analysis. The proposed method was successfully applied to the modified ALDC 
algorithm, exhibiting efficient performance. An optimum block size of sampled data was 
discovered for Fishnet relative humidity deployment ensuring efficient transmission of environ
mental data real-world sensor network deployments like Fishnet, Lucerne, and Le Genepi. These 
findings underscore the potential for significant energy savings and improved data accuracy 
through adaptive lossless data compression techniques, making them valuable assets for appli
cations with stringent energy constraints or demanding data integrity.   
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Introduction 

Continuous monitoring in wireless sensor network deployments facilitates the collection of vast datasets, serving diverse purposes 
in wireless sensor systems. These applications span ecological surveillance, healthcare monitoring, industrial operations, seismic 
activity analysis, structural integrity assessments, and more [1–5]. Wireless sensor networks (WSNs) comprise mobile sensors and 
wireless technology-enabled networks. These sensor nodes autonomously self-organize in a randomized manner, collectively moni
toring the deployed field. They employ radio communication to capture and transmit event information to a central point or desti
nation. Each node incorporates essential components: a battery for power, a sensor unit equipped with analog-to-digital converters and 
various sensors for data collection, a processing unit housing a microcontroller and memory, and a communications unit responsible 

Nomenclature 

ADC Analogue to Digital Converter. 
ALDC An Adaptive Lossless Data Compression Scheme. 
ALEC Adaptive Lossless Entropy Compression. 
AREDaCoT Adaptive Rate Energy-saving Data Collecting Technique 
BLE Low Power Bluetooth 
CoC Computational Complexity. 
CR Compression Ratio. 
CS Compressed/Compressive Sensing. 
CT Compression Technique. 
DA Data Aggregation. 
DC Data Compression. 
DSC Distributed Source Coding. 
DSM Distributed Source Modelling. 
DTC Distributed Transform Coding. 
DWT Distributed Wavelet Transform. 
ETDTR Energy efficient Two-layer Data Transmission Reduction 
FELACS Fast and Efficient Lossless Adaptive Compression Scheme. 
iid independently and identically distributed. 
ID Identification. 
IoP Internet of People. 
IoT Internet of Things. 
IP Internet Protocol. 
JPEG Joint Photographic Experts Group. 
LEC Lossless Entropy Compression. 
LED Local Emergency Detection. 
LoRa Long Range. 
LZW Lempel Ziv. 
MATLAB Matrix Laboratory. 
MP3 MPEG Audio Layer 3. 
MPEG Moving Pictures Expert Group. 
MSPT Minimum Spanning Tree Projection. 
NB_IoT Narrow Band Internet of Things. 
PSNs Periodic Sensor Networks. 
QoI Quality of Information. 
QoS Quality of Service. 
RA Routing Algorithm. 
RIP Restricted Isometry Property. 
RSS Received Signal Strength. 
SNR Signal to Noise Ratio. 
SR Sampling Ratio. 
S-LZW LZW foe Sensor Nodes. 
TMT Two Modal Transmission. 
TTL Time to Live. 
WAN Wide Area Network. 
WBSNs Wireless Body Sensor Networks. 
WSN Wireless Sensor Network. 
WSS Wireless Sensor System.  
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for data exchange within the network. Advancements in technology have led to the miniaturization of sensor nodes, imposing con
straints on memory, bandwidth, battery capacity, and data processing capabilities. 

Utilizing short-range, low-power wireless communication technologies such as Bluetooth, Wireless Hart, and Zigbee fosters con
nectivity and communication within WSNs. Notably, the longevity of these networks, hinges on the capacity of the sensor node’s 
battery. Given the compact size of these batteries, strategic power management becomes essential for extending the network’s 
operational lifespan [2]. Fig. 1(a and b) depict common node and network architectures employed in wireless sensor networks. 

Effective techniques to manage power in wireless sensor networks (WSNs) with the intention to sustain or extend their lifespan, 
should address the different ways in which energy is consumed in these networks. Energy consumption in WSNs is primarily attributed 
to data sensing, processing, and transmission activities. Notably, data transmission, both sending and receiving, incurs more sub
stantial energy costs than data processing [6]. Addressing potential data conflicts during sensing is essential to mitigate data loss. 
Considering the impracticality of recharging or replacing batteries in numerous and often hard-to-reach sensor nodes, effective energy 
monitoring and management in WSNs assume paramount importance. This research endeavors to confront the pressing challenge of 
energy consumption, which jeopardizes the longevity of WSNs. The core objective is to minimize data size before its transmission 
across the network. To this end, we explore and employ efficient data transmission methods, focusing on adaptive lossless data 
compression techniques. The need to develop adaptive lossless compression schemes was motivated by the ability of these schemes to 
adjust their compression methods based on the characteristics of the data. The original content of data is preserved while the size of 
data is reduced. They are useful in real time applications, where bandwidth is limited, processing power and memory are constrained 
and where errors can be recovered in data transmission. These schemes ensure quick and efficient transmission of data. They lead to 
savings in bandwidth and costs of data storage and efficient use of memory and processing power. Investigating algorithms helps to 
discover efficient methods that save time and energy as well as gain insight in problem solving and optimization. Algorithms help to 
effectively organize and manipulate data, making it easy to conduct complex simulations. The contributions of this study encompass 
the following key aspects: 

Fig. 1. (a) A wireless sensor node structure. (b) A wireless sensor network.  
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• Proposal of a novel method for detecting and replacing outliers within WSN data sets, specifically designed for WSN data 
applications.  

• Study and enhancement of ‘An Adaptive Lossless Data Compression Scheme’ (ALDC) [2] and ‘Fast and Efficient Lossless Adaptive 
Compression Scheme’ (FELACS) [3].  

• A comparative analysis of existing data compression algorithms tailored for wireless sensor networks.  
• Discovery of the optimum block size of a dataset to ensure and provide efficient transmission of environmental data that is collected 

from diverse deployments for WSN applications. 

The subsequent sections outline the organization of the remaining paper: Section II provides a general overview of data compression 
algorithms and conducts a comparative analysis of select algorithms. Furthermore, it delves into the detailed examination and 
simulation of the ALDC and FELACS algorithms using MATLAB. Section III focuses on algorithm modification and enhancement, 
presenting a novel algorithm and discussing its intricacies. Section IV offers an evaluation of the experimental results pertaining to all 
investigated and modified data compression algorithms. Finally, Section V provides a summary and discussion of the research’s 
conclusions. This research underscores the critical importance of energy-efficient data management in WSNs, aiming to extend their 
operational lifespan and enhance their overall effectiveness in various applications. 

Data compression techniques 

Data compression stands out as an effective energy-saving strategy, demonstrating its efficiency through the reduction of data size 
before transmission across the network. Importantly, this compression process should achieve data size reduction while optimizing 
resource utilization. Furthermore, it should account for user-specific characteristics, considering the user’s ability to utilize the data 
effectively [7]. In addition to data compression, several other energy-saving techniques are integral to wireless sensor networks. These 
include data aggregation and the optimization of data routing. Data packets can be aggregated using various routing methods, 
capitalizing on the inherent characteristics and statistics of data sets from sensor nodes, such as maximum, minimum, and average 
values. Prior to transmission to the destination node, these characteristics are extracted and manipulated. Effective utilization of data 
aggregation necessitates the seamless integration of routing methods and data compression strategies [6,8]. Fig. 2 provides a visual 
representation of the interplay among these techniques. This research underscores the significance of considering various 
energy-saving approaches in wireless sensor networks, ultimately contributing to the network’s efficiency, and prolonging its oper
ational lifespan. 

As depicted in Fig. 2, during the data aggregation process, sensor nodes extract and aggregate minimum, maximum, and average 
values from their data. This is represented by the set DA, situated above the routing algorithm RA. Through this aggregation, redundant 

Fig. 2. Routing, aggregation, and compression – The relationship.  
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data is effectively eliminated, resulting in a reduced volume of data for network transmission. However, this compression of data may 
alter the original data arrangement, a challenge that can be addressed through the application of data compression algorithms, as 
denoted by set DC in Fig. 2. These algorithms extend the data compression techniques, dispersing compression processes throughout 
the network. Specifically, set CT autonomously compresses data at each local sensor node without relying on a routing method or a 
densely interconnected network [6]. Data compression involves transforming data from its original representation into a more 
compact form, from which the original or near-approximate data can be reconstructed. This reconstruction process is termed 
decompression. Data compression yields several benefits, including enhanced processor efficiency by reducing data storage re
quirements, faster internet download speeds, and reduced resource costs. The reduction in data size is achieved by eliminating data 
redundancy, making it more convenient for file transfer and storage. Additionally, data compression simplifies and economizes 
hardware systems. The processes of data compression and decompression are collectively known as encoding and decoding [9]. 

Fig. 3 provides a visual representation of the data compression process. In this illustration, raw source data is encoded into 
compressed codes, eliminating redundant data, and subsequently reducing the data’s storage or transmission size. The reverse of this 
process, decompression, involves reconstructing the original source data from the data codes. 

Diverse data formats can undergo encoding and decoding processes utilizing a variety of compression and decompression algo
rithms. The key to efficient data compression lies in the exploration and analysis of data characteristics to identify suitable patterns 
that enable the representation of raw data in more manageable sizes. In the design of data compression algorithms, it is crucial to 
consider both their effectiveness and efficiency. Data compression can be applied to various data formats, including video, text, and 
audio. The process involves data modelling, which aims to recognize, extract, and describe inherent data redundancies. A comparison 
between the data and its model is conducted, and the resulting residuals or differences are subjected to a coding phase where they are 
encoded in binary form. This coding can be executed using various statistical methods, such as variable-sized codes, prefix codes, 
Golomb codes, Huffman codes, and numerous others. These methods play a pivotal role in achieving efficient data compression across 
a wide range of data formats. 

Classification of data compression techniques 

Data compression algorithms are typically categorized into two main classes: Lossy and Lossless data compression algorithms. 
These categories can be further subdivided into Data Aggregation [7,10-15], Local or Regional Data Compression, and Distributed or 
Across-the-Board Data Compression algorithms or protocols, as outlined in Table 1. This research specifically centers on lossless data 
compression algorithms, which find prominent applications in compressing text, programs, or strings. In the realm of lossless 
compression, the original data can be faithfully reconstructed through the application of decompression algorithms, ensuring data 
integrity and accuracy. 

Data aggregation compression techniques involve the use of aggregator nodes to selectively gather crucial data from neighboring 
nodes [10,11]. Within this approach, sensor nodes compute essential statistics such as maximum, minimum, and average values and 
subsequently apply aggregation methods [12,13]. In contrast, local data compression techniques capitalize on the temporal correlation 
inherent in the collected data, enabling compression at each local sensor node, either in a lossless or lossy manner. Distributed data 
compression techniques leverage the spatial correlation of data collected from sensor nodes in densely interconnected networks [6,7, 
32]. 

Related works 

Table 2 is a discussion of literature that relates to lossless data compression techniques dating back from 2006 to 2023. The 
description of the research papers has been provided as well as highlights on their merits, demerits, and unique features. Recent related 
works recommended by reviewer [33–44] were reviewed and some [33,34,41-43]have been included in the table for comparison with 
other existing works. The proposed approach is included at the bottom of the list in Table 2 for comparisons with existing related 
works. 

A variety of data compression algorithms have been developed, tailored to the nature or structure of the data being compressed. 
This research investigates and compares two of these algorithms to identify a superior strategy for transmitting data with minimal 

Fig. 3. Illustration of compression and decompression of data.  
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Table 1 
Data compression techniques classification.  

FEATURE DISTRIBUTED DATA COMPRESSION LOCAL/REGIONAL DATA COMPRESSION DATA AGGREGATION  

DSC. DSC- 
Multirate.  
[16]. 

DSM [17]. CS [18  Adaptive 
CS [19] Bayesian 
CS  [20,21]. 

DCT KLT [22]. 
DWT-lifting  
[23]. DWT 
Harr [24]. 

TMT LEC [25] ALDC [2] FELACS [3]. PEGASIS [26, 
27] . 

LEACH [28, 
29]. 

PEDAP [30]. 

1. Compression rate. NA NA Depends on data 
sparsity. 

Depends on 
SNR. 

@ 40 %. @ 45–75 % 52.8 to 73.9 % 41 to 73.8 % NA NA NA 

2. Energy saved: 
minimized 
transmission 

NA YES YES YES @ 40 %. @ 53 %   NA NA NA 

3. Processing Complexity Low cost Low cost Low cost Low cost 4 additions. 2 
integer 
multiplications. 2 
shifts., 2 
comparisons. 

12 
instructions 
per saved bit. 

Simple. Lightweight. High High High 

4. Net Energy Saving 50.7 % YES YES YES @ 36 % @ 32 % NA More than 
55 % 

NA NA NA 

4. Structure/Type Source 
Modelling. 

Source 
Modelling. 

Compressive 
Sensing. 

Image  Text Text. Text Chain based. Cluster based. Tree based. 

5. Limitations Precise 
knowledge of 
correlation 
among nodes 
needed [31]. 

Restricted to 
specific 
applications  
[31]. 

Needs suitable 
transformation to 
improve sparsity 
for real world data  
[31]. 

Blocks 
artifacts. Low 
scalability[7]. 

No spatial 
correlations 
exploitation [6]. 

No spatial 
correlations 
exploitation 
[6]. 

No spatial 
correlations 
exploitation  
[6]. 

No spatial 
correlations 
exploitation  
[31]. 

High overhead 
and the levels 
of scalability 
and robustness 
are low. [7]. 

Assumes 
nodes are 
homogenous  
[7]. 

Operation is 
centralized and 
requires prior 
global 
knowledge of 
sensor nodes  
[7].  
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Table 2 
Comparative analysis of related works.  

CITATION Paper Year Description Merits De-merits Uniqueness  

1. [11] Data aggregation 
techniques in sensor 
networks: A survey. 

2006 A study of efficient 
strategies of electing 
aggregation nodes with 
the aim of reducing 
transmission data in 
WSNs. 

The size of sensed data is 
significantly reduced 
before it is sent to the sink. 

Data that has been 
compressed through 
data aggregation 
techniques is typically 
irretrievable. 

Compares different 
algorithms and highlights 
the trade-offs between 
latency, lifetime of the 
network and accuracy of 
data.  

2. [10] Data compression 
techniques in 
wireless sensor 
networks. 

2012 Explores and compares 
string based, image 
based, distributed source 
coding, compressed 
sensing, and data 
aggregation techniques. 

A thorough examination 
of techniques for data 
compression. Lossless 
data compression 
provided by string based, 
CS, DSC so that data can 
be recovered at the sink. 

Image based techniques 
may experience minor 
losses of sensed data. 
Data that has been 
compressed through 
data aggregation 
techniques is typically 
irretrievable. 

A comprehensive study of 
data compression 
techniques, showing 
classification and 
comparisons.  

3. [2] An adaptive lossless 
data compression 
scheme for wireless 
sensor networks. 

2012 A data compression 
algorithm that is lossless 
and can acclimatize to 
alterations in the 
properties of the source 
data, compressing blocks 
of data by employing 
two code options using 
Huffman coding. 

Significantly reduce the 
size of data by 
compressing the 
differences between data 
samples, instead of 
compressing the actual 
samples. 

Does not leverage spatial 
correlations within the 
data.   

A straightforward and 
lightweight compression 
technique, appropriate 
for real-time applications 
and communications that 
tolerate delay.  

4. [6] Practical data 
compression in 
wireless sensor 
networks: A survey. 

2012 Provides a thorough 
review of data 
compression protocols in 
WSNs. Classifies and 
defines compression 
schemes and unveil what 
real-world WSN data 
compression is supposed 
to be. Comparison of the 
performance, limitation 
and well-suited 
deployments of the 
schemes is presented. 

Presents typical 
limitations in WSN that 
need to be considered 
when designing data 
compression algorithms 
as well as distinct criteria 
associated with the design 
tailored for specific real- 
world application. 

Further exploration of 
the efficiency of data 
compression algorithms 
for specific WSN 
applications is still 
needed. 

Review and analysis of 
data compression 
approaches was based on 
the requirements 
observed from practical 
WSN applications.  

5. [7] Compression in 
wireless sensor 
networks: A survey 
and Comparative 
evaluation. 

2013 Discovered that the 
benefits of data 
aggregation are 
determined by the 
distance among the 
sources aggregated data, 
contrasting the distance 
between the sink and the 
sources, and considering 
the volume of 
summarized data in 
relation to original data. 

Prompted consideration 
of aggregation structures 
and exploration of 
optimal methods of 
integrating data. 

Data that has been 
compressed through 
data aggregation 
techniques is typically 
irretrievable. 

Presents a holistic view of 
a survey of literature on 
data compression 
approaches and 
frameworks.  

6. [3] Fast and efficient 
lossless adaptive 
compression scheme 
for wireless sensor 
networks. 

2015 A fast data compression 
algorithm that is lossless 
and can acclimatize to 
alterations in the 
properties of the source 
data, compressing blocks 
of data by employing 
Golomb-Rice coding. 

The algorithm minimizes 
network load resulting in 
fewer collisions and 
repeated 
communications. It is well 
suited for applications 
that are highly rated, 
where sensed data is of 
high fidelity. 

Does not leverage spatial 
correlations within the 
data. 
Does not consider 
appearance of outliers in 
sensed data. 

A fast algorithm that 
demonstrates high 
robustness to loss of data 
packets.  

7. [33] Data Transmission 
protocol for 
reducing the energy 
consumption in 
wireless sensor 
networks. 

2018 Proposes a data 
transmission algorithm 
that minimizes energy 
consumption in wireless 
sensor networks by 
dividing the network 
into distinct periods. It is 
applied locally within 
sensor nodes. It uses 
Modified k-Nearest 
Neighbour techniques 

Improved accuracy in 
data that is received at the 
sink node. 

Does not leverage spatial 
correlations within the 
data.  

Partitioning of the 
network into distinct 
periods. 

(continued on next page) 
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Table 2 (continued ) 

CITATION Paper Year Description Merits De-merits Uniqueness 

for enhancement of 
WSNs lifetime.  

8. [34] Energy-efficient two- 
layer data 
transmission 
reduction protocol 
in periodic sensor 
networks of IoTs 

2020 Proposed a two-layer 
data reduction scheme 
that uses less energy by 
leveraging on temporal 
and spatial redundancy 
within sensed data in 
periodic sensor networks 
(PSN). It implements 
clustering in a bottom- 
up hierarchy at cluster 
heads to minimize the 
amount of data reaching 
aggregator nodes before 
being sent to the base 
station. 

Rapid grouping method 
selects representation of 
entire data to send to the 
base station and 
minimizes transmission 
load. 

There is need to adjust 
the period size 
dynamically so that the 
data reduction feature of 
the ETDTR protocol is 
optimized. 
There is need to 
implement a scheduling 
approach for sensor 
nodes with similar 
readings. 

Leverages both spatial 
and temporal 
correlations of sensed 
data.  

9. [41] Adaptive rate 
energy-saving data 
collecting technique 
(AREDaCoT) for 
health monitoring in 
wireless body sensor 
networks 

2020 A method that intends to 
minimize the volume of 
sensed data in wireless 
body sensor networks 
(WBSNs) and 
additionally allow 
sensor nodes to alter 
their frequency of 
sampling considering 
the changing nature of 
the level of the danger 
faced by a patient within 
an observed field. 

Decrease in pointless data 
that come because of 
unwarranted sampling 
results in the preservation 
of sensor node energy. 

Demonstration of the 
performance approach 
looking at energy 
consumption, sustaining 
integrity of data and 
improving decision can 
be attained by gathering 
data using several 
different sensors. 

Provides Local 
Emergency Detection 
(LED) and evaluates the 
level of severity of danger 
to the patient.  

10. [31] Data Compression 
Algorithms for 
Wireless Sensor 
Networks: A Review 
and Comparison. 

2021 A survey and 
comparison of data 
compression techniques. 
Modification of the use 
of Huffman tables used 
for coding data in [2] to 
further reduce energy 
consumption in wireless 
sensor networks. 

Compression performance 
was improved further. 
The approach can be used 
to compress real word 
data sets. 

Does not leverage spatial 
correlations within the 
data.  

A straightforward and 
lightweight compression 
technique, appropriate 
for real-time applications 
and communications that 
tolerate delay.  

11. [42] Distributed Energy 
efficient Data 
Reduction Approach 
based on Prediction 
and Compression to 
reduce data 
transmission in IoT 
networks. 

2022 Presents an approach 
that relies on prediction 
and data reduction in 
IoT networks. 

It partitions time into 
periods and predicts data 
for subsequent periods 
employing a prediction 
approach to determine 
whether to send the data 
for the current period. 

Not purely for WSNs. 
Strategies of predicting 
missing data can be 
explored to increase 
data accuracy. 

The ability to send data 
only when it is necessary 
contributes to minimized 
energy consumption.  

12. [43] A distributed 
prediction 
compression-based 
mechanism for 
energy saving in IoT 
networks. 

2023 Proposes a distributed 
prediction compression- 
based mechanism 
(DiPCoM) for energy 
saving in IoT networks. 
It employs ARIMA 
(Autoregressive 
Integrated Moving 
Average) prediction 
technique for each 
period to forecast data 
for the next and 
determine whether the 
data at hand should be 
transmitted to the 
gateway, thereby 
eliminating redundancy. 

Algorithm works in 
periods to determine the 
necessity to send data. It 
uses less energy and is 
more accurate than other 
algorithms compared 
against it. 

Size of data between the 
gateway and cloud can 
be minimized by 
application of Machine 
and Deep learning 
approaches. This will 
also improve the quality 
of data. 

It integrates various data 
transmission 
compression strategies 

13. The Proposed 
Algorithm 

2023 A comparative analysis 
of data compression 
algorithms tailored for 
WSNS. Also studies and 
enhances ALDC and 

Improvement on energy 
saving because of 
reduction of number of 
bits used to encode data 
samples. 

The proposed approach 
does not leverage on 
sparsity of measured 
sensor data. 
There is need to explore 

Can be applied across 
different adaptive lossless 
data compression 
algorithms depending on 
the required or desired 

(continued on next page) 
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energy consumption. The following section, Section B, delves into a detailed exploration of these techniques through coding, math
ematical analysis, and simulation performed using MATLAB. 

Study and review of lossless data compression schemes  

1. Analyzing ‘An Adaptive Lossless Data Compression Scheme’ (ALDC) [2]. 

The ALDC algorithm, as introduced by [2], is designed with the purpose of enhancing adaptability to changes in data properties 
collected from sensors, ultimately contributing to the prolonged lifetime of sensor networks. This algorithm exhibits versatility by 
accommodating various code options simultaneously and supporting diverse types of data. It employs Huffman coding for data sample 
encoding. ALDC operates through two Adaptive Lossless Entropy Compression (ALEC) options, each employing distinct sets of 
Huffman tables. These options are known as 2-Huffman Table ALEC and 3-Huffman ALEC. Utilizing entropy coding, ALDC achieves 
notable energy savings, resulting in a higher compression ratio. To establish the Huffman tables, practical datasets with diverse data 
property measurements were employed. Notably, the ALDC algorithm under investigation adopts the Decision Region method from the 
two ALEC code options, as opposed to the Brute Force method. This choice is motivated by the former’s lower memory requirements, 
reduced complexity, and decreased energy consumption. The ALDC algorithm also incorporates prediction coding, a technique that 
efficiently extracts critical information from data samples. This prediction method relies on the difference between consecutive 
environmental data samples within a block, simplifying the algorithm and data processing. The anticipated data sample is determined 
based on the sample observed at the end of the previous observation. 

These features collectively contribute to the effectiveness and energy efficiency of the ALDC algorithm in handling sensor data with 
changing properties, ultimately enhancing the sustainability of sensor networks. 

Anticipated sample n̂i = Previous sample ni − − 1 (1) 

The successive sample differences (diffs)are obtained from the differences between the Present Reading ni and the Anticipated 
sample ni – 1, which is represented by, 

diffs = ni − ni − 1, (2) 

To be able to obtain the difference at the start diff0, it is assumed that, 

diff 0 = 2DYRange− 1 (3) 

The dynamic range (DYRange) of symbols is determined by the shift from maximum to minimum values within the incoming data, 
signifying the variations in symbol values that serve as input to the encoder. 

In the Decision Region method, the sum of all the differences in sample values within the data, for a block of a samples, denoted as 
DiffSum, is computed. This sum is then compared against three predefined decision levels to identify the boundary region, denoted as 
H. The selection of the most suitable Huffman ALEC code option is based on this boundary region determination. 

The calculation of the sum of differences is expressed as follows: 

DiffSum =
∑a

i=1
|diffs| (4) 

The class region H that falls within the decision boundary can be determined from the following:  

1. 2-Huffman Table ALEC code option is selected for region H ≤ 3a.
2. 3-Huffman Table ALEC code option is selected for region 3a < H ≤ 21a.

Table 2 (continued ) 

CITATION Paper Year Description Merits De-merits Uniqueness 

FELACS with the 
intention to minimize 
energy consumption and 
extend sensor network 
lifetime. Proposes a 
robust approach for 
identifying and 
replacing outliers within 
sensor data significantly 
enhancing compression 
performance. 
Provides efficient 
transmission of 
environmental data that 
is collected from diverse 
deployments for WSN. 

More accurate sampling 
and encoding of data 
accomplished from 
minimization of 
variations in data patterns 
brought about by 
replacing outliers.  
Facilitates data error 
detection and promotes 
accurate transmission of 
data. 

methods for 
independently encoding 
outlier bits, apart from 
the cleaned compressed 
data, and subsequently 
integrating them with 
the cleaned compressed 
data before 
decompression. This will 
facilitate the seamless 
restoration of sensor 
network data to its 
original form while 
maintaining energy 
efficiency. 

applications. Well suited 
for applications 
demanding error free 
data recovery. 
Ensures efficient 
transmission of 
environmental data as it 
can determine optimum 
block sizes for encoding 
and decoding data from 
WSN deployments.  
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3. 2-Huffman Table ALEC code option is selected for region 12a < H. 

The selected class regions are computed to determine the best code option to encode differences. Its associated identifier ID will be 
generated as either 0 or 1 for either 2-Huffman Table ALEC or 3-Huffman Table ALEC. Pseudocode 3 is used to generate the encoded 
bitstream. 

The encoded output is made up of  

I. The code identifier ID, indicating the Table ALEC code option used (either 2-Huffman Table ALEC or 3-Huffman Table ALEC).  
II. A table identifier ID indicating the Huffman coding Table used (either Tables 1–3) to encode the sample blocks with the selected 

code option.  
III. The Huffman group code for the difference sample.  
IV. The binary representation of the difference sample. This representation is not needed when the differences value is zero. 

This information in the output bitstream is needed by the encoder so that it can recreate the raw bitstream out of the code. 
Pseudocode I is used to calculate the differences diffs between the consecutive readings. Pseudocode II calculates the sum of absolute 
values of differences, determines the boundary region and generates the code option ID. 

Pseudocode I: Function diffs (data, DYRange, diff0, diff) 
//data >> the stream of raw data. 
//DYRange >> symbolic diversity of source data. 
Calculating the first difference. 
//diff0 >> the initial residue 
diff(n) → source(n) – xo. 
//Calculate the differences for entire bitstream. 
OUTPUT diff. 
Pseudocode II: Function Adaptive (F, K, ID). 
//Function Adaptive sets the decision region limit. 
//Calculate the sum of absolute values for differences F. 
//K >> the residue length. 
Call Function Residual (); Calculate K. 
//Set the F region. 
IF F< 3 K 
//ASSIGN code ID to use of Huffman Tables A and B 
ID → ‘0′. 
ELSE 
IF 3K< F <= 12 K 
//ASSIGN code ID to use of Huffman tables A, B, and C 
ID → ‘1′. 
CLOSE IF 
OUTPUT ID. 

Analyzing ‘Fast and efficient lossless adaptive compression scheme’ (FELACS) [3] 

Another noteworthy lossless adaptive compression technique, introduced by [3], operates on sample blocks and is known as the 
’Fast and Efficient Lossless Adaptive Compression Scheme (FELACS).’ FELACS employs Golomb-Rice coding for both data encoding 
and decoding processes and is designed to prioritize lightweight implementation with reduced complexity. One of FELACS ’s key 
strengths lies in its resilience against data packet loss. It achieves this by independently compressing source information in discrete 
blocks. The utilization of Golomb-Rice coding contributes to its speed, enabling faster data encoding. These codes are derived from a 
set of prefix codes with exponential growth, a concept originally devised by Golomb and later independently rediscovered by Rice, 
hence the name ’Golomb-Rice’ [45]. FELACS stands out as an efficient and lightweight solution for lossless data compression, making it 

Table 3 
ALDC Selection of Tables for encoding.  

Sample Table No. of bits 

10 3 2 
0 1 2 
0 1 2 
− 1 1 2 
1 1 2 
0 1 2 
0 1 2 
6 3 2  
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particularly suitable for applications where complexity and speed are critical considerations. 
For a parameter ∂ that is a non-negative integer, and a known value s, the Golomb codes encode the non-negative integer ∂ in unary 

as ⌊∂⁄s⌋. The split part is encoded as the modulus of ∂ and s. The Golomb-Rice codes utilized by FELACS are particularly well-suited for 
sources that exhibit geometric distributions, where they yield optimal compression results. In the case of FELACS, to maintain minimal 
overhead costs for the ID sequence, the options for Golomb-Rice codes are restricted to a set of 8 codes, each represented using just 3 
bits. This limitation contributes to the efficiency and effectiveness of FELACS in handling various data sources with geometric 
characteristics. 

This sets s to 2t for a non-negative integer t. When t is known, the term that precedes the integer’s code ∂ is made up of repre
sentation in unary of ⌊∂/2t⌋ and translates to ⌊∂/2t⌋ number of zeros (0) with a one (1) at the end. 

The word ending suffix is made up of binary representation of ∂, particularly its t least significant bits, meaning that the modulus of 
∂ and 2t uses t bits binary representation of ∂. A block of samples is encoded by sending an identity (ID) bit sequence along with the 
encoded bit stream as an indication to the decoder, the option of the code that was used to encode the samples. This ID pattern 
represents t in binary representation form, using ⌈log2R⌉, where R is a sequence of R-bits symbols to be encoded. Rice coding ac
commodates and handles changes in source data statistics and as such it can allow different code options to be used for every sample 
block. The Golomb-Rice code length of t is denoted by, 

lt = ⌊∂/2t⌋ + 1 + t (5) 

This code length lt was used to compute the code length minima and t, the associated optimum coding parameter, that were 
eventually used to draw a table of code options for selected non-negative integers. The sum of samples ∂i = δ1 δ2…∂q in a block of Q 
samples is calculated as 

Qsum =
∑Q

i=1
∂i (6) 

In the FELACS approach, the computed sum is compared to pre-calculated decision regions to determine the optimal parameter ’t.’ 
Notably, in FELACS, instead of relying on tabulated information, bit shift operations are employed, enhancing the algorithm’s speed. 
This efficiency is facilitated by the presence of powers of 2 that multiply the Q samples, aligning with the decision region boundaries. 
FELACS incorporates predictive coding to ensure that the original data sources exhibit geometric distributions. It employs a linear 
prediction model that operates on the differences between successive sampled data points. This simplifies the processing, making it 
well-suited for sensor nodes with limited computational capacity. 

The anticipated sample is defined the same way as realized in ALDC by Eq. (1). In the same way, the successive sample differences 
diffs are as in Eq. (2). Unlike in ALDC, to obtain the first difference value, it is assumed that the initial difference is determined by, 

diff 0 = 0 (7) 

In the development of the FELACS algorithm, it was presumed that each sample value falls within the range [0, 2N-1], where ‘N’’ 
corresponds to the resolution of the analog-to-digital converter (ADC) utilized by the sensor node. To adapt Golomb-Rice coding for 
implementation within wireless sensor networks (WSNs), certain modifications were made to align the coding scheme with the specific 
requirements and constraints of WSNs. 

The encoding procedure 

The coding options in FELACS are deliberately limited to eight (8) Golomb-Rice family codes, where ’t’ takes on values from 0 to 7. 
This constraint ensures that the bit sequence required for the ID remains at a minimum of 3 bits, calculated as ⌈log₂ 8⌉. This design 
choice effectively enables compression for data sets with source entropy ranging from 1.5 to 9.5. Importantly, data blocks are inde
pendently encoded to enhance data packet robustness and mitigate packet loss. To transform the differences of the samples, computed 
using Eq. (2), from a Laplacian distribution to a geometric distribution (∂i) a Rice mapping function is employed. The transformation is 
defined as follows: 

∂i =

⎧
⎨

⎩

2 diffs 0 ≤ diffs ≤ θ
2|diffs| − 1 − θ ≤ diffs < 0
θ + |diffs| otherwise,

[45] (8) 

Here, θ is determined as the minimum value between the anticipated sample and 2R-1 minus the anticipated sample. The resulting 
samples form a sequence of mapped differences. The optimal code value ’t’ is determined by evaluating the sum of these mapped 
differences, excluding the first sample, against predefined decision levels. 

The first sample is directly encoded in its natural R-bits binary form, serving as the reference sample. Subsequently, the remaining 
samples are encoded using both Unary and Split-part representations. The resulting codewords are concatenated. The codeword for the 
reference sample is appended to the resultant codeword of the remaining samples, forming the encoded bitstream. The optimal code 
value ’t’ is converted to binary and appended as the first 3 bits to the encoded bitstream. This comprehensive encoding process in 
FELACS ensures efficient data compression while accommodating a range of data properties and facilitating robust data packet 
transmission. 
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The decoding procedure 

To decode the incoming data stream, the decoder requires information about the sample number, the ADC resolution, and the 3-bit 
sequence number of the ID. The decoding process unfolds as follows: a) The first 3 bits from the bitstream are extracted and converted 
into decimal form, representing the optimal coding option ’t.’ b) The subsequent R-bits represent the reference sample and are con
verted into decimal form. c) The remaining samples are decoded using the Golomb-Rice coding method, following these steps: i. To 
determine the sample that follows the reference sample, the decoder counts the number of consecutive zeros that precede a one (1). 
This count is converted into its binary representation, and the subsequent ’t’ bits are appended to this binary representation. ii. The 
resulting binary number is then converted into decimal form. iii. The above procedure is repeated for the remaining samples until the 
entire data packet is fully decoded. 

The mapped differences obtained through this decoding process are subsequently reverse mapped into sample differences using the 
inverse of Eq. (8), leading to the formulation of Eq. (9). 

This decoding method ensures the accurate reconstruction of the original data samples, effectively reversing the compression 
process. 

di =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

[
∂i

2

]

0 ≤ ∂i ≤ θ

|∂i|

2
+ 1 − θ ≤ ∂i < 0

θ − |∂i| otherwise

(9) 

The reverse mapping function yields the differences of the original data stream. To generate the original samples, these differences 
are added to the previously read samples using (Eqs. 2 and 7). These resultant values are then appended to the reference decimal, 
forming the decoded stream, which effectively represents the reconstructed original bitstream. The entire encoding and decoding 
procedures are systematically illustrated in the accompanying flowchart, as depicted in Fig. 4. This flowchart serves as a visual 

Fig. 4. FELACS flowchart – Encoding and decoding.  
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representation of the step-by-step processes involved in both encoding and decoding, ensuring the accuracy and integrity of the data 
throughout the compression and decompression cycles. 

The proposed algorithm 

As emphasized by the authors in [32], the hallmark of an efficient lossless compression technique lies in its ability to utilize an 
average number of bits that align with the information entropy of the source to encode the source’s output. Information entropy 
represents the inherent uncertainty or unpredictability of the source’s data. The difference between the information entropy and the 
average length of the source’s encoding is referred to as information redundancy. This metric serves as a measure of the efficiency of 
the encoding scheme. In essence, the smaller the information redundancy, the more efficient the code, as it minimizes the additional 
bits required to represent the source’s data accurately. This underscores the importance of achieving high compression efficiency while 
preserving data integrity in lossless compression techniques. 

Description of the modified ALDC scheme 

This research endeavor presents an enhancement to the ALDC algorithm, focusing on the modification of the application of 
Huffman coding tables, which has led to a noteworthy reduction in energy consumption. In contrast to the previous work in [2], which 
utilized two code options involving three Huffman coding tables, our proposed algorithm adopts a strategy that selects shorter codes 
from these three tables for encoding data samples. This approach of choosing tables with shorter codes significantly diminishes the 
number of bits required for encoding data samples. The outcome is a more energy-efficient algorithm, which aligns with the goal of 
optimizing energy consumption in wireless sensor networks. Modification is made by addition of Pseudocode III, ‘Huff_4′ which uses a 
modified encoder function ‘My_Encoder’, in Pseudocode IV. 

Pseudocode III, Function Huff_4 (diff_vector, T-A, T-B, T-C, codeword_1) 
//My_Encoder() >> function to encode. 
//codeword_1 >> the output bitstream of N diff_vector. 
//* indicates chain or concatenation 
//Encoding a block of N diff_vector utilizing all three Huffman Tables. 
CALL Function My_Encoder() to obtain Tables A, B and C and a block of N diff_vector and outputting ci1. ciA → ci1 
// append encoded bitstream ciA to codeword_1 
codeword_1 → codeword_1* ciA 
OUTPUT codeword_1 
Pseudocode IV: Function My_encoder(diff_value, TABLE,ci_code) [2]. 
// TABLE >> Encoding Huffman table. 
// bi >> number showing set of diff_value and the minimum number of bits that are required in encoding the diff_value. 
// ci_code >> output bitstream. 
// hi >> Huffman code to encode the set of diff_value. 
// li >> integer code to encode the position of the pointer for the set of diff_value. 
// * indicates chain or concatenation 
// (index)| bi indicates the binary form of index over bi bits 
// calculate diff_value class 
IF diff_value = 0 
ASSIGN bi TO 0 
ELSE 
ASSIGN bi TO _log2 (|diff_value|)_ 
CLOSE IF 
// Obtain code hi from TABLE 
ASSIGN hi TO TABLE [bi] 
// Create ci 
IF bi = 0 THEN 
// li is not needed 
ASSIGN ci TO hi 
ELSE 
// Create li 
ASSIGN li TO (index)| bi 
// Create ci 
ASSIGN ci TO hi * li 
CLOSE IF 
OUTPUT ci 
Table 3 demonstrates how the different samples were selected from the three Huffman tables for every sample, indicating the bit 

numbers which were used for encoding the samples. 
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Description of the proposed FELACS algorithm 

Environmental data collected from sensor networks is vulnerable to the influence of natural phenomena, which can result in 
substantial variations in data patterns. These variations often manifest as values that fall well outside the typical range of the dataset 
and are commonly referred to as outliers. These outliers can have a detrimental impact on the compressibility of data, potentially 
leading to misrepresentations or difficulties in restoring the data to its original form. 

The proposed FELACS algorithm addresses this issue by introducing a method for detecting and replacing outliers. It operates under 
the assumption that temperature readings measured at a given time exhibit uniformity and should not deviate significantly from one 
another, unless an environmental disturbance occurs, causing spikes or altering the data’s range and uniformity. The analysis involves 
a stream of data, and it examines the presence of outliers at various points within the data stream, including the beginning (first data 
point), the end (last data point), and intermediate positions (between the first and last data points). For instance: 

term = [1930 1801 1807 1806 1804 1910]. 
To assess whether the first term (i = 1930) is an outlier, we evaluate whether 10 times the absolute difference between term 1807 

and term 1801 is less than the absolute difference between term 1930 and term 1801. If the former is less than the latter, term 1930 is 
deemed an outlier. In such cases, it is replaced by the sum of the subsequent term (1801) and a random number between − 5 and 5, 
which represents noise or an error that may either amplify or attenuate the term. If the former is greater, term i retains its value of 1930 
and is not classified as an outlier. 

For assessing middle terms as outliers, the algorithm resets term i and assigns k = 0. It checks for a condition where term i + 1, now 
representing the new term i (1801), is less than or equal to the number of terms in the stream, excluding one term, and greater than 1. If 
the absolute value of the difference between term 1801 and the preceding term i-1 is greater than ten times the absolute difference 
between term 1807 and the previous term 1801, and if k is equal to 0, k takes on the value of term i (1801). Term 1801 is then classified 
as an outlier and replaced by the median value of the terms on either side of it (term i-1 and term i + 1), with the addition of a random 
value between − 5 and 5. If the previous term i-1 equals k, term i retains its value of 1801, indicating it is not an outlier. The variable k is 
subsequently reset to 0. If i-1 does not equal k, term i again retains its value of 1801 and is not considered an outlier. 

To assess whether the last term (1910) is an outlier, a comprehensive evaluation is conducted across the entire dataset. It checks if 
the absolute difference between 1910 and its preceding term (1804) exceeds ten times the absolute difference between term 1804 and 
its previous term i-2 (1806). If this condition is met, 1910 is identified as an outlier and replaced by its preceding term (1804) added to 
a random value between − 5 and 5. If the condition is not met, 1910 remains unchanged and is not classified as an outlier. 

These outlier detection and replacement processes are implemented using MATLAB through Pseudocode V, ensuring the robustness 
and accuracy of the data. 

Pseudocode V: Function Remove_Outlier (term, k, Cterm) 
//term >> a vector of terms of data. 
//k >> value that resets term i when the length of the term is reduced by 1 and the terms after the first term are tested. 
//Cterm >> output showing replaced outliers. 
//Testing the first term. 
Initialize a vector Cterm to store output. 
FOR i being the entire length of term 
IF i is an outier 
IF 10 x abs(diff(term i + 2 and term i + 1)) is less than abs(diff(term i and term i + 1)). 
ASSIGN Cterm i TO term i + 1 plus random number between − 5 and 5. 
ELSE 
ASSIGN Cterm i TO term i. 
END 
END 
RESET k TO 0. 
//Testing middle terms. 
IF i is less or equal to number of terms excluding 1 term AND i is greater than 1. 
IF abs(diffs(term i and term i-1)) is greater than10 x abs(diffs(term i + 1) and term i-1)) AND k is 0 
ASSIGN k TO term i. 
ASSIGN Cterm i TO round(median(term i-1 and term i + 1) plus a random number between − 5 and 5). 
ELSEIF 
term i-1 is k 
ASSIGN Cterm i TO term i. 
RESET k 
ELSE 
ASSIGN Cterm i TO term i. 
END 
END. 
//Testing the last term. 
IF i is all terms. 
IF abs(diffs(term i and term i-1)) is greater than 10 x abs(diffs(term i-1 and term i-2)) 
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ASSIGN Cterm i TO term i-1 plus a random number between − 5 and 5. 
ELSE 
ASSIGN Cterm i TO term i. 
END 
END 
END 
END. 
Fig. 5 provides a visual representation of the workflow employed to implement the modified algorithm. As depicted in the diagram, 

the process begins by subjecting the data term to outlier detection. Any identified outliers are subsequently replaced using the method 
outlined, resulting in the formation of Cterm. Encoding operations are then carried out on various blocks of Cterm to ascertain the 
optimal coding parameters for each block size. Finally, the decoding phase is executed to restore the cleaned original data, which has 
been purged of outliers. This workflow encapsulates the key steps involved in the algorithm’s operation, from outlier identification and 
replacement to encoding and, ultimately, data restoration. 

In FELACS, the Golomb-Rice coding method is employed to encode data samples. During this coding process, the unary code is 
determined based on the mapped differences and the optimal coding parameter. Specifically, if the optimal coding parameter is zero, 
the unary code is equal to the value of the mapped differences. This condition holds true even when the unary code value itself is zero. 
Notably, the original algorithm did not account for these conditions in the encoding and decoding of data samples. To rectify this 
oversight, the proposed algorithm introduces enhancements through Pseudocode V1, ensuring that these specific conditions are 
appropriately addressed during the encoding and decoding phases. 

Pseudocode V1: (mapped_diffs, Option_k, unaryCoding(u,m,y)). 
//u is the codeword for unary representation in Golomb-Rice coding method. 
//m is the position of u, where u is equal to 0. 
//y is the number of bits for values of m. 
CREATE zero vectors to store values of u, m and y. 
// Compute unary representation code 
FOR i number of mapped_diffs 
IF u == 0 THEN 
SET m(i) TO i 
ELSE 
SET m(i) TO 0 
ENDIF 

Fig. 5. Modified FELACS CODEC workflow.  
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SET y TO mapped_diffs 
END 
RETURN 
Fig. 6 illustrates the encoding stage of the modified algorithm. 
At the decoding stage, the algorithm also checks for these conditions and addresses them as illustrated by the decoder flow chart in 

Fig. 7. 

Fig. 6. Modified FELACS encoder flowchart.  
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Fig. 7. Modified FELACS decoder flowchart.  

Table 4 
Main properties of datasets.  

Dataset Fishnet_101 Luce_84 LG_20 

FELACS  
09/08/2007 to 31/08/2007. 
12,652  

23/11/2006 to 17/12/2006. 
64,913.  

04/09/2007 to 03/10/2007. 
21,523. 

Date 
Number of Samples 

Proposed  
22/11/2006 to 09/05/2007. 
14,721.  

06/08/2007 to 02/09/2007. 
447,772.  

27/08/2007 to 31/10/2007. 
43,059. 

Date 
Number of Samples.  
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Evaluation and experimental results 

Datasets 

The datasets employed in this research were sourced from three distinct deployments: HES-SO Fishnet, Le Genepi, and LUCE, which 
form part of the Sensorscope practical environmental monitoring wireless sensor network. These deployments feature TinyNode nodes 
equipped with an MSP430 microcontroller from Texas Instruments, an XE1205 radio transmitter from Xemics, and an SHT75 sensor 
module manufactured by Sensirion. The sensors are integrated with a 12-bit analogue-to-digital converter for relative humidity 
measurements and a 14-bit converter for temperature measurements. For reference, Table 4 provides a summary of the key properties 
of these datasets along with their respective acquisition dates. 

The parameters under examination in this study included Relative Humidity, Ambient Temperature, and Surface Temperature. The 
research involved a comparative analysis of the algorithm’s performance proposed in this work with that of the algorithm presented in 
[3]. This comparative assessment allowed for an evaluation of the effectiveness and efficiency of the proposed algorithm in relation to 
the existing one. 

Evaluation metrics used 

To gauge the efficacy of the ALDC algorithm, two key metrics were employed: Compression Ratio (CR) and Energy Saving. The 
parameter setting for Relative Humidity, Fishnet_101 dataset is as shown in Table 5. 

Energy Saving quantifies the amount of energy conserved by encoding the differences between data samples, as opposed to 
encoding the raw data. It is quantitatively expressed as follows: 

Energy Saving =
Energy saved through Compression Ecomp

Energy consumed without Compression EUncomp
%.[46] (10) 

If we were to utilize binary representations for encoding these samples, each sample would necessitate 14 bits, as demonstrated 
below: 

Energy Saving =
Average number of bits saved per sample Nb

Number of bits per sample of original data N
%. (11) 

Energy saving can also be expressed as 

Compression Ratio CR =

(

1 −
Compressed data

raw data

)

x 100. (12) 

[2] 
To evaluate the effectiveness of the proposed ALDC algorithm, these expressions were utilized to calculate compression ratios for 

varying sizes of data blocks. The results were then visualized through graphical representations to unveil the relationship between 
them. 

Similarly, for the FELACS scheme, the assessment was based on three key metrics: Compression Rate, Energy Saving, and Entropy. 
Table 6 demonstrates the parameter settings for Relative Humidity measurements from Fishnet_101 dataset. 

The Compression Rate signifies the rate at which data is compressed and is computed as the ratio of the number of compressed data 
bits to the number of original data samples. This metric is expressed as follows: 

Compression rate =
number of bits of compressed data

number of samples of the original data.
(13) 

Entropy serves as a metric for quantifying the average number of binary symbols necessary to encode the output of a data source. It 
characterizes the typical self-information contained within random experiments and hinges on the sequential arrangement of data 
samples. The FELACS algorithm gauges the optimal lossless compression of source data by computing information entropy for both the 
original data and pre-processed data. The formula for entropy is articulated as follows: 

H =
∑R

i=1
p(xi) . log2(p(xi)), (14) 

Table 5 
Parameter settings-modified ALDC.  

PARAMETER VALUE 

Number of samples 20 
Sample Block Size N = 1 to 20. 
ADC Resolution DR = 14 
First difference 2DR− 1 

Decision Region F >12N  
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where R represents a count of the ADC’s potential values xi  and  p(xi) is the probabilistic mass function of xi. 

Experimental results 

When the data remains unaffected by natural phenomena, the disparity between consecutive data points tends to be minimal and 
diminishes even further as the sampling rate of the data increases. In such cases, the ALDC algorithm transmits the binary repre
sentation of these differences instead of conveying the binary representation of the actual data points. This approach effectively 
conserves energy. To illustrate this, consider the following stream of Relative Humidity samples from the Fishnet_101 deployment in 
Example 1 below: 

data = [9910, 9519, 9518, 9518, 9518, 9518, 9518, 9517, 9517, 9517, 9517, 9517, 9517, 9517, 9517, 9517, 9516, 9516, 9516, 
9516]. 

If we were to utilize binary representations for encoding these samples, each sample would necessitate 14 bits, as demonstrated 
below: 

Encoding Bits = [’10011010110110′’10010100101111′’10010100101110′’10010100101110′’10010100101110′, ……….’10010 
100101100′]. 

Consequently, we would end up with a lengthy 280-bit binary number, demanding substantial memory space and considerable 
energy for transmission. Assuming the use of a 14-bit ADC for encoding, the initial data sample is configured as 214− 1 = 213 = 8192. 
ALDC, on the other hand, encodes the disparities between consecutive differences, which can be enumerated as follows: 

ALDC data differences =
[1718, − 391, − 1, 0, 0, 0, 0, − 1, 0, 0, 0, 0, 0, 0, 0, 0, − 1, 0, 0, 0]. 
These differences represent smaller values, which in turn require shorter bit lengths for encoding. Consequently, the ALDC-encoded 

word is significantly more compact, comprising just 71 bits, as shown below: 
Encoded word = {’01101110101110101101101101110110010000000000100000000000000000010000000′} 
In contrast to the original 280-bit number, transmitting the encoded word will demand significantly less energy, and it will also 

occupy less storage space. In total, 209 bits have been conserved. 
The ALDC baseline algorithm was subjected to simulation using the numerical example provided in [2]. The necessary number of 

bits for encoding the temperature samples was curtailed from 112 bits to 30 bits. The alterations made to ALDC, as described in Section 
A, further reduced the bit count to 26 bits. The results have been visualized in Fig. 8. 

Table 6 
Parameter settings - Proposed FELACS.  

Parameter Value 

Number of samples 14,720 
Sample Block Size 20, 100, 500, 1000, 5000, 14,720. 
ADC Resolution 15 
Coding Parameter  
First difference 0 
Entropy (source) 9.2781  

Fig. 8. Compression ratio vs block sizes for improved ALDC [31].  
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As indicated in Table 3, only 2 bits were necessary to encode each symbol. Figs. 9 and 10 visually demonstrate the reduced bit count 
achieved with the modified ALDC and the corresponding energy savings resulting from this reduction compared to the original scheme. 

Smaller block sizes result in lower measurement precision, a smaller number of potential codewords, and lower code option values. 
Smaller block sizes lead to less complex processing, faster operations, and reduced susceptibility to data errors or loss. On the other 
hand, as block length increases, there is more room to identify data patterns and redundancies. Increased block length also expands the 
dynamic range of data and results in higher code option values. While this can improve precision and maintain a steady compression 
performance, it also introduces a higher risk of data loss or distortion and increases processing complexity. 

Using the first example as reference, when compressing a block of 20 samples, the dynamic range was 14, the code option region H 
was 2112, which falls within ALDC region 12a<H, and the algorithm utilized the 2-Huffman coding table to encode the block of data. 
The achieved compression ratio was 74.6 %. In contrast, when compressing a block of 8 samples, the dynamic range remained at 14, 
but the code option region decreased to 2111, still within the code option region 12a<H. Larger block sizes resulted in a higher 
number of bits required, leading to lower compression ratios compared to smaller block sizes. 

Table 7 presents a comprehensive view of the compression performance, including the processing time for various block lengths. 
In the FELACS scheme, datasets underwent an outlier detection and cleaning process using the proposed method before being 

encoded and decoded with different block sizes. The results for both the baseline and modified algorithms are presented in Tables 8 and 
9, for block sizes of the Fishnet_101 Relative Humidity dataset. 

The results demonstrate that the encoded word size for different block sizes was larger for the baseline FELACS algorithm compared 
to the modified version. This indicates that the outlier replacement process reduced the size of the original data and improved the 
compression rate. According to Eq. (13), a smaller number of compressed bits leads to a better compression rate. When outliers are not 
identified and cleaned from the data, the code option changes according to the decision region determined by the Rice Mapping 
function in Eq. (8). This function utilizes the sum of the absolute values of the mapped differences to determine the optimal code for the 
data block. Cleaning outliers smoothens the mapped differences and maintains the code option at a consistent level. Larger block sizes 
provide more time to observe data patterns, improving precision. The processing time for the modified algorithm is slightly higher than 
that of the baseline due to the additional time required for outlier processing. 

Entropy, as expressed in Eq. (14), measures the amount of randomness in data. Raw data contains more information compared to 
compressed data, as indicated by the lower entropy demonstrated by the modified FELACS. Compression eliminates data redundancy, 
reducing entropy. Larger compressed block sizes exhibit higher entropy than smaller ones, indicating more information content in 
larger blocks. The relationship between compression rate and different block sizes is illustrated in Fig. 11 to compare the two 
algorithms. 

The comparison between the baseline algorithm and the modified algorithm with outlier replacement for encoding the given 
Relative Humidity samples clearly demonstrates the impact of outlier removal on the encoding process. In the baseline algorithm, as 
the block size increased from 2 to 10 samples, the number of bits required for encoding also increased. This was due to the changing 
optimum coding parameter, which accommodated larger block sizes by selecting a different code parameter. However, the baseline 
coding did not correctly handle the condition where the value of the unary code was 0, resulting in codewords that did not accurately 
represent the original data. 

On the other hand, the modified algorithm, which included outlier replacement, significantly reduced the number of bits required 
for encoding. By replacing the first data point (9910) with 9522 and reducing the large variation between successive terms, the 
codeword size decreased from 93 to 43 bits. The baseline 93-bit codeword: 

’110010011010110110000000000000100110110000011000000100000010000001000000100000110000001000000′. 
The modified algorithm 43 bits codeword: 

Fig. 9. Energy saving vs no. of bits encoded.  
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Fig. 10. Number of bits saved vs energy saving. [31].  

Table 7 
Improved ALDC Results for different block lengths.  

Block Size a No. of bits Compressed Compression Ratio Code Option H Processing time (µs) 

1 22 92.1 1718 32.7 
2 32 88.6 2109 33.3 
3 35 87.5 2110 38.2 
4 37 86.8 2110 37.7 
5 39 86.1 2110 32.9 
6 41 85.4 2110 45.2 
7 43 84.6 2110 39.5 
8 46 83.6 2111 43 
9 48 82.9 2111 35.2 
10 50 82.1 2111 37.1 
11 52 81.4 2111 35.4 
12 54 80.7 2111 37.1 
13 56 80 2111 37 
14 58 79.3 2111 34.1 
15 60 78.6 2111 35.5 
16 62 77.9 2111 39.7 
17 65 76.8 2112 35.3 
18 67 76.1 2112 37.2 
19 69 75.4 2112 40.3 
20 71 74.6 2112 39.5  

Table 8 
Fishnet_101 relative humidity baseline FELACS.  

Block Size No. of Bits Coded word Processing Time (s) Compression Rate Code Option Entropy 

20 156 1.07 7.8 5 1.92 
40 261 1.19 6.53 4 1.91 
60 351 1.22 5.85 3 1.88 
80 431 0.98 5.39 3 2.07 
100 510 1.23 5.1 2 2.16 
120 570 1.21 4.75 2 2.23 
140 630 1.32 4.5 2 2.34 
160 690 1.1 4.31 2 2.36 
180 750 1.15 4.17 1 2.4 
200 806 1.16 4.03 1 2.54 
220 846 1.17 3.85 1 2.59 
240 886 1.34 3.69 1 2.74 
260 926 0.99 3.56 1 2.89 
280 966 1.12 3.45 1 3.02 
300 1006 1.5 3.35 1 3.14  
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’0000100101001100100000010010101010100101010′ 
The binary numbers highlighted in green identify the binary representation of the selected optimum coding parameter. The ones 

highlighted in blue are the binary representation of the reference sample, while the rest represent the sample codes. This reduction was 
achieved because the modified coding addressed the change in the decision region to an optimum code option of zero for the block size 
of 10, satisfying the equations below. 

Unary Code =
⌊
∂/20⌋ = ∂ 

Split Part Code =modulus( ∂, 20) = ∂. 
This demonstrates the effectiveness of outlier removal in improving compression efficiency and ensuring that the encoded data 

more accurately represents the original data. The proposed algorithm, which includes outlier removal and addresses optimum 
parameter conditions in its coding process, demonstrates its effectiveness in accurately representing the original data while achieving 
reduced compression rates and improved compression efficiency. This is evident in the results for Fishnet_101 Ambient Temperature 
and Le Genepi_20 Surface Temperature datasets as displayed in Tables 10-13. 

In these tables, the modified algorithm consistently outperforms the baseline algorithm in terms of compression rate, energy saving, 
and entropy. The reduced number of bits required for encoding and improved entropy values indicate that the modified algorithm 
provides a more efficient compression process, resulting in a better representation of the original data. Figs. 12 and 13 further illustrate 
the performance of both algorithms, with the modified algorithm consistently showing better results across different block sizes. 
Overall, the proposed algorithm’s ability to handle outliers and adapt to changing coding conditions leads to improved compression 
efficiency, making it a valuable approach for data compression in wireless sensor networks. 

Table 9 
Fishnet_101 relative humidity modified FELACS.  

Block Size No. of Bits Coded word Processing Time 
(s) 

Compression Rate Code Option Entropy 

20 60 2.86 3 0 1.92 
40 108 3.12 2.7 0 1.91 
60 144 3.63 2.4 0 1.88 
80 182 5.27 2.28 0 2.07 
100 230 6.26 2.3 0 2.16 
120 271 3.34 2.26 0 2.23 
140 310 6.49 2.21 0 2.34 
160 351 4.54 2.19 0 2.36 
180 392 3.09 2.18 0 2.4 
200 423 2.96 2.12 0 2.55 
220 469 5.7 2.13 0 2.59 
240 512 2.88 2.13 0 2.77 
260 547 5.34 2.1 0 2.9 
280 595 3.19 2.13 0 3.02 
300 631 3.11 2.1 0 3.14  

Fig. 11. Fishnet_101 relative humidity 
compression rate vs block sizes. 
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The two datasets exhibit a consistent compression rate across both algorithms, primarily due to the dataset’s stable patterns within 
the tested block sizes, signifying the absence of outliers in the dataset. This underscores the proposed method’s utility in data error 
validation. 

Further investigations were made for block sizes of 20, 100, 500, 1000 and 5000 using relative humidity dataset of Fishnet_101 

Table 10 
Fishnet ambient temperature baseline FELACS.  

Block Size No. of Bits Coded word Processing Time 
(s) 

Compression Rate Code Option Entropy 

20 101 1.19 5.05 3 3.88 
40 177 2.14 4.43 2 4.9 
60 242 2.95 4.03 2 5.43 
80 300 1.24 3.75 1 5.74 
100 348 4 3.48 1 6.03 
120 406 1.68 3.38 1 6.38 
140 454 1.01 3.24 1 6.59 
160 497 1.35 3.11 1 6.68 
180 538 1.29 2.99 1 6.73 
200 579 1.34 2.9 1 6.83 
220 620 1.29 2.82 1 6.84 
240 969 0.94 4.04 0 6.86 
260 1016 1.42 3.91 0 6.91 
280 1062 1.04 3.79 0 6.97 
300 1107 1.27 3.69 0 7  

Table 11 
Fishnet ambient temperature modified FELACS.  

Block Size No. of Bits Coded word Processing Time 
(s) 

Compression Rate Code Option Entropy 

20 101 3 5.05 3 3.88 
40 177 3.53 4.43 2 4.9 
60 242 3.34 4.03 2 5.43 
80 300 3.54 3.75 1 5.74 
100 348 5.82 3.48 1 6.03 
120 406 3.64 3.38 1 6.38 
140 454 4.31 3.24 1 6.59 
160 497 5.36 3.11 1 6.68 
180 538 4.99 2.99 1 6.73 
200 579 6.98 2.9 1 6.83 
220 620 5.1 2.82 1 6.84 
240 969 3.51 4.04 0 6.86 
260 1016 4.63 3.91 0 6.91 
280 1062 3.53 3.79 0 6.97 
300 1107 4.65 3.69 0 7  

Table 12 
Le Genepi surface temperature baseline FELACS.  

Block Size No. of Bits Coded word Processing Time 
(s) 

Compression Rate Code Option Entropy 

20 89 3.13 4.45 2 2.76 
40 142 3.89 3.55 1 2.996 
60 192 2.79 3.2 1 3.31 
80 248 3.05 3.1 1 3.59 
100 398 4.68 3.98 0 3.83 
120 473 4.67 3.94 0 4.07 
140 513 4.82 3.66 0 4.02 
160 589 4.39 3.68 0 4.16 
180 640 4.87 3.56 0 4.23 
200 704 3.97 3.52 0 4.37 
220 755 4.15 3.43 0 4.41 
240 795 4.63 3.31 0 4.36 
260 846 3.39 3.25 0 4.39 
280 897 7.04 3.2 0 4.45 
300 950 3.13 3.17 0 4.5  
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deployment. The compression performance for the different block sizes were plotted as shown in Figs. 14-16 to determine the optimum 
block size for this dataset. Results indicate that the optimum block size is 1000. Compared to other block sizes. It demonstrates lower 
compression rates, adequate sampling rates and reasonable processing time. The processing time increases from 4 to 12 s as the number 
of samples increase from 1000 to 14,000. This confirms that it takes longer to sense and process a bigger block of data than it takes for a 
smaller one. A bigger block allows observation of patterns of data and is most likely to suffer natural phenomena disturbances. 
Although block sizes of 100 have higher sampling rates, their compression rates are higher and begin to fall when the number of 
samples reach 1000 and above. The block size of 5000 exhibit lower compression rates, but the sampling rate is very low for 14,720 
samples and compromises the precision for data encoding and decoding. 

The proposed method additionally holds the potential to augment the modified ALDC algorithm’s performance by proactively 
detecting outliers before the encoding process. This capability was demonstrated when compressing ten Fishnet_101 Relative Humidity 
samples (Source), resulting in an encoded word length of 50 bits using the modified ALDC algorithm. 

Source = [9910 9519 9518 9518 9518 9518 9518 9517 9517 9517]. 
Codeword=
‘01,101,110,101,110,101,101,101,101,110,110,010,000,000,000,100,000′ 
Upon implementing the proposed outlier replacement method on the same source stream, it successfully identified the first source 

term, 9910, as an outlier and subsequently replaced it. The resulting cleaned stream was as follows: 
ALDC_Cterm = [9522 9519 9518 9518 9518 9518 9518 9517 9517 9517] 
The encoded output was a 43-bit codeword =
’0100000001110100110010110010000000000100000′. 
Substituting outliers with more representative data diminishes the compression load since it narrows the variations between data 

Table 13 
Le Genepi surface temperature modified FELACS.  

Block Size No. of Bits Coded word Processing Time 
(s) 

Compression Rate Code Option Entropy 

20 89 2.83 4.45 2 2.76 
40 142 2.78 3.55 1 2.996 
60 192 3.17 3.2 1 3.31 
80 248 2.12 3.1 1 3.59 
100 398 2.76 3.98 0 3.83 
120 473 4.63 3.94 0 4.07 
140 513 5.77 3.66 0 4.02 
160 589 5.67 3.68 0 4.16 
180 640 6.74 3.56 0 4.23 
200 704 7.47 3.52 0 4.37 
220 755 3.66 3.43 0 4.41 
240 795 5.29 3.31 0 4.36 
260 846 5.16 3.25 0 4.39 
280 897 5.68 3.2 0 4.45 
300 950 3.64 3.17 0 4.5  

Fig. 12. Fishnet ambient temperature 
compression rate vs block sizes. 
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readings, thereby necessitating fewer bits for encoding. Utilizing the ALDC Eq. (3) with a 14-bit resolution analogue-to-digital con
verter, a sample block containing 10 relative humidity dataset readings attained compression ratios of CR =

(
1 − 50

140
)
×100%  = 64.2 % 

for compression without detection and cleaning of outliers, and CR =
(
1 − 43

140
)
× 100 % = 69.2 %, for compression with outlier 

cleaning. Compression performance was improved by outlier cleaning. Fig. 17 demonstrates the reduced number of bits for the 
encoded word with outlier cleaning on the different block sizes. 

Experimental results show that the proposed method outperformed the two algorithms that were analyzed. On the Modified ALDC it 
demonstrated improved compression ratio from 64.2 % to 69.2 % using the experimental example shown on page 20. The same was 
evidenced with the FELACS algorithm where compression rate was significantly reduced from a range of 7.8 to 3.35 for 300 samples 
that were sampled in block sizes of 20 as shown in Table 8 on page 17 and Fig. 11 on page 18, showing better compression performance. 
The proposed approach was not experimented on other recent literature that are available under Table 2 of related works because it 
was more focused on the two adaptive lossless data compression schemes under analysis. However, enhancement of both ALDC and 
FELACS is an indication that this robust approach can be universally applied across other data compression schemes to further reduce 
the size of data and improve energy efficiency. Identification of optimum block sizes for encoding and decoding data can also ensure 
efficient transmission of environmental data from various WSN deployments. 

It was noted that when data is sampled at an adequate rate, consecutive data readings tend to follow a consistent pattern. However, 

Fig. 13. LeGenepi_20 surface temperature 
compression rate vs block sizes. 

Fig. 14. Performance comparison for block size of 20, 100 and 500 samples.  
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longer intervals between data sampling result in significant fluctuations between data readings. The presence of outliers in the data 
introduces these large variations in the data sequence, increasing data size, reducing compressibility, and distorting the original data 
representation. Additionally, outliers elevate data entropy, which poses challenges for compression algorithms in effectively encoding 
the data. The outlier replacement technique proves valuable in scenarios where clean, compressed data is required without an 
emphasis on error detection. Conversely, for applications that demand the identification of errors or faults in data, such as seismic data 
applications, the outlier bits can be transmitted independently with minimal bit overhead. These outlier bits can then be reintegrated 
during the decompression stage to recover the true raw data. This approach offers a more energy-efficient solution compared to 
transmitting the entire data, including the outliers, which would result in a heavier data load. 

Conclusions 

In conclusion, this study has addressed a critical concern in wireless sensor networks—energy efficiency—by examining and 
enhancing two adaptive lossless data compression algorithms, ALDC and FELACS. The primary objective was to extend the operational 
lifetime of wireless sensor networks while ensuring the efficient transmission of environmental data, specifically temperature and 
relative humidity, collected from diverse field deployments, including Fishnet, Lucerne, and Le Genepi. Both ALDC and FELACS have 
demonstrated their effectiveness in reducing the data payload by encoding variations between consecutive data readings, leading to a 
reduction in the number of bits required for transmission. In particular, the modified ALDC algorithm, which employed optimized 

Fig. 15. Performance comparison for block size of 1000 samples.  

Fig. 16. Performance comparison for block size of 5000 samples.  
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Huffman coding tables, achieved an impressive 77 % improvement in energy efficiency. The analysis of FELACS revealed the impact of 
natural phenomena-induced anomalies on sensor data, necessitating a novel approach. We introduced a robust method for identifying 
and replacing outliers within the sensor data, significantly enhancing compression performance. This approach not only reduced the 
compression overhead but also improved the precision of data encoding and decoding. To ensure the accurate encoding and decoding 
of data samples, we incorporated adjustments to the selection of the optimum coding parameters using MATLAB coding, thereby 
further enhancing the energy efficiency of both ALDC and FELACS. The study has also identified 1000 as the optimum block size for 
transmission of relative humidity data from Fishnet_101 deployment. 

The applicability of these proposed algorithms can be adapted to a range of wireless sensor network applications, depending on the 
specific data patterns and nature of the deployed sensors. Our research contributes to the efficient management of energy resources in 
wireless sensor networks. As a direction for future research, we suggest exploring methods for independently encoding outlier bits, 
apart from the cleaned compressed data, and subsequently integrating them with the cleaned compressed data before decompression. 
This approach aims to facilitate the seamless restoration of sensor network data to its original form while maintaining energy 
efficiency. 

We believe that the findings and methodologies presented in this study hold significant promise for advancing the field of wireless 
sensor networks and data compression, contributing to the development of more sustainable and effective sensor network 
deployments. 
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