
Munish PuriMassey University · Riddet Institute
Munish Puri
PhD FRSC
About
190
Publications
101,876
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
7,645
Citations
Introduction
Prof. Munish Puri joined as the inaugural Professor of the Riddet-AgResearch Chair in Alternative Proteins. He holds a PhD in Industrial Biotechnology from India and did his post-doctoral training in protein biotechnology at the University of Oxford, UK. Prof. Puri is at the forefront of pioneering research in alternative proteins, precision fermentation, and cellular agriculture. He aims to innovate, develop, and deliver sustainable, nutritious foods through microbial manufacturing.
Additional affiliations
January 2017 - present
January 2009 - December 2016
January 2005 - December 2008
Publications
Publications (190)
Heterotrophic microalgae are less abundant than autotrophic species and they require the addition of organic sources in the growth medium for energy generation and the production of various metabolites in the process. Growth is independent of light energy which allows simpler scale up processes to overcome the disadvantage of large investment in in...
Background:
Previous research focused on pretreatment of biomass, production of fermentable sugars and their consumption to produce ethanol. The main goal of the work was to economise the production process cost of fermentable sugars. Therefore, the objective of the present work was to investigate enzyme hydrolysis of microcrystalline cellulose an...
The marine environment harbours a vast diversity of microorganisms, many of which are unique, and have potential to produce commercially useful materials. Therefore, marine biodiversity from Australian and Indian habitat has been explored to produce novel bioactives, and enzymes. Among these, thraustochytrids collected from Indian habitats were sho...
Background
Cellulose-degrading thermophilic anaerobic bacterium as a suitable host for consolidated bioprocessing (CBP) has been proposed as an economically suited platform for the production of second-generation biofuels. To recognize the overall objective of CBP, fermentation using co-culture of different cellulolytic and sugar-fermenting thermop...
Balsamin, a type I ribosome-inactivating protein (RIP), has been shown to inhibit HIV-1 replication at the translation step. Our recent studies have shown that balsamin also possess anti-tumor, antibacterial and DNase-like activity, however, the amount of natural balsamin in Momordica balsamina seeds is limited and preclinical studies require large...
Omega-3 fatty acids are essential fatty acids that are not synthesised by the human body and have been linked with the prevention of chronic illnesses such as cardiovascular and neurodegenerative diseases. However, the current dietary habits of the majority of the population include lower omega-3 content compared to omega-6, which does not promote...
Microalgae's potential to produce high value bioactives is contingent on the cost-effective harvesting of algal biomass. The use of CTAB (cetyl trimethylammonium bromide) assisted dispersed air flotation as a harvesting technique for Schizochytrium biomass, was optimized as a cost-effective means for recovery (R) and concentration factor (CF) using...
Alginate lyase (AL) is a polysaccharide-degrading enzyme that can degrade alginate by hydrolyzing glycosidic bonds and produces unsaturated alginate oligosaccharides (AOSs). These AOSs have wide therapeutic and nutraceutical applications. However, to produce alginate oligosaccharides in a cost-effective manner is challenging due to the low availabi...
The products of oleaginous microbes, primarily lipids, have gained tremendous attention for their health benefits in food-based applications as supplements. However, this emerging biotechnology also offers a neuroprotective treatment/management potential for various diseases that are seldom discussed. Essential fatty acids, such as DHA, are known t...
Nutritional oils (mainly omega-3 fatty acids) are receiving increased attention as critical supplementary compounds for the improvement and maintenance of human health and wellbeing. However, the predominant sources of these oils have historically shown numerous limitations relating to desirability and sustainability; hence the crucial focus is now...
Burning agricultural waste causes local air pollution and global warming. Agricultural waste, such as rice husks, contains silica reserves that can be processed into nano silica and used as a substrate for the immobilization of enzymes. The present study attempts to develop efficient silica-based nano-biocatalysts for concentrating omega-3 fatty ac...
In this study, we have demonstrated a bioprocessing approach encompassing the exogenous addition of low-molecular-weight compounds to tune the fatty acid (FA) profile in a novel thraustochytrid strain to produce desirable FAs. Maximum lipid recovery (38%, dry wt. biomass) was obtained at 1% Tween 80 and 0.25 mg/L of Vitamin B12. The transesterified...
Thraustochytrid, marine protists, are considered an extremely valuable and sustainable source of bioactives, owing to high cellular lipid content featuring high-value polyunsaturated fatty acids, and near infinite renewability. However, bottlenecks in fatty acid processing, relating to energy intensiveness and expensive cell disruption procedures l...
Marine microalgae produce a number of valuable compounds that have significant roles in the pharmaceutical, biomedical, nutraceutical, and food industries. Although there are numerous microalgal germplasms available in the marine ecosystem, only a small number of strains have been recognized for their commercial potential. In this study, several in...
The bioprocessing of lignocellulosic biomass to produce bio-based products under biorefinery setup is gaining global attention. The economic viability of this biorefinery would be inclined by the efficient bioconversion of all three major constituents of lignocellulosic biomass i.e. cellulose, hemicellulose, and lignin for value-added biochemicals...
There is growing interest in the bio-based production of lipids from algae. These lipids have a range of uses including nutritional supplements and precursors to biodiesel. Single-cell thraustochytrids are especially attractive in this regard in that they can produce over 50% of their weight as triglycerides. Furthermore, the distribution of satura...
Alginate, a natural polysaccharide derived from brown seaweed, is finding multiple applications in biomedicine via its transformation through chemical, physical, and, increasingly, en-zymatic processes. In this study a novel alginate lyase, AlyDS44, was purified and characterized from a marine actinobacterium, Streptomyces luridiscabiei, which was...
Microalgal biotechnology research continues to expand due to largely unexplored marine environments and growing consumer interest in healthy products. Thraustochytrids, which are marine oleaginous protists, are known for their production of bioactives with significant applications in nutraceuticals, pharmaceuticals, and aquaculture. A wide range of...
Enzyme-metal-ion-phosphate nanoflowers are high-surface area materials which are known to show higher activity than the constituting protein. Although the synthesis of hybrid nanoflowers has been demonstrated with a variety of proteins and reaction conditions, only di-valent metal ions have been tested to date. We expand on previous findings by tes...
Microalgae have been evaluated as promising resource for biodiesel production, but algal biofuel production is not yet commercially viable, which reflects the high energy costs linked with cultivation, harvesting, and dewatering of algae. As crude oil processing declines, microalgae biorefineries are being considered for producing bioactives such a...
Xylose reductase (XR) is an intermediate inducible enzyme of xylose metabolism responsible for the reduction of xylose into xylitol. It is an intracellular enzyme present in various facultative bacteria, yeasts, molds and algae in their cytoplasm. The active site of enzyme is polar in nature which is responsible for acid–base catalysis. The enzyme...
The physicochemical properties of alginate can affect the release profile of encapsulated bioactives, but this is poorly understood. The influence of alginate viscosity (low- A1, medium- A2 and high- A3) and molecular weight (kDa) on the release of encapsulated bioactives (seaweed and spirulina powder) was investigated in an in-vitro gastrointestin...
Economic production of lignocellulose degrading enzymes for biofuel industries is of considerable interest to the biotechnology community. While these enzymes are widely distributed in fungi, their industrial production from other sources, particularly by thermophilic anaerobic bacteria (growth Topt ≥ 60 °C), is an emerging field. Thermophilic anae...
Flavonoids such as naringenin, quercetin, and naringin are known to exhibit anticancer properties. In this study, we examined the effects of these flavonoids on cell viability and apoptotic pathways of cancer cells, either singly or in combination with the type 1 ribosome inactivating protein, Balsamin. Treatment with flavonoids (naringenin, querce...
Lignocellulosic biomass represents a promising feedstock for supplying biofuels and other useful bioproducts in near future. As an example of process innovation, this study describes an integrated microbial fermentation process involving a thermoanaerobe and a marine thraustochytrid, aiming at the co-production of docosahexaenoic acids and bioethan...
Recombinant balsamin (rBalsamin), a type I ribosome inactivating protein classified as RNA N-glycosidase, is known to possess antibacterial and DNase like activity. However, its anticancer properties have not yet been examined. In this study, we aimed to investigate the potential cytotoxicity of rBalsamin on hepatocellular (HepG2 and H4IIE) and bre...
This paper represents a comprehensive study of two new thraustochytrids and a marine Rhodotorula red yeast isolated from Australian coastal waters for their abilities to be a potential renewable feedstock for the nutraceutical, food, fishery and bioenergy industries. Mixotrophic growth of these species was assessed in the presence of different carb...
Enzymes play a significant role in several biotechnology-based industries for making the process cost effective. These enzymes are predominantly obtained from microbes (bacteria, fungi, and microalgae), plants and animals for serving intended applications. Recently, biofuels are advocated as clean and green, alternative source of energy to meet the...
Mangrove sediments represent unique microbial ecosystems that act as a buffer zone, biogeochemically recycling marine waste into nutrient-rich depositions for marine and terrestrial species. Marine unicellular protists, thraustochytrids, colonizing mangrove sediments have received attention due to their ability to produce large amounts of long-chai...
The enhanced fermentation effectiveness of Ruminiclostridium thermocellum on pure microcrystalline cellulose is well established. Here, direct microbial solubilization of pretreated rice straw biomass (PT-RSB) and sugarcane bagasse biomass (PT-SCB) to bioethanol by a Ruminiclostridium thermocellum strain ATCC 31924 was investigated. This study dire...
Nanotechnology has leveraged the Industrial Biotechnology’s processes and products by inclusion of nanoscale materials in the bioprocessing application to make cost-effective recyclable biocatalyst at the industrial setting. Conventional recyclable enzymes, based on bulk supports, have been used in traditional industries; however, they have limitat...
Background:
Efforts to develop efficient lignocellulose-degrading enzymatic preparations have led to the relatively recent discovery of a new class of novel cellulase boosters, termed lytic polysaccharide monoxygenases (LPMOs). These enzymes are copper-dependent metalloenzymes that initiate the biomass deconstruction process and subsequently work...
Recombinant Bacillus subtilis lipase was immobilised on magnetic nanoparticles by a facile covalent method and applied to fish oil hydrolysis. High loading of enzyme to the functionalised nanoparticle was achieved with a protein binding efficiency of 95%. Structural changes of the confined enzyme on the surface of the nanoparticles was investigated...
A 28-day feeding experiment with formulated feed using docosahexaenoic acid (DHA)-rich whole cells of freeze-dried marine microalgae Schizochytrium sp. to understand the distribution of fatty acids in a laboratory model zebrafish was conducted. Three feeds, commercial feed, 50:50 feed (50% commercial and 50% algae), and pure algae, were investigate...
Biorefineries can upgrade waste lignocellulosic biomass (LB) into soluble (C5 and C6) sugars that can be fermented into second‐generation (2G) ethanol‐based biofuels and a range of valuable byproducts derived from lignin. Research advances made in various laboratories worldwide have not been easy to translate into large‐scale operations. Here, we p...
Conventional alginate extraction from brown seaweed uses alkaline conditions to produce soluble sodium alginate as a single product. The objective of this study was to develop and optimise a seaweed biorefinery process to extract polysaccharides of alginate, fucoidan and laminarin from an Australian seaweed species Durvillaea potatorum (giant bull...
Several researches have focused on the enzymatic pretreatment of lignocellulose biomass to produce fermentable sugars that can lead to ethanol production thus facilitating pathways for sustainable biofuel production. Enzymes are fundamental to the pretreatment process, however, are required in larger quantities during pretreatment process thus infl...
Objectives:
The arrival of free oxygen on the globe, aerobic life is becoming possible. However, it has become very clear that the oxygen binding proteins are widespread in the biosphere and are found in all groups of organisms, including prokaryotes, eukaryotes as well as in fungi, plants, and animals. The exponential growth and availability of f...
Dilute acid pretreatment of biomass generates enormous amount of hydrolysate (rich in inhibitors and pentose sugars), that remains unutilized for bioethanol production due to inadequacy of efficient C5-fermenting organisms. In this study, a predominantly pentose fermenting extremely thermophilic bacterium strain DBT-IOC-X2, pertaining to the genus...
To overcome the challenges associated with combined bioprocessing of lignocellulosic biomass to biofuel, finding good organisms is essential. An ethanol producing bacteria DBT-IOC-DC21 was isolated from a compost site via preliminary enrichment culture on a pure hemicellulosic substrate and identified as a Clostridium strain by 16S rRNA analysis. T...
BACKGROUND
Efficient conversion of inhibitor containing pentose rich stream into bioethanol or biogas is still challenging due to several technological challenges however this stream can be efficiently assimilated into lipid by some of the oleaginous yeasts such as Rhodotorula. In this work, a continuous and unsterile process was developed for bioc...
Nanobiotechnology is emerging as a new frontier to advance biofuel production. Robust advanced
nanocarrier support has surpassed the conventional bulk support for immobilizing enzyme due to inherent features
associated to nanoscale dimension like higher surface area, greater enzyme loading, higher mass transfer rate, selective, nonchemical separati...
Replacing fossil fuels by biomass-derived ethanol (also known as second-generation ethanol or bioethanol) can provide the dual benefits of renewability and mitigation of the effects of global warming caused by the overexploitation of petroleum-derived transportation fuels. However, the effective use of lignocellulosic biomass as a feedstock for the...
The arrival of free oxygen on the globe, aerobic life is becoming possible. However, it has become very clear that the oxygen binding proteins are widespread in the biosphere and are found in all groups of organisms, including prokaryotes, eukaryotes as well as in fungi, plants, and animals. The exponential growth and availability of fresh annotate...
The production of bioethanol was studied by the cultivation of Clostridium thermocellum ATCC 31924 in MTC medium including crystalline cellulose as the sole substrate. The effects of key operational parameters that affect bioethanol production from microcrystalline cellulose were optimized. Under optimum conditions (pH 8.0, temperature 55 °C, inocu...
Breast cancer is the second most common cancer causing death worldwide with metastasis and disease relapse being the major drawbacks in current treatments. Therefore, development of novel drugs is needed. Balsamin, a 28 kDa Type I ribosome-inactivating protein, is rich in the seeds of Momordica balsamina. In this study, the molecular mechanism and...
Marine microorganisms represent a rich source of enzymes with the potential industrial application. In this study, we screened novel thraustochytrids for a range of enzymatic activities. The similarity between isolates based on enzyme activities was investigated using cluster analysis. Thraustochytrids were observed to possess different enzymatic a...
Enzyme–metal-ion–phosphate nanoflowers are high-surface area materials which are known to show higher activity than the constituting protein. Although the synthesis of hybrid nanoflowers has been demonstrated with a variety of proteins and reaction conditions, only di-valent metal ions have been tested to date. We expand on previous findings by tes...
Nanomaterials will potentially play an important role in cancer treatment and diagnosis. In recent years, researchers have developed targeted
and biocompatible nanoparticles
loaded with bioactives for cancer imaging applications. The rapid diagnosis and treatment using specific nano-based delivery system could contribute to the implementation of an...
The production of natural omega-3 fatty acids and carotenoids through biological pathways has been gaining increased attention, especially in nutraceuticals
and aquaculture industries. Recently, marine algae have been regarded as a good source for producing polyunsaturated fatty acids (PUFAs) and natural colour compounds. Algal cells vary in cell s...
This book focuses on various types of bioactive compounds, including secondary metabolites, oligosaccharides, polysaccharides, flavonoids, peptides/proteins, carotenoid pigments, quinones, terpenes, and polyunsaturated fatty acids, and presents an overview of their nutraceutical activities. It covers the current status and future potential of food...
The zebrafish is a useful vertebrate model to study lipid metabolism. Oil Red-O (ORO) staining of zebrafish embryos, though sufficient for visualizing the localization of triglycerides, was previously inadequate to quantify neutral lipid abundance. For metabolic studies, it is crucial to be able to quantify lipids during embryogenesis. Currently no...
Enzyme-based agro-waste processing for the production of valuables (biobased chemicals, materials, and energy) at a reasonable cost is an emergent area, representing a great promise for industrial application, however, marked with high operation costs. Immobilization of enzymes could overcome this processing limitation as it provides better enzyme...
Marine microorganisms are a potential source of enzymes with structural stability, high activity at low temperature and unique substrate selectivity. Thraustochytrids are marine heterotrophic microbes, well known for the production of omega-3 fatty acids. In this study the effect of Tween 80 as a carbon source was investigated with regard to biomas...
A newly isolated microbial strain of thermophilic genus Geobacillus has been described with emphasis on polyphasic characterization and its application for degradation of hydrogen peroxide. The validation of this thermophilic strain of genus Geobacillus designated as BSS-7 has been demonstrated by polyphasic taxonomy approaches through its morpholo...
Ribosome inactivating proteins (RIPs) have received considerable attention in biomedical research because of their unique activities towards tumor and virus-infected cells. We extracted balsamin, a type-I RIP, from Momordica balsamina. In the present study, a detailed investigation on DNase activity, antioxidant capacity and antibacterial activity...
Biofuel production from biomass requires an effective bioprocessing of lignocellulosic biomass. It involves pretreatment of biomass, a synergistic action of cellulase to break the complex structure, and release fermentable sugars from hydrolyzed biomass. The yield of the sugar hydrolysate crucially depends on the efficiency of enzymatic hydrolysis....
In this study a largely available lignocellulose feedstock hemp (Cannabis sativa), obtained as an industrial waste, was used for cellulose extraction. The extraction of cellulose microfibres from hemp biomass was conducted by alkaline treatment and an acidification process. The extracted cellulose microfibres were characterised using Fourier-transf...
Discovering microalgae with high lipid productivity are among the key milestones for achieving sustainable biodiesel production. Current methods of lipid quantification are time intensive and costly. A rapid colorimetric method based on sulpho-phospho-vanillin (SPV) reaction was developed for the quantification of microbial lipids to facilitate scr...
Effect of calcium and magnesium ions was studied in detail in batch mode in shake flask cultures of two fast growing strains of thraustochytrids (Aurantiochytrium sp. DBTIOC-18 and Schizochytrium sp. DBTIOC-1) for biomass and lipid production. These strains were previously isolated from Indian marine biodiversity. Screening of these two strains on...
Omega fatty acids are recognized as key nutrients for healthier ageing. Lipases are used to release ω-3 fatty acids from oils for preparing enriched ω-3 fatty acid supplements. However, use of lipases in enrichment of ω-3 fatty acids is limited due to their insufficient specificity for ω-3 fatty acids. In this study use of phospholipase A1 (PLA1),...
The recent upsurge in microbial genome data has revealed that hemoglobin-like (HbL) proteins may be widely distributed among bacteria and that some organisms may carry more than one HbL encoding gene. However, the discovery of HbL proteins has been limited to a small number of bacteria only. This study describes the prediction of HbL proteins and t...
Marine microalgae present a renewable alternative source for sustainable production of omega-3 fatty acids, as compared to conventional sources such as krill oil and fish oil. In this study, we optimised a method for lipid extraction from marine thraustochytrids using a bead mill and enzymatic concentration of omega-3 fatty acids from the thraustoc...
Modern research has focused on the microbial transformation of a huge variety of organic compounds to obtain compounds of therapeutic and/or industrial interest. Microbial transformation is a useful tool for producing new compounds, as a consequence of the variety of reactions for natural products. This article describes the production of many impo...