
UI2CODE: Computer Vision Based
Reverse Engineering of User

Interface Design

Mulong Xie

A thesis submitted for the Course
COMP4540 Software Engineering Research Project

The Australian National University

September 2022

c© Mulong Xie 2019

Except where otherwise indicated, this thesis is my own original work.

Mulong Xie
20 September 2022

Acknowledgments

Great gratitude to my parents and friends: you are my cherished backings who have
persistently motivated and stimulated me in tough times.

I am grateful to Dr Chunyang Chen for his guidance and suggestions that sup-
ported me to conduct this work at the beginning.

Much appreciation to my supervisor Dr. Zhenchang Xing, who helped me to
initiate my research experience in the Australian National University and have con-
stantly provided me instructive guides and inspiring thoughts. I am glad to handle
this individual project under your supervision and have gained a lot valuable knowl-
edge and enlightenment which I believe will profoundly benefit my future.

v

Abstract

Human-computer interface, functioning as the channel for communication and in-
teraction between people and computer system, has been increasingly applying the
graphical user interface (GUI). However, there is a significant gap between the GUI
design and implementation. In particular, developers must manually convert GUI
design drawings into working code and laboriously revise the implementation when-
ever the designs undergo some (even trivial) changes. Most existing GUI develop-
ment tools focus attention on providing fancy design images and convenient drag
and drop editor, but they do not directly offer the maintainable and usable source
code, which is not suitable for the real industrial GUI development project. In this
thesis, we propose a novel computer vision based GUI reverse engineering system,
UI2CODE, to bridge the gap between GUI design and implementation, and relieve
some pains of manual programming and code maintenance. UI2CODE is not built
on end-to-end deep learning object detection approaches, because our study shows
that these deep learning object detection methods do not work well on GUI design
images due to these pictures’ artificial nature and particular characteristics. Instead,
our approach utilizes conventional computer vision and image processing algorithms
which can bypass the essential problems with the machine learning techniques and
accurately detect GUI elements in complex GUI designs. Experiments on various
datasets, including Web UIs, mobile app UIs, and artistic UI design drawings, prove
the effectiveness of UI2CODE in terms of accuracy of GUI component detection
and layout reconstruction. UI2CODE enables a more efficient development work-
flow where GUI design images can be automatically converted to maintainable code
within a short time-frame, which is impossible before.

vii

viii

Contents

Acknowledgments v

Abstract vii

1 Introduction 1
1.1 Thesis Statement . 1
1.2 Introduction . 1

1.2.1 UI Components Detection . 3
1.2.2 Code Generation . 4

1.3 Thesis Outline . 5

2 Background and Related Work 7
2.1 Motivation . 7
2.2 Related work . 8

2.2.1 UI Reverse Engineering . 9
2.2.2 Data Collection . 9
2.2.3 UI Components Detection . 10
2.2.4 Code Generation . 11

2.3 Summary . 12

3 Difference from Object Detection 13
3.1 Characters of the Human-computer Interface 13
3.2 Deep Neural Network’s Mechanism . 15

3.2.1 Region-based Methods . 16
3.2.2 Single Shot Methods . 17

3.3 Experiments and Comparison . 19
3.4 Summary . 20

4 Data Collection 21
4.1 Web Dataset . 21

4.1.1 Dataset Construction . 21
4.1.1.1 Selenium . 22
4.1.1.2 Breadth-first Search . 23

4.1.2 Problems with Web Crawling . 23
4.1.2.1 Ambiguity of Web Components 24
4.1.2.2 Malposition of Annotation 25

4.2 Mobile Application Dataset: Rico . 25

ix

x Contents

4.3 Artistic Design Drawing . 27
4.4 Glimpse of Data . 27
4.5 Summary . 28

5 User Interface Components Detection 29
5.1 Architecture . 29
5.2 Pre-processing . 31

5.2.1 Gradient Calculation . 32
5.2.2 Binarization . 33

5.3 Component Detection . 35
5.3.1 Connected Components Labelling 36
5.3.2 Component Boundary Detection 37
5.3.3 Rectangle Recognition . 39
5.3.4 Block Recognition . 41
5.3.5 Irregular Shaped Components Selection 42
5.3.6 Nested Components Detection . 44

5.4 Classification . 45
5.4.1 Categories and Classes of UI Components 46
5.4.2 Classifier Model . 47

5.4.2.1 HOG + SVM . 48
5.4.2.2 SIFT . 49
5.4.2.3 CNN . 51

5.4.3 Performance . 52
5.5 Text Processing . 52

5.5.1 Introduction . 53
5.5.2 Technical Details . 53

5.6 Merge . 55
5.7 Summary . 56

6 Code Generation 57
6.1 Hierarchical Block Segmentation . 58

6.1.1 Cutting Line Detection . 59
6.1.2 Block Segmentation . 61
6.1.3 Hierarchy Establishment . 63

6.2 Web Code Generation . 64
6.2.1 DOM Tree . 65
6.2.2 HTML Generation . 67

6.3 Issues and Limitations . 68
6.4 Summary . 68

7 Results 69
7.1 Evaluation . 69
7.2 Results Demonstration . 70

Contents xi

8 Conclusion 75
8.1 Conclusion . 75
8.2 Future Work . 76

xii Contents

List of Figures

1.1 The illustration that presents how UI2CODE facilitates web develop-
ment. Figure 1.1(a) is the typical industrial development process in
which the developer takes pains to implement the design drawing of a
user interface and continuously revise it until reaching the final layout
solution with the designer. Figure 1.1(b) shows the UI2CODE would
replace the role of the developer when implementing the layout design,
which dramatically shortens the time and helps the developer get rid
of trivial work and eventually boosts the efficiency of the development
process. 2

1.2 The visualized workflow of UI2CODE. This system takes the user in-
terface design image as input, and the pipeline proceeds from detect-
ing the UI components in the input image and then generates the cor-
responding front-end code, i.e. HTML and CSS, which can be run in
a browser to see the working web page with the same visual effect as
the design. 3

2.1 Illustration of how the UI2CODE facilitates the modern professional
UI development process. The system focus attentions on facilitating
the code implementation and testing phase, as well as maintenance
phase of a project, while plenty of existing web builders can only be
used in the design stage. 8

3.1 A real web interface design. The 3.1(a) represents a common case in
human-computer interface design. Various colourful and heteroge-
neous images are used to display information, in which the contents
can be everything and may confuse the neural networks. Figure 3.1(b)
is the result of my approach using inventive image processing algo-
rithms. 15

3.2 The detection result of YOLO. The predicting images are labelled in
red bounding boxes, from which we can observe that the accuracy of
the localization cannot fit the strict requirement in real User interface
design, as stated in Property 4. The main reason for the deficiency is
that the localization is achieved by the regression of the offset values
of bounding boxes. 18

3.3 YOLO prediction for pure rectangles without contents. The white rect-
anges are labeled as positive sample (objects), and the red bounding
boxes are detection results of YOLO. 19

xiii

xiv LIST OF FIGURES

3.4 Three pairs of comparisons between the detection results of UI2CODE
(left hand side) and the YOLOv3 (right hand side) 20

4.1 The architecture of the data collection system. The initial list of URLs
are pushed into the URL queue first, and then the Selenium Web
Crawler and the Selenium Script are fed with a new URL pop up from
the queue. The Script Executor runs the script to scroll over the web
page on the World Wide Web and generates a full-length image. Mean-
while, the Crawler downloads the DOM file of the web page and con-
veys it to the Parser to retrieve the elements’ annotations. In the end,
the dataset consisting of screenshots and corresponding annotations is
generated. 22

4.2 The Selenium sometimes produces wrong annotations mismatching
with the corresponding elements. This problem is intermittent and
unpredictable, which causes it difficult to be fixed by certain method. . 25

4.3 Rico combines the human-powered and programmatic exploration to
conduct data mining in mobile apps, building a large dataset compris-
ing 72k unique UI designs. 26

4.4 Several examples in three datasets. 28

5.1 The architecture of the UI components detection pipeline. The input
image here is a conceptual design drawing of a mobile application,
and it is processed by two independent branches to segment the UI
components and detect the text regions respectively. Then the results
are merged and refined to get the final result. 30

5.2 A section of screenshot of YouTube website. Plenty of image compo-
nents (labeled in img with red bounding boxes) with colourful contents
appear on this user interface, but we want to leave out the information
of the real contents and treat them as parts of individual UI components. 31

5.3 The picture (a) is the original image; the image (b) is the result of
Canny algorithm, which extracts too many details of texture; picture
(c) is the result of findContour function in OpenCV library, and it fo-
cuses on calculation of the boundary of objects; (d) is the binary image
processed by our method, which converts the components to a simple
binary image consisting of few integrated objects without too many
redundant texture information. 32

5.4 The visualized demonstration of the pre-processing. The original im-
age Figure 5.4(a) is given as the input; and the process calculates
the magnitude of the gradient for each pixel to produce a gray-scale
map Figure 5.4(b); then according to the observation of foreground
and background in the human-computer interface, a binary map Fig-
ure 5.4(c) is generated . 34

LIST OF FIGURES xv

5.5 Flow chart of the Component Detection pipeline. This pipeline takes
binary map as input, and the result of this step consists of three cate-
gories of UI elements: Block, Image and Interface Components 35

5.6 Connected-component labelling demonstration. The 5.6(a) shows fore-
ground (white points) and the background (black points); the 5.6(b) is
the CCL result, where two connected components are labeled in red
and white colour. 37

5.7 Demonstration of the Four-border boundary detection. The 5.7(a) is
the original input image from a web interface design; the result of this
algorithm is shown in figure 5.7(b), which does not contain the fine
grained details of the components but only the outer boundaries; the
5.7(c) shows the result of findContour function in OpenCV library, is
detects more precise border of objects but the performance is unstable
and sensitive of the parameters. 39

5.8 The proportion of UI components with different shapes. 39
5.9 The demonstrations of a block. Blocks are drawn with green bounding

box, and they usually are bordered regions where contain multiple
components. 42

5.10 Statistics of components’ shape. For each type of UI components, three
kinds of information are collected: height, width and aspect ratio
(width / height). The amount of Buttons, InputBoxes, Images, Blocks
are 10566, 3460, 39998, 1568 respectively from totally three different
web and mobile application datasets. 43

5.11 Example of figure that some interactive elements on a complicated
image background . 44

5.12 The demonstration of the binary map and its opposite image. 45
5.13 Demo of a labeled web page screenshot. Various classes are tagged

with different colours of bounding box; the slim green boxes in this
picture are the results from the CTPN showing the text recognition. . . 47

5.14 Hyperline partitioning two groups of points 49
5.15 DoG are computed in all layers in Gaussian Pyramid 50
5.16 The structure of the four-layer network. A 3x3 sliding window is

adopted to move through the original image that is resized into size of
128x128. All convolutional layers are followed by a 2x2 max-pooling
layer. The output layer is a five-class softmax to classify the input into
image, button, input box, icon and text. 51

5.17 The overall structure of the Connectionist Text Proposal Network (CTPN).
A 3x3 sliding window is applied through the last convolutional map of
the base network (VGG16). Then the sequence of windows in each row
is recurrently connected by a Bio-directional LSTM to gather the se-
quential context information. In the end, the RNN layer is connected to
a 512D fully-connected layer and the output layer where the text/non-
text score and y-coordinate are predicted, and the k anchors are offset
by the side-refinement. 54

xvi LIST OF FIGURES

5.18 A section of web application interface. The 5.18(a) demonstrates the
detecting result of the UI components detection pipeline, in which sev-
eral text regions are wrongly recognized as image elements (marked
with red bounding boxes). The merged result is shown in the 5.18(b),
the green slim lines in this figure are the text areas detected by the
CTPN. After double-checking by the CTPN, those false positive image
elements that are actually text are discarded. 56

6.1 Visualized demonstration of hierarchical block segmentation. From
left to right are: (1) the input or a web UI which is a full-size screenshot
from YouTube; (2) the binarized gradients map of the original image;
(3) the result of cutting line detection, where we only care horizontal
lines and vertical lines; (4) the hierarchical blocks with various colours
segmented based on the cutting lines. 58

6.2 Various borders of HTML elements, but the common characteristic is
that they are all rectangular. 59

6.3 Two horizontal lines a and b divide the plane into four regions. Widths
of all regions are equal to their cutting lines’ length, while their heights
are related to their parents. 61

6.4 Illustration of block division by cutting lines, and the hierarchy is es-
tablished by checking the inclusion relations among these blocks. 64

6.5 A tree constructed for the segmentation in Figure 6.4. The root node is
the HTML <body> node which defines the document’s body. Totally
four layers are involved here to present the hierarchy. 65

6.6 The HTML DOM tree for above web page code. 66

7.1 The confusion matrix of the CNN classifier from which we calculate
the recall:0.937, accuracy:0.920, and the balanced accuracy:0.912 70

7.2 Evaluation of UI graphical component detector. 71
7.3 UI component detection on real web UI screenshots. Average process-

ing time: 57s. 72
7.4 UI component detection on artistic UI design drawing from Dribbble.

Average processing time: 28s. 73
7.5 UI component detection on real mobile UI screenshots from Google-

Play and Rico. Average processing time: 36s. 74

List of Tables

4.1 Some identical UI components can be implemented by different HTML
tags with specific CSS style and JS functionality. A components will
be labeled with that class name as long as they meet all the three
requirements at a row. The 〈h∗〉 means the tag can be 〈h1〉 or 〈h2〉 or
〈h3〉. The "-" signifies that no particular requirement for that factor. . . . 24

5.1 Heuristics based on the statistics. 44
5.2 The categories and classes of UI components. 46
5.3 The performance of models. The balanced accuracy is taken into ac-

count as a criterion because of the imbalanced datasets where image
components are far more than others. The experiments present that
the CNN model is relatively better than the other two in all aspects. . . 52

7.1 Training data of classifier . 69

xvii

xviii LIST OF TABLES

Chapter 1

Introduction

1.1 Thesis Statement

UI2CODE is a computer vision based reverse engineering technique that generates
the front-end code from human-computer interface images.

1.2 Introduction

Human-computer interface is the means of communication between people and low-
level system through which the system conveys information to the user and receives
human instructions [Laurel and Mountford, 1990; Brown, 1999]. As it has evolved
with the development of information technology, the manner of providing access
for human to interact with computer has increasingly transformed into graphical
interface. For instance, the graphical user interface (GUI) displays abundant contents
and offers readily approaches for people to use sophisticated functionalities easily
[Farrugia, 2007]. Such advancement brings convenience to the user while changes
the way how the user interface (UI) designer and developer work. This thesis hence
introduces UI2CODE, a novel technique that eases the UI development by leveraging
computer vision techniques and code generation approaches.

The common workflow of user interface development involves roles designing
the layout and style of the GUI, as well as coders responsible for implementing this
design into program and building the connection between the front-end presentation
and the back-end data and functionalities [Selene M., 2018; Gordiyenko, 2019a], as
illustrated in Figure 1.1. UI2CODE is expected to speed up this process. This system
comprises two high-level steps: (1) automatically localizing the positions and recog-
nizing the semantic meanings of GUI components in the input image. The image
can either be a screenshot of an existing user interface or a prototype drawn by a
drawing application, such as Photoshop. (2) Generating the usable and maintainable
front-end code, such as HTML and CSS, in accordance with the detection results.
Figure 1.2 presents the visualized process of this system.

UI2CODE significantly shortens the time of the process that implements the code
of a given UI design, which takes several seconds to few minutes to handle the
input image in any size, while the same work performed by human spends a much

1

2 Introduction

(a) Conventional process of web development

(b) Web development with the assistance of UI2CODE

Figure 1.1: The illustration that presents how UI2CODE facilitates web development.
Figure 1.1(a) is the typical industrial development process in which the developer
takes pains to implement the design drawing of a user interface and continuously
revise it until reaching the final layout solution with the designer. Figure 1.1(b)
shows the UI2CODE would replace the role of the developer when implementing
the layout design, which dramatically shortens the time and helps the developer get
rid of trivial work and eventually boosts the efficiency of the development process.

longer time. In addition, the generated code is highly readable and maintainable,
and it is also created to be easy to extend so that the developer can conduct further
functionality development on the basis of the code framework. Plenty of pains can
be relieved by applying this system, and the developer can get rid of some repetitive
and rudimentary work.

A variety of UI development assistant tools are available now, such as Wix, Word-
Press and JIMDO [GmbH, 2019], but most of them aim to provide fancy pre-defined
templates and convenient drag-and-drop editors to people rather than offering the
high-quality source code. They are suitable for those who simply desire for making
a nice-looking website but do not claim the ownership of the source code. However,
the industrial UI development project requires the full knowledge of the program for
the sake of maintenance and future extension. Therefore, UI2CODE attempts to fill
in the gaps between the designing phase and the programming phase of professional
UI development.

This work includes several major contributions:

1. A computer vision based user interface code generator consisting of two mod-
ules: the UI components detector that accurately detects and classifies the
graphical interface components in the image, and the code generator that cre-
ates the corresponding front-end program achieving the identical visual effect

§1.2 Introduction 3

Figure 1.2: The visualized workflow of UI2CODE. This system takes the user inter-
face design image as input, and the pipeline proceeds from detecting the UI compo-
nents in the input image and then generates the corresponding front-end code, i.e.
HTML and CSS, which can be run in a browser to see the working web page with

the same visual effect as the design.

of the input UI.

2. Several brand new datasets containing various web and mobile user interface
images, including screenshots of web pages, real UIs of mobile applications
and artistic UI design drawings.

3. Analyses of some popular deep learning based object detection approaches,
pointing out their inadequacies while directly applied in this task and stating
the underlying reasons.

4. An effective UI component detection technique comprising multiple novel im-
age processing algorithms and a machine learning classifier, fitting into the
particular characters of graphical user interface, reaching a high accuracy and
recall that significantly surpass the performance of existing object detection
models.

5. An efficient HTML code generator that produces the maintainable and easy-to-
extend UI interface program framework, including an approach of dividing the
entire image to hierarchical layout blocks, and an HTML/CSS code generator
based on DOM tree.

To this end, this project is composed of two major parts, the UI components
detection part and the code generation part.

1.2.1 UI Components Detection

As the core part of this system, the UI components detection module performs the
semantic segmentation of the input image. However, detecting the graphical inter-
face elements is challenging and relatively fresh where few works have been done
in this field, and similar works are all based on end-to-end object detection meth-
ods [White et al., 2019]. Furthermore, several particular properties of the graphical

4 Introduction

user interface hamper the effectiveness of existing related techniques, in particular,
the deep learning based object detection approaches, such as [Ren et al., 2015; Red-
mon et al., 2016; Liu et al., 2016]. Therefore, a domain-specific technique is required
to handle the particular challenges in this task and fit the unique requirements of
human-computer interface design.

This thesis presents a summary of the graphical user interface’s characters. These
attributes not only exhibit the distinctive visual effect of the UI components but also
represent the special demands for the detection results. For instance, the artificial
interface elements must be absolutely precise in terms of the size and the spacial
position because they are created by the program, which asks for the detection and
localization to be strictly accurate.

Prior to my approach, this thesis first analyzes the popular related detection
methods, especially those based on deep learning, and attempts to identify the flaws
that prevent them from being adopted in this case. For example, I had an observation
revealing some interesting issues of bounding box regression which is essentially a
statistical evaluation and can hardly predict the flawless boundary of components.
Thus, I proposed a technique utilizing conventional computer vision and image pro-
cessing methods to bypass the defects of the approaches above.

I built a UI components detection system consists of two independent branches:
graphical components detection and text recognition. The overall structure is shown
in Figure 5.1. The graphical components detection is responsible for localizing and
classifying the graphical elements in the input image. Rather than directly using end-
to-end machine learning approach, this branch is a pipeline containing three sections:
pre-processing, component detection and classification. The first two parts utilize
image processing algorithms to segment the components and select the UI element
candidates accurately, and the classification part constructs a convolutional neural
network to categorize those candidates into the defined classes for code generation.

On the other hand, the text recognition branch is independent of the graphical
component detection for the sake of precision and efficiency. I apply a powerful
natural scenes text detection approach, Connectionist Text Proposal Network (CTPN)
[Tian et al., 2016] to perform this work. In the end, the system merges the results from
both branches and conducts the cross-check to polish the final detection result.

1.2.2 Code Generation

This section functions as the layout reconstruct layer as well as the output layer that
produces the deliverable code. So far, I only conducted experiments on web UIs in
HTML and CSS. Thus, this part assembles all the detection and segmentation results
to manufacture the front-end program for a web page. As the UI components detec-
tion, there are few directly similar works can be used as references, but fortunately,
I can draw inspiration from related topics. Works involving the front-end program
are most about information gathering and extraction. For example, plenty of works
aim to efficiently parse the HTML files of a web page [Gupta et al., 2003; Cosulschi
et al., 2006], as well as abundant works focus attention on collecting information

§1.3 Thesis Outline 5

from world wide web (WWW) by improving the crawling agent [Olston and Najork,
2010; D’Haen et al., 2016]. I referred to their thoughts and treated the HTML file as
a Document Object Model (DOM) tree [Whitmer, 2009] to generate the professional
code in a systematically way.

The HTML DOM constructs a tree structure to describe a web page in which
each branch node represents an element, and the leaf node shows the content and
attributes of its parent element [Lee, 2012]. Figure 6.6 illustrates a typical DOM
tree for a working web page. It is a standard way to express a web UI, as well as
an efficient data structure to reproduce the source code. Therefore, I proposed a
pipeline consisting of three steps: (1) divide the entire UI into hierarchical layout
block according to cutting lines; (2) construct an HTML DOM tree based on the
hierarchy; (3) convert the tree into HTML and CSS program.

I created multiple algorithms to acquire the block division with hierarchy. First,
an approach was adopted to detect the cutting line from the pre-processed binary
map of the input image. There are some popular image processing algorithms to
detect lines in a nature scene, such as Hough transform [Duda and Hart, 1972], but
they are rather complicated and unnecessary in our case. I observed that the cutting
lines in a UI are always borders of elements, which are either horizontal or vertical.
So I constructed a specific and efficient method to detect these lines. Second, the lines
are combined with gaps among elements to divide the entire image into multiple
blocks, and I applied some tricks to establish the hierarchy of blocks on the basis of
their spatial positions.

Results from the previous UI components detection pipeline are incorporated
into the layout segmentation to construct the aforementioned HTML DOM tree. Ele-
ments’ positions and sizes are transformed into relative values in their parent blocks
to be consistent with the usual practices of web development. Furthermore, in or-
der to enhance the maintainability and expansibility of the manufactured code, the
system assigns a unique ID to each element and implements the interface for some
functional widget, such as input box and button, for further functionality develop-
ment.

Serially passing through the above UI components detection branch and code
generation branch, the input UI image is converted into a set of high-quality front-
end code to reproduce the identical visual effect and expected functionality.

1.3 Thesis Outline

This thesis includes totally seven chapters to detail the thought, datasets, methodolo-
gies and experimental results.

• Chapter 2 Background and Related Work states the motivation of this work
that mainly aims to facilitate professional UI development. Then it roughly
mentions some related work in all involved fields, such as graphical interface

6 Introduction

image datasets and object detection methods, but details of these works will be
elaborated in each corresponding chapter.

• Chapter 3 Difference from Object Detection summarizes four particular prop-
erties of the graphic user interface and introduces several state-of-the-art deep
learning based object detection approaches in the way that identifies their draw-
backs hindering them from performing effective detection as they do in natural
scenes. Thus to inspire my own work built on alternative methods to settle
down of bypass these issues.

• Chapter 4 Data Collection lists several human-computer interface image datasets,
including a self-built web UI dataset containing various real screenshots crawled
from world wide web, a published large mobile application dataset Rico and
a collected artistic UI design drawing dataset from Dribbble. This chapter also
shows some encountered problems in the web data collection process and some
measures applied to overcome these issues.

• Chapter 5 User Interface Components Detection presents the technical details
of UI2CODE’s UI components detection section, a pipeline composed of two
branches to achieve the precise localization and classification of graphic ele-
ments and text recognition. This chapter elaborates the architecture of the de-
tection part based on multiple novel and specific image processing algorithms
and a machine learning classifier, as well as the mechanism and usage of a text
recognition technique CTPN. In the end, an approach is presented to incorpo-
rate the results from both branches to produce the final result.

• Chapter 6 Code Generation introduces the second part of UI2CODE where
the input UI image’s layout is reproduced, and all the previous results are
assembled to generate the deliverable front-end code. It covers two sections,
the first one presents multiple algorithms that hierarchically segment the entire
image into several layout blocks according to cutting lines and gaps among
elements; the second section describes the process that constructs an HTML
DOM tree and converts this tree into working HTML/CSS code. This part of
the work is still immature and requires future research to solve the problems
mentioned in the limitation section.

All code of this project can be found in GitHub repository: https://github.com/MulongXie/
Research-ReverselyGeneratingWebCode.

https://github.com/MulongXie/Research-ReverselyGeneratingWebCode
https://github.com/MulongXie/Research-ReverselyGeneratingWebCode

Chapter 2

Background and Related Work

Before presenting the work’s progress and findings, the thesis provides this chapter
for introducing the motivation of the entire project and several state-of-the-art works
in all corresponding topics. However, this chapter only states brief of these related
works, their details and analyses will be elaborated in relevant chapters.

2.1 Motivation

The fundamental motivation of this work is to propose a system to help the devel-
oper get rid of trivial and repetitive work, whereby facilitating the user interface
development process. As mentioned in Chapter 1, the current workflow of the UI
development, especially for industrial-level projects which require high-quality code
with the efficient development process, have potential to be improved in terms of de-
veloping time and product maintainability by assistant tools. However, the existing
graphical web builders, such as various Wix and Wordpress, mostly focus on design-
ing phase rather than generating the source code. Besides, although some modern
IDEs, such as Eclipse, Xcode and Android Studio have powerful interactive builders
for GUI, they are relatively complex to use and cannot directly fill in the gap between
designers and developers [Nguyen and Csallner, 2015; Zeidler et al., 2013]. There-
fore, we created the UI2CODE to fill in the gap between designing and programming
of UI development.

The standard UI development process always comprises seven steps: first gath-
ering requirements from the client; creating the mock-up and selecting technology
stack; designing the layout; filling contents of this website; implementing the work-
ing code of the UI; testing and reviewing with the client; finally daily maintenance
[Gordiyenko, 2019b]. UI2CODE aims to facilitate the coding, testing and mainte-
nance phases in the way that automatically manufactures the code from design draw-
ing, and the generated code is expected to be convenient to maintain and expand to
assistant the testing and daily maintenance as illustrated in Figure 2.1.

UI2CODE is a reverse engineering technique taking the human-computer inter-
face image as input, recognizing UI components and generating the usable front-end
code. It is expected to ease the UI development and facilitate the developer or de-
signer to implement the design into working code, as illustrated in 1.1. Because

7

8 Background and Related Work

Figure 2.1: Illustration of how the UI2CODE facilitates the modern professional UI
development process. The system focus attentions on facilitating the code implemen-
tation and testing phase, as well as maintenance phase of a project, while plenty of

existing web builders can only be used in the design stage.

this system would work under the industrial environment and used by specialized
people, the quality of its outcome ought to reach the professional level. To be more
specific, the identification of components on the design drawing should be as accu-
rate as possible, and the generated code should be as maintainable as possible.

To this end, I designed the UI2CODE as a pipeline composed of two major steps,
the UI components detection phase and the code generation phase. I leveraged a
variety of related techniques and proposed various novel methods to address the
problems encountered in each section of this work. Eventually, an intelligent graph-
ical human-computer interface development assistance was built to fulfil the needs
of developers and designers.

2.2 Related work

This work covers various topics, including GUI datasets, image processing, object
detection and reverse engineering. In this process, a variety of related works in each
field are investigated and referred. This section only lists and briefs papers which
are mentioned in the subsequent text, and their details and insights are elaborated in
relevant chapters later.

§2.2 Related work 9

2.2.1 UI Reverse Engineering

Reverse engineering for the pixel-based user interface is relatively fresh. The most
similar work with UI2CODE is REMAUI [Nguyen and Csallner, 2015], a system
aiming to perform reverse engineering on mobile application user interfaces. It was
the first technique achieving so. This work leveraged computer vision methods to
locate and extra UI components as a hierarchy of nested bounding boxes, and utilized
optical character recognition (OCR) to detect text regions. The high-level workflow
is similar to the UI2CODE, but there are some significant limitations in this work.
First, the REMAUI is not capable of classifying the extracted UI elements; instead,
it focuses on reproducing the layout of input design. Second, the performance of
this method, in terms of accuracy of UI component extraction, is sceptical. This
work only adopted some primitive image processing algorithms, such as Canny edge
detection [Canny, 1986] without any further improvement, which is inadequate and
problematic to handle complicated designs, especially for UIs with image elements.
I addressed this problem and detail the process in section 5.2.

In addition, some UI reverse engineering techniques depend on predefined mod-
els of UI elements. Prefab [Dixon and Fogarty, 2010] is a representative of such
methods. However, their drawbacks are apparent, because the graphic designs can
be diverse and creative, and a tool based on some predefined templates is too lim-
ited. Besides, the predefined templates are usually hard to expand, which does not
fit the requirement of industrial level UI development [Laurel and Mountford, 1990;
Brown, 1999].

Another branch of UI reverse engineering is aiming paper-and-pencil design
drawings [Landay and Myers, 2001; Coyette et al., 2007]. Although design with
assistant software, such as PhotoShop, has been increasingly popular and prevailed,
the paper-based sketches are still be adopted in many companies, because of habits
and background of some graphic designers [Landay and Myers, 1994; Campos and
Nunes, 2007]. Works in this topic infer UI code from hand-drawings. But some
limitations exist in the paper-based method. First, it is not as convenient to change
a drawing on paper as revising a design in software. Second, designers can only
present the overall layout of UIs rather than detailed and complicated illustrations
on paper. For example, designers can directly import some images into the design by
using digital applications, but they can hardly do so on paper. Therefore, UI2CODE
focuses on facilitating UI development based on digital design, which is more com-
plex and universal.

2.2.2 Data Collection

Data-driven models of design provide UI designers with access to relevant examples
and hence helps them understand best practices and trends. These models also
enable systems that foresee the effectiveness and attractiveness of creations on the
basis of observation on past designs [R. and P., 2014]. To this end, researchers have
been building various datasets to expose the UI designs at scale [Deka et al., 2017].

10 Background and Related Work

This work involved both web UIs and mobile UIs, which requires related datasets in
both types of data to sustain analyses and experiments.

Researchers in relevant fields have published a variety of mobile datasets collect-
ing data for different purposes. For example, some repositories gathered Google Play
metadata (e.g. reviews, ratings) [Fu et al., 2013] and some works built datasets of de-
sign data [Sahami Shirazi et al., 2013; Alharbi and Yeh, 2015]. UI2CODE only focuses
on UI designs in image format, so I mainly leveraged a currently largest mobile UI
repository named Rico [Deka et al., 2017], where including 72k unique UI images.
The strategy applied to build such large dataset combined human exploration and
automated exploration.

Besides, I collected a set of real web page screenshots by a web crawler to investi-
gate the character of web UIs and to evaluate the effectiveness of UI2CODE, as well
as a dataset of artistic design drawings from Dribbble [Dribbble, 2019] to explore
other potential use cases. Some works about web crawling are referred to in this
process [Olston and Najork, 2010; D’Haen et al., 2016] to parse the downloaded web
page file and extract the information more efficiently. Those works mainly treat the
source HTML files as DOM tree [Whitmer, 2009], and all the elements and their at-
tributes are stored as nodes. I followed this methodology to build my crawling agent
and analyze the HTML file to retrieve the target information, such as the position
and size of the UI element.

2.2.3 UI Components Detection

UI components detection is also a relatively fresh topic, one work attempting to
achieve so is an Image-Based Widget Detector [White et al., 2019]. It also takes the
GUI image as input and tries to detect the UI widgets. This work adopted YOLO
[Redmon et al., 2016], a deep learning based object detection approach, to achieve
its purpose. However, as I spent an entire Chapter 3 analyzing, the object detection
methods based on machine learning are not suitable for graphical user interfaces. UI
has several specific characters and requirements, such as heterogeneous presences
and strict demanding for precision, which the statistical or estimated machine learn-
ing techniques cannot satisfy.

Other indirectly related works are object detection approaches, they are typi-
cally divided into two categories: region-based methods represented by RCNN, Fast
RCNN and Faster RCNN [Girshick et al., 2014a; Girshick, 2015; Ren et al., 2015]
and one-shot methods such as YOLO and SSD [Redmon et al., 2016; Redmon and
Farhadi, 2018; Liu et al., 2016]. But the localization of objects in these models is less
or more dependent on the bounding box regression mechanism [Lee et al., 2019],
which can not predict the absolutely accurate boundaries of components. So I pro-
posed a technique combining the computer vision localization algorithms with the
machine learning classifier to bypass the problem. I will detail this in chapter 3
thoroughly.

In detail, the UI components detection pipeline consists of several steps, as shown
in Figure 5.1. Each step involves different topics and refers to various related works.

§2.2 Related work 11

For instance, the pre-processing parts produce a binary map according to the orig-
inal image’ s gradients map for the purpose of distinguishing the foreground from
the background. Usually, Canny [Canny, 1986] edge detector is used to identify in-
dividual objects by calculating their margin gradients, but the result of this method
is too fine-grained, and it includes too many texture details that negatively affect the
UI components segmentation. Figure 5.3 shows the comparison between my method
and other popular counterparts.

Besides, in the graphical component detection part, I proposed several novel im-
age process algorithms which are more efficient in this task compared to related
works. For instance, the popular practice to recognize a rectangle is applying the
Hough transform [Duda and Hart, 1972] or the approxPolyDP function in OpenCV
[Dev, 2014] based on Douglas-Peucker algorithm [Douglas and Peucker, 1973]. They
all involve too many computations to fit the universal situations in the real world,
but our case only requires to estimate whether a component is rectangular or not.
Thus I constructed a simple and specific rectangle recognition technique to fulfil the
need more efficiently.

In addition, to classify the components, I built a classifier utilizing machine learn-
ing. Several approaches were tried, including HOG feature [McConnell, 1986; Free-
man and Roth, 1994] or SIFT feature [Lowe, 2004, 1999] combined with SVM Patel
[2017], as well as a simple four-layer convolutional neural network (CNN). The exper-
iments prove the CNN can better handle this task while the others are more suitable
for natural scenes.

2.2.4 Code Generation

This part comprises two sections, layout segmentation and web code generation. In
order to divide the entire image into hierarchical layout blocks, the segmentation
section addressed several concerns by utilizing multiple approaches. First, we need
to detect cutting lines on a UI, one way to achieve so is Hough Transform [Duda
and Hart, 1972]. Hogh transform project the parameters of a line onto a special
coordinate system and iterate each foreground point to search lines. However, it
is rather computationally expensive and unnecessary for our task, because cutting
lines on a UI are always elements’ borders which are either horizontal or vertical.
Therefore I proposed an efficient algorithm only detect these two types of lines.

Regarding web code generation, works involving front-end source code are most
focusing attentions on either collecting Olston and Najork [2010]; D’Haen et al. [2016]
or parsing UIs [Cosulschi et al., 2006; Gupta et al., 2003] while few directly generate
code by applying automated agent. But the aforementioned works inspired me to
organize the HTML code into a DOM tree Whitmer [2009]. Furthermore, some web
development guides [Musciano and Kennedy, 2007; W3Cschool, 2019] provided me
with the standards to improve the quality of the generated code. For example, using
the relative values rather than absolute values to arrange the UI layout, and assigning
a unique ID if necessary to the element to render and control the web page in a more
systematical way.

12 Background and Related Work

2.3 Summary

This chapter introduces the motivation of UI2CODE in real UI development. The
system is expected to be an assistant tool to fill in gaps between the conceptual
design image and the working code, which significantly shortens the development
timeframe and relieves lots of pains of designers and coders. Regarding related
work, reverse engineering for UI is a fresh topic, and the existing similar works are
instructive but not robust. Moreover, a variety of topics are involved in this work,
such as UI dataset, components detection and web code generation, so I referred to
relevant works in each section to gain inspirations and draw comparisons. These
works are also elaborated in their corresponding chapters.

Chapter 3

Difference from Object Detection

Regarding detection, the first idea coming to mind for most contemporary researchers
in related fields is the set of deep learning based approaches. Recent thriving and
development of neural network endow significant capability to object detection mod-
els utilizing deep learning [Gandhi, 2018]. Popular techniques, represented by the
RCNN family (RCNN, Fast RCNN, Faster RCNN etc.) [Girshick et al., 2014a; Gir-
shick, 2015; Ren et al., 2015] and the one-step end-to-end methods (YOLO, SSD etc.)
[Redmon et al., 2016; Liu et al., 2016] as well as the semantic segmentation methods
(Mask RCNN etc.) [He et al., 2017], have performed remarkable ability to capture
objects under a variety of complex environments. However, on the basis of my ex-
periments and analyses, most of those approaches are designed to detect targets
in the natural scenes, but they can hardly fit directly into the detection task of the
artificial graphical human-computer interface, such as the user interface (UI) compo-
nents detection. Multiple factors contribute to such unsatisfied performance in this
mission, including the specified requirements and practices when a user interface is
designed, and the essential mechanisms of deep learning based object detection that
is inappropriate to be used in this case.

This chapter summarizes these particular characters in the human-computer in-
terface and briefly introduces the principles and problems of some state-of-the-art
deep learning based object detection methods when applied in this case. Then the
conclusion about the necessity of the domain-specific approach is drawn at the end
on the basis of analyses and comparisons.

3.1 Characters of the Human-computer Interface

Based on the statistics, we observe that the artificial interface have some common
visual attributes that differ from the natural scenes. These distinctions make the
conventional deep learning approaches hard to perform their abilities as effectively
as they do in natural images.

Property 1: The contents of the graphical user interface are heterogeneous. To
be more specific, interface design could contain various components, including the
functional elements, such as the button and input box, and the static resource that
is responsible for displaying information, such as the image and text. The detailed

13

14 Difference from Object Detection

categories are defined in the table 5.2 of the Chapter 5. The real challenge lies in
the significant diversity of individuals in the same group, especially for image com-
ponents, as shown in Figure 3.1(a). That is, the contents of image elements can
be literally everything. For example, a selfie can be put on the interface as an image
component, while a group picture that contains plenty of people can also be regarded
as a single image, as well as a natural scenery photo or even a cartoon illustration
can become an image element on the interface. It is also possible that an individual
element is a clipping section of an image. In other words, the variation in the same
class can be significant, which differs from the conventional object detection tasks
that identify more or less similar targets as the same class.

Property 2: The components on a user interface are picked. A variety of com-
ponents might be allocated in a compact layout, and they would also overlap with
or superimpose on others. It is common to put some buttons and text on the back-
ground image where the colourful and various contents are displayed. Besides, some
independent elements sometimes should be treated as a whole. For instance, a spe-
cial object named image button is widely used in the mobile application interface,
in which a piece of text is placed in the centre of a background image in shape of
rectangle or oval. Detection, in this case, requires accurate component segmentation
that does not separate the integrated objects while identifies it as a whole. In addi-
tion, some mobile applications that work on a small screen are designed in a tight
style where the elements are close to each other, which raises the difficulty for precise
localization of UI components.

Property 3: The user interface component’s shape is arbitrary. This property is es-
pecially for the width, height and aspect ratio. Although there are some rules for user
interface design in terms of the size and shape, as shown in Figure 5.10, the elements’
character in the same class can still vary to a large degree. As the first attribute, this
variation poses a great negative influence on the accuracy of localization, because
most deep learning based object detection methods achieve localization by bound-
ing box regression [Girshick et al., 2014b; Lee et al., 2019]. Regression essentially is
a statistical approach modelling the relationship between a dependent variable and
one or more explanatory variables [Freedman, 2012]. For example, in linear regres-
sion, the relationships are modelled by the linear predictor functions estimated from
the known data. However, if the data is too dispersed, the estimated functions are
hard to be accurate and effective [SEAL, 1967]. Thus, localizing methods that rely on
the bounding box regression is not robust in human-computer interface components
detection.

Property 4: The position and boundary of components in a user interface de-
mand of absolute precision. In web and mobile application development, developers
implement the components in the way that sets the accurate size (width, height or
aspect ratio) and places them in an exact position (pixel distance from the boundary).
This character asks for as accurate the detection of components on the interface as
possible. But as mentioned in the third property, the bounding box regression that
deep learning based object detection methods use is a statistic estimated function,
which is inadequate to predict the one hundred per cent precise result.

§3.2 Deep Neural Network’s Mechanism 15

(a) Heterogeneous contents of images on web page (b) Desirable detection result

Figure 3.1: A real web interface design. The 3.1(a) represents a common case in
human-computer interface design. Various colourful and heterogeneous images are
used to display information, in which the contents can be everything and may con-
fuse the neural networks. Figure 3.1(b) is the result of my approach using inventive

image processing algorithms.

Therefore, the component detection in this case requires some domain-specific
approaches that adapt to the particular properties of the user interface. Since the
analysis through the data and the popular deep learning methods draws the conclu-
sion that the end-to-end neural networks do not well fit into this mission, I propose
a technique that combines with some conventional computer vision and image pro-
cessing algorithms to accommodate the specified characters in the artificial interface
design. Before introducing my own approach, comprehending the mechanisms of
deep learning based object detection techniques are critical to bypass their defects.

3.2 Deep Neural Network’s Mechanism

Although the deep learning approaches are dominated in the contemporary com-
puter vision field, some natural deficiencies of those techniques still exist, and the
flaws indeed cause some issues. Some of the defects are exposed in the mission
of human-computer interface component detection, as stated previously. I dig into
several popular object detection methods to try to summarize their mechanisms and
attempt to reveal the inadequacies.

16 Difference from Object Detection

Generally, two directions of object detection techniques are mostly studied, the
region proposals (RCNN, Fast RCNN, Faster RCNN) and single-shot methods (SSD
and YOLO) [Gandhi, 2018]. Those approaches are proven effective in natural scenes,
and they are so inspiring that a wide variety of derivative techniques refer to them.
This section briefly summarises their principles and analyses the flaws that prevent
them from performing well in human-computer interface components detection.

3.2.1 Region-based Methods

The reason why we cannot directly build a classic CNN followed by a fully con-
nected layer to proceed object detection is that the length of the detection’s output
is not fixed [Gu et al., 2018]. That is, the number of occurrences of targets is vari-
able. To address this issue, an idea is that selects various regions of interest from the
input image and classifies them respectively with a CNN to inspect the presence of
objects in the regions [Gandhi, 2018]. The region proposal approaches derive from
this idea and adopt some strategies to alleviate the computational problem that the
huge number of regions in different spatial locations and various aspect ratios.

Region-based Convolutional Neural Network: To solve the problem of selecting
a huge number of regions, Ross Girshick et al. proposed a technique that utilizes
the selective search [Uijlings et al., 2013] to extract smaller amount (always 2000) of
regions from the input image. They are named region proposals. Thus, the number
of regions that need to be classified reduce to 2000. Then, those regions are resized
and thrown into a convolutional neural network followed by a dense layer of 4096
in size at the end. The network hence outputs a 4096-dimensional feature vector for
each region. Those vectors are fed into a pre-trained Support Vector Machine (SVM)
to classify the presence of objects. The RCNN uses the bounding box regression
[Felzenszwalb et al., 2010] to increase the accuracy of object localization.

Several problems are existing in the RCNN. First, although it reduces the number
of regions, it still has to classify 2000 region proposals. Second, as the long-time (47s
average) it takes to process all regions, it can hardly be used real-time. Third, it lo-
cates objects by using bounding box regression, but as mentioned in the last section,
this method cannot predict the actual outline and precise location of objects but just
perform statistical regression.

Fast RCNN: Ross Girshick et al. then proposed the Fast RCNN to solve some
of the drawbacks of the previous version RCNN. The improvement of this approach
is that it builds a CNN to generate a convolutional feature map by feeding the in-
put image, instead of processing the thousands of region proposals every time on
the original image. The Fast RCNN uses a region of interest (RoI) pooling layer to
recognize the region proposals from the feature map and resizes them into squares
to be the input of the final fully connected layer. In the end, those RoIs are turned
into feature vectors, which then be fed into a softmax layer to predict the classes of
regions, as well as inputted into a bounding box regressor to localize the accurate

§3.2 Deep Neural Network’s Mechanism 17

positions of objects.
Although the Fast RCNN makes some improvements, especially in terms of the

processing time, the essential mechanisms are similar to its predecessor. They all try
to propose regions by some means and identify the presences and classes of objects
in these regions. Meanwhile, they all utilize a bounding box regressor to predict the
precise locations of targets.

Faster RCNN: Both the two previous techniques apply the selective search to pick
region proposals. One drawback of the selective search is that it is a time-consuming
process, as well as a fixed algorithm which can not learn for itself like the neural net-
work. In order to bypass this shortcoming, the authors of the Faster RCNN proposed
a region proposal network (RPN) [Ren et al., 2015] that is capable of learning the re-
gion proposals. Similar to the Fast RCNN, this method uses the CNN encoder to
generate feature maps from the input image. Then the RPN is applied separately to
predict the region proposals, which followed by a non-maximum suppression (NMS)
[Canny, 1987] to refine the resulting predictions.

Therefore, we can observe some common grounds from the series of region-based
approaches. One salient similarity is that they all propose multiple regions and con-
duct prediction and regression on those regions independently. On the other hand,
another branch of deep learning based object detection approaches try to process the
input image as a whole other than focusing on the local section of the image, and
they complete the detection in a single convolutional neural network. To some de-
gree, they convert the detection problem into a regression problem, and hence also
are called regression-based methods [Zhang et al., 2019].

3.2.2 Single Shot Methods

This section analyses two representatives of the regression-based approaches [Zhang
et al., 2019], the You Look Only Once (YOLO) proposed by Redmon et al. and the
Single Shot Multibox Detector (SSD). They all perform object detection by using a
neural network to an entire image and pose the detection problem as a regression
problem [SACHAN, 2017].

YOLO: Essentially, the YOLO achieves detection by learning the class probabili-
ties and the coordinates for each bounding box. This technique splits the input image
into S x S grids, in which each grid cell has B bounding boxes. The outputs of this
model are class probabilities and position coordinates of the bounding boxes. Then
those whose probabilities are above a threshold are chosen and used to localize the
objects within them. In the training stage, if the centre of a ground truth object falls
into a grid cell, this cell is responsible for detecting it in the way that finds the bound-
ing box with the maximum intersection over union (IOU) over the true object.

SSD: The single shot multibox detector, as its name suggests, is also a single-shot

18 Difference from Object Detection

Figure 3.2: The detection result of YOLO. The predicting images are labelled in red
bounding boxes, from which we can observe that the accuracy of the localization
cannot fit the strict requirement in real User interface design, as stated in Property
4. The main reason for the deficiency is that the localization is achieved by the

regression of the offset values of bounding boxes.

detector for multiple categories which is faster than its previous state-of-the-art tech-
nique. The speed advantage mainly comes from the design that does not resample
the bounding box or generate proposals as the RCNN series do. The improvement in
accuracy attributes to a combination of predictions of multi-scales feature maps with
various resolutions, which handles the problem of variation in object’s size. This
method still uses a fixed set of default bounding boxes, and it applies small convo-
lutional filters applied to feature maps.

In summary, the object detection task consists of two major parts, the localization
of the targets and the classification. As mentioned at the beginning of the section
3.2.1, the key difficulty lies in how to find the objects accurately and efficiently, while
the classification is already well handled by CNN. To this end, a variety of ideas
have been proposed, and two directions are most widely studied among them, the
region-based and the one-shot methods.

The primitive region-based approaches, such as the RCNN and the Fast RCNN
all adapt the selective search algorithm to propose potential regions where objects
might be. However, some of their drawbacks prevent them from working well in
the human-computer interface. First, the selective search depends on the similar-
ity of regions, while the components in an interface can be heterogeneous as the
Property 1 analyzed in section 3.1. Thus the effectiveness of the selective search is
undermined. Second, because of the Property 1 and Property 2, it is very easily that
the components are oversegmented, especially for the image components that con-
tain colourful and various contents. Oversegmentation is a common issue for region
segmentation methods, which means integrated objects are segmented into multiple
sub-components by mistake [EGGLESTON, 2015]. Consequently, the single image

§3.3 Experiments and Comparison 19

component would be split into many sections that will be counted as false positive.
The Faster RCNN avoids using the fixed selective search algorithm and turns

to a learnable RPN to propose potential regions. In detail, the anchor boxes are
responsible for presenting the regions and fed into regression layer and classification
layer. However, as the analysis in the Property 3 and Property 4 of human-computer
interface, the huge variances of shape in the UI components hamper the effectiveness
of logistic regression, while the highly precise localization is required.

Same problems exist in the one-shot methods. Because they are fundamentally
regression based approaches, they still suffer the issues brought by the Property 3 and
Property 4 when applied in the artificial interface. In addition, the oversegmentation
is also a challenge for all methods using the default bounding box hypothesis. The
heterogeneous contents of the image element always affect the object judgement of
the bounding box and produce misrecognition, such as improperly identifying a part
of an image as an individual interface component.

3.3 Experiments and Comparison

I conducted an interesting experiment to prove the insufficiency of the object de-
tection approach. YOLOv3 is used to predict the position and bounding box of a
pure rectangle without any image contents, while the performance is unsatisfied as
expected.

Figure 3.3: YOLO prediction for pure rectangles without contents. The white rect-
anges are labeled as positive sample (objects), and the red bounding boxes are detec-

tion results of YOLO.

Figure 3.3 demonstrates the results of detection for simple shapes. I intentionally
removed the content of image and only left the pure white rectangles. However, even
for these seemingly clean objects, the object detection approach cannot guarantee
accurate prediction.

Due to a lack of time, I did not reproduce all the aforementioned deep learning
based approaches but just compared my method with the YOLO to illustrate the
result. This YOLO model is on the basis of VGG16, I retrained the last ten layers of
this network through totally 13230 images with five different UI component classes
refer to table 5.2. Several results are visualized below:

20 Difference from Object Detection

(a)

(b)

(c)

Figure 3.4: Three pairs of comparisons between the detection results of UI2CODE
(left hand side) and the YOLOv3 (right hand side)

3.4 Summary

We summarised four particular characters of the UI data we aim to process and the
mechanisms of the state-of-the-art deep learning based object detection techniques.
This chapter thoroughly explores the common properties of the machine learning
methods, in particular, the bounding box regression, and draws the conclusion that
the statistic estimation can hardly predict the one-hundred per cent accurate bound-
ary of a component. On the contrary, the seemingly primitive image processing
algorithms fit well into this task. Several reasons related to the unique characters
of the artificial UI cause this result, including the pixel-level processing and the in-
sensitivity to complex contents. I will elaborate on them in chapter 5 with technical
details.

Chapter 4

Data Collection

The initial step of this work is to inspect related data and to build the datasets for
further analyses and experiments. Particularly, to meed the specific requirement of
this project, the datasets should consist of a variety of images of graphic user interface
(GUI) designs, including both website data and mobile application data. Thus, this
chapter introduces the methodologies and issues in the data collection process, as
well as the utilization of some published datasets.

4.1 Web Dataset

The objective of this project is to detect the components in the human-computer
interface or user interface (UI). The general input data should be an interface design
image, such as a screenshot of a real web page. Therefore, I collected such screenshots
by crawling over a variety of websites to build the web page dataset; the element’s
annotation is also gathered in this process if possible. In detail, the annotation is
directly fetched from the source code of a website, which consists of the tag name
(class), size (width and height) and location (coordinates) of the element. However,
various issues occurred and made this process far more difficult than it looks at first
glance. This section presents those problems and gives solutions to settle or bypass
them.

4.1.1 Dataset Construction

I designed a system that automatically mines the screenshots of websites by using
a Python-based web application testing framework, Selenium. Generally, the web
crawler is chosen to collect data from numerous websites, but the drawback of con-
ventional crawling agent hampered me from doing so.

Web crawler stands for a program script that systematically browses the Internet.
It usually takes a list of initial links (URLs) as the so-called seeds, [Kobayashi and
Takeda, 2000] then visits them one by one and downloads the web page for further
analysis. The downloaded web page is also known as the document object model
(DOM) with a tree structure [Whitmer, 2009]. All kinds of web component infor-
mation, including the hierarchy, size and location of the element can be retrieved by
parsing the DOM tree.

21

22 Data Collection

Figure 4.1: The architecture of the data collection system. The initial list of URLs
are pushed into the URL queue first, and then the Selenium Web Crawler and the
Selenium Script are fed with a new URL pop up from the queue. The Script Executor
runs the script to scroll over the web page on the World Wide Web and generates a
full-length image. Meanwhile, the Crawler downloads the DOM file of the web page
and conveys it to the Parser to retrieve the elements’ annotations. In the end, the

dataset consisting of screenshots and corresponding annotations is generated.

A common limitation for web crawlers, such as the Beauti f ulSoup [Richardson,
2015], is that they can only conduct parsing on the basis of the static documentation,
while they do not support interaction with the website. In other words, they work
by means of downloading the DOM and then analyzing the DOM file without any
communication with the web. But the data we desire is the full-length screenshot
of pages, which cannot be directly obtained by normal crawling agents. Therefore, I
turned to the test automation [Moizuddin, 2019].

4.1.1.1 Selenium

Originally, test automation in software testing is defined as the using of software
separate from the tested one to execute a series of commands and compare the actual
outcome and the predicted outcome [Huizinga and Kolawa, 2007]. In our case, I
leverage this feature to execute the script that scrolls down the page to the bottom to
obtain the full-length snapshot.

Selenium is a software developed for web test automation. It is composed of
several components for aiding the development of web application test automation.

§4.1 Web Dataset 23

Its own independent integrated development environment (IDE) is implemented as
a Chrome Extension, which supports recording, editing and debugging of web ap-
plication tests. Selenium also has some APIs for various programming languages
such as Python and Java. In order to convey messages between the browser and the
client, Selenium developed the WebDriver, a module accepting the commands via
the API and passing them to the browser. The WebDriver is specific to browsers in
the way that it sends specified instructions to them to run and retrieves the results.
[Moizuddin, 2019].

Selenium can well perform the full page screenshot capture by executing the
scripts, as well as the DOM retrieval by web crawling. Besides, it has been imple-
mented as a package in Python, which is convenient to be incorporated into the
whole UI2CODE system. Hence I built the data collection module by it.

4.1.1.2 Breadth-first Search

Generally, there are two strategies for web crawling, the breadth-first search and
the depth-first search [Kobayashi and Takeda, 2000]. The depth-first search in this
context is the common practice for crawlers. In this way, the crawling agent visits
the first initial URL and retrieves all the new links on this page. The new links are
pushed into the top of a stack. After completing the process of the current page,
the next URL is pop out and parsed, and the new links on that site are pushed into
the stack again. This process repeats until the stack goes empty or reaching an end
condition. On the other hand, the breadth-first means visiting through all the initial
list of URLs first and adding the new links fetched from the crawled websites to the
end of a queue. The new links will not be accessed until the given ones are all visited.

The breadth-first search strategy is adopted. We want to collect interface designs
as varied as possible so that the components detection techniques can be thoroughly
tested and developed. Thus, the crawler does not go deep of a single website but
visits various websites as many as possible.

In summary, the data collection system is composed of three modules: the web
crawler responsible for DOM file downloading from the given link; the parser takes
the DOM file as input and parse it to retrieve element annotations, such as tag, size
and position; the script executor run a piece of JavaScript code to scroll through the
web page to take the full-length screenshot. The entire system is demonstrated in
Figure 4.1.

4.1.2 Problems with Web Crawling

Several issues exist in this process caused by the malfunction of Selenium and the
intrinsic ambiguity of the front-end language [Basten, 2011; Riva, 2019]. This section
presents two kinds of errors of collected data, these faults, unfortunately, can only be
bypassed but cannot be resolved perfectly yet.

24 Data Collection

4.1.2.1 Ambiguity of Web Components

One inevitable problem is that there can be various ways to present or implement
the same component in web user interface [Riva, 2019]. This causes the component’s
ambiguity that the class of a UI component can be uncertain. For example, a button
on the web page can be implemented by the HTML tag <button>, while a variety of
other HTML tags, such as <div> and <a> with particular style setting or attribute,
can perform the identical effect.

Therefore, it is inadequate to label the components according to their HTML tags
simply, instead, the style setting (CSS) and functionalities (JavaScript) should also be
taken into account.

One rule we follow in the data collection process is that we label the components
with the same visual effect as the same class to avoid confusing the classifier. Thus,
in accordance with the defined UI component category in table 5.2, we group some
HTML tags that provide a similar function together and make a table as below:

UI Component HTML-Tag CSS-Style JS-Functionality

Button

〈button〉 - -
〈a〉 display : block -
〈div〉 display : block onClick = f unction()

〈input type = ”button”〉 - -
Input Box 〈input〉 - -

Image 〈img〉 - -
Icon 〈i〉 - -

Text

〈p〉 - -
〈span〉 - -
〈h∗〉 - -
〈a〉 text− decoration : none -

Block 〈div〉 border : solid -

Table 4.1: Some identical UI components can be implemented by different HTML tags
with specific CSS style and JS functionality. A components will be labeled with that
class name as long as they meet all the three requirements at a row. The 〈h∗〉 means
the tag can be 〈h1〉 or 〈h2〉 or 〈h3〉. The "-" signifies that no particular requirement

for that factor.

However, some developer may not explicitly write those features in HTML or
CSS. They would set layout attributes in the JS function that dynamically adjusts the
parameters. In this case, the Selenium cannot directly parse the DOM file to retrieve
the correct properties of elements. Unfortunately, this issue can hardly be addressed
by algorithm because there is no universal standard to follow for web development.
Therefore, we have to manually check the correctness of the collected data, which is
an obvious limitation for this system now.

§4.2 Mobile Application Dataset: Rico 25

4.1.2.2 Malposition of Annotation

While the Selenium is undoubtedly a powerful and convenient test automation tool,
it has some errors exposed when retrieving the annotation from the web page. In
detail, the positions of elements are not accurate sometimes, and they always deviate
a bit from the real position.

A difficulty to settle down this problem is that this phenomenon is non-deterministic.
In other words, the system works well for some websites while dysfunction in others.
For example, it may retrieve the correct annotations of the corresponding components
for half URLs, but it also produces offset for some links, as shown in Figure 4.2.

Figure 4.2: The Selenium sometimes produces wrong annotations mismatching with
the corresponding elements. This problem is intermittent and unpredictable, which

causes it difficult to be fixed by certain method.

The further analyses and experiments suggest that this issue roots in the defect
of Selenium Webdriver. In addition, because of the unpredictability of the offset, it
is also impractical to set an adjusted value for all retrieving annotations. Therefore,
it is unreliable to count on the automatic system totally, and the handpicking should
be involved.

4.2 Mobile Application Dataset: Rico

Other than webpages, another major branch of the graphical user interface design is
the mobile application interface. There are some differences between these two cases,
because of the diverse design requirements and working environment of the appli-
cations. Therefore, we leveraged a mobile UI dataset to fill in the gap, an existing

26 Data Collection

dataset of real working apps named Rico [Deka et al., 2017].
The means of collecting screenshots of working mobile apps is particular com-

pared with the previous work of web data. Understandably, mining mobile appli-
cations differs from the practice of crawling websites because of the disparate un-
derlying implementations, and we can hardly reuse the scrawling tool created for
web in mobile apps. Fortunately, researchers have already done various works and
published several high-quality datasets [Deka et al., 2016; Sahami Shirazi et al., 2013;
Alharbi and Yeh, 2015]. This work mainly uses a large repository of mobile app de-
signs name Rico [Deka et al., 2017] as the app dataset to conduct experiments and
test the UI2CODE.

Figure 4.3: Rico combines the human-powered and programmatic exploration to
conduct data mining in mobile apps, building a large dataset comprising 72k unique

UI designs.

Rico comprises diverse screenshots of real mobile apps, and it includes the vi-
sual, textual, structural and interactive properties of UIs. It was designed to support
the data-driven models that help designers catch best practices and trends, which
can also well fit into our task. The Rico dataset contains design data from more
than 9.7k Android apps spanning 27 categories, and totally 72k unique UI screens
were recorded. The diversity and quantity of data in Rico gave us a good chance to
investigate the design characters of mobile apps to inspire our own system.

Rico was built by mining Android app at runtime in the way that combines hu-

§4.3 Artistic Design Drawing 27

man intervention and automation. One problem in mining app data is that the auto-
mated crawler is often stymied by complex interaction sequence required by applica-
tions, such as logging in and filling in a form. Therefore, Rico combines the strengths
of human and programmatic crawler: leveraging human power to unlock the hinder-
ing and applying automated agents to activate the interactive elements to discover
more states exhaustively. Besides, the crawlers adopt a novel content-agnostic similar-
ity heuristic to efficiently explore the UI state space. Figure 4.3 shows the workflow
of Rico.

4.3 Artistic Design Drawing

Sometimes, design drawing can be artistic rather than precisely performing the vi-
sual effect of working product. Those images aim to provide the development team
with inspiration, but great gap exists between conceptual drawings of graphic artist
and the real user interface. Usually, those fancy images either cannot be identically
implemented into UI by or takes a long time to do so, because manually creating
UI components and adjusting their sizes and spacial positions with programming
language are not as directly as drawing. Therefore, we hope to find a way to ease the
process of converting an artistic drawing to UI code by using an automated tool.

Prior to developing any specific technique to fit this task, we first investigated
the target data. To this end, we collected various design drawings from Dribbble,
a popular website where designers post their creative works as images or videos.
Then the dataset of artistic UI design was used to develop methods and evaluate
their performance.

Several issues occurred in this process. First, designers uploaded plenty of works
were in video format, which is demonstrative to present their creation, but they are
not suitable for our use case. Second, some drawings only focus on fancy illustrations
instead of the layout of UI. Third, some images contain a sequence of UIs to show
the workflow. To keep efficiency, we simply ignore videos while collecting data from
dribbble.com, and we manually filtered out images that are overly fancy and have
few information of UI layout.

One drawback of this dataset is that there is no corresponding annotation for the
images as that for crawled web data because they are pure design drawings that are
expected to present aesthetics. Thus they cannot be used to evaluate the effectiveness
of detection directly.

4.4 Glimpse of Data

This section presents several examples of each dataset. This thesis only demonstrates
a few of typical instances of those datasets, but diversity inner each repository is
vast, and we can hardly find a common pattern of the UI design of web or mobile
application, which is also why the human-computer interface component detection
is worth deeper thinking.

28 Data Collection

(a) Web Snapshot

(b) Rico

(c) Dribbble

Figure 4.4: Several examples in three datasets.

4.5 Summary

To investigate the human-computer interface, this work built a web UI dataset and
an artistic drawing dataset, and it leveraged an existing sophisticated UI repository
of working mobile apps. The problems of intrinsic ambiguity of front-end program-
ming languages and malposition caused by Selenium’s defect were exposed and
overcome in the process. In the end, three datasets containing UI images of web and
mobile applications were ready for development and experiment of the UI2CODE.

Chapter 5

User Interface Components
Detection

UI2CODE is a system automatically recognizing the semantic contents of the input
image of human-computer interface and generate the front-end code that can imple-
ment the same visual effect and expected functionalities of the given image design.
To this end, I propose a precise and purpose-built user interface components detec-
tion pipeline that works particularly better than popular objection detection methods
[Ren et al., 2015; Redmon et al., 2016; Redmon and Farhadi, 2018] in the graphical
human-computer interface (GUI).

This technique utilizes computer vision and image processing algorithms to de-
tect and locate objects. After selecting the candidate regions where are likely to be
UI components, a classifier is built to recognize those areas and categorize them into
different classes, such as button, input bar, images and text. Meanwhile, the text recog-
nition is achieved by an effective Optical Character Recognition (OCR) technique,
the Connectionist Text Proposal Network (CTPN) [Tian et al., 2016]. In the end, the
results from those modules are merged and refined to produce the final result.

Performance of the image processing technique compared with machine learning
methods, especially in our task, is significantly better in terms of accuracy of com-
ponents position detection and recall. Detailed reasons for those strengths are stated
below, one of the most interesting interpretations is that the deep neural network ob-
serves the texture rather than the shapes of objects [Geirhos et al., 2019; Cepelewicz,
2019; Geirhos, 2018], which arouses some deep-going thoughts about the nature of
deep learning methods, and I elaborate those thinkings in Chapter 3.

5.1 Architecture

I assume the input to this tool to be an image of an interface, which can be either a
screenshot of a real application (web or mobile) or a conceptual design drawing. We
focus on segmenting and classifying the possible human-computer interface compo-
nents on the image.

Based on the common practice of developer and the properties of the front-end
programming languages, three categories including totally five types of graphic user

29

30 User Interface Components Detection

Figure 5.1: The architecture of the UI components detection pipeline. The input
image here is a conceptual design drawing of a mobile application, and it is processed
by two independent branches to segment the UI components and detect the text
regions respectively. Then the results are merged and refined to get the final result.

§5.2 Pre-processing 31

interface components are defined in this process: interactive elements (button, input
box), static resource (image, icon) and layout structure (block), see Table 5.2.

To perform precise segmentation, I implement this tool as a three-phase pipeline
consisting of pre-processing, components detection and classification, combined with
text detection achieved by CTPN. The results from both branches are then integrated
at the end to produce the final prediction. The illustration of the overall architecture
is shown in Figure 5.1.

5.2 Pre-processing

The first step for the UI components detection pipeline is pre-processing. It trans-
forms the input image into a specific form that is convenient for further processing.
Three substeps are conducted here: grey-scale image conversion, gradient calculation
and binary image conversion.

In our task, we treat all contents on the image as parts of individual components
without consideration of their own detailed information. For example, an image on
an interface design should be regarded as a single element instead of a combination
of the real contents in it, as shown in Figure 5.2.

Figure 5.2: A section of screenshot of YouTube website. Plenty of image components
(labeled in img with red bounding boxes) with colourful contents appear on this user
interface, but we want to leave out the information of the real contents and treat them

as parts of individual UI components.

To this end, I try to find a means to convert the colorful and complicated image
into a simple form that does not contain redundant information this task does not
need and is convenient to segment components. The popular related algorithms,
such as Canny edge detection [Canny, 1986] and findContour method in OpenCV

32 User Interface Components Detection

based on techniques proposed by Suzuki et al. [Suzuki and be, 1985; Team, 2012], do
not work well in this case, because those processing always leave the texture details
and disconnect the contents in an image, as shown in Figure 5.3. So, I propose a new
method to satisfy this purpose.

Figure 5.3: The picture (a) is the original image; the image (b) is the result of Canny
algorithm, which extracts too many details of texture; picture (c) is the result of find-
Contour function in OpenCV library, and it focuses on calculation of the boundary
of objects; (d) is the binary image processed by our method, which converts the com-
ponents to a simple binary image consisting of few integrated objects without too

many redundant texture information.

5.2.1 Gradient Calculation

The gradients of a digital image measure how each pixel changes in terms of signifi-
cance and direction [Jacobs, 2005]. Popular techniques of image gradient calculation
are Roberts cross operator, Prewitt operator, and Sobel operator [Roberts, 1963; Pre-
wit, 1970; Sobel, 1968]. We can acquire two pieces of information from the gradient
of each pixel, the direction of the change and the magnitude of this change.

However, unlike other common computer vision tasks that deal with the natural
scene, we do not care for the changing direction as much as about the magnitude,
because we focus on determining whether a pixel is a part of the potential compo-
nents rather than the detailed information of how it changes. Therefore, we calculate

§5.2 Pre-processing 33

the magnitude of the gradient by formulae below:

gx =
∂ f (x, y)

∂x
= f (x + 1, y)− f (x, y) (5.1)

gy =
∂ f (x, y)

∂y
= f (x, y + 1)− f (x, y) (5.2)

G(x, y) = |gx|+ |gy| (5.3)

where: f(x,y) is the pixel value for point (x,y) in the image; gx and gy are the
gradients in the x direction and y direction respectively; G(x,y) is the magnitude of
gradient value at pixel point (x,y).

The result of this step is a grey-scale map (a two-dimensional matrix in which the
value of each pixel is on the scale of 0-255) reflecting the significance of gradient of
the original image, as shown in Figure 5.4(b).

5.2.2 Binarization

The second substep of pre-processing is to binarize the grey-scale map; the purpose
of this process is to intensify the component regions from the background.

One particular observation on GUI that differs from the natural scene is that
the regions where there is little or no gradient change are more likely to be the
background. On the other hand, pixels with large gradient should be parts of the
foreground objects (interface components). With this regard, I set a small gradient
threshold to label each pixel as either foreground or background.

The goal of binarization is to assign a binary value to every pixel in an image
[Shapiro, 2002]. T.Sezgin and Sankur summarized the thresholding methods into
six categories: the histogram shape-based, clustering-based, entropy-based, object
attribute-based, spatial methods, local methods [Mehmet Sezgin, 2004]. My tech-
nique is similar to the Entropy-based methods, which use the entropy of the fore-
ground and background regions. Specifically, as mentioned above, the gradients of
the pixels in the foreground are usually larger than zero, while the background of
GUI is always unicolour and the gradients are zero. In our case, this step assigns
either 255 (white) or 0 (black) to each pixel; points whose value is 255 means could
be parts of an interface component; value 0, on the contrary, means this point is part
of the background, as demonstrated in Figure 5.4(c).

But for different datasets, the gradient property would be slightly different, which
requires adjustment of the threshold. For instance, the images in Rico dataset are
more compact than the screenshots of real web pages, so the threshold should be
slightly higher to better segment regions; and the images of Google Play Poster and
Dribbble datasets can be lower resolution than are web pages, so the background is
more blurred and its gradient can be higher than zero.

In the end, a binary map that contains clear foreground objects is produced by
the pre-processing for further operations.

34 User Interface Components Detection

(a) Original input image

(b) Gradient map

(c) Binary map

Figure 5.4: The visualized demonstration of the pre-processing. The original image
Figure 5.4(a) is given as the input; and the process calculates the magnitude of the
gradient for each pixel to produce a gray-scale map Figure 5.4(b); then according to
the observation of foreground and background in the human-computer interface, a

binary map Figure 5.4(c) is generated

§5.3 Component Detection 35

5.3 Component Detection

Based on the acquired binary map, this stage tries to extract component candidates
and heuristically categorize the connected regions that could be potential user inter-
face elements. To this end, this process contains several substeps: Connected Com-
ponents Labelling, Component Boundary Detection, Rectangle Recognition, Block
Recognition, Irregular Components Selection and Nested Components Detection.

Three sets of objects yield from this process, Block, Image and Interface Components.
Detailed categories and classes of UI components are defined in section 5.4, at this
stage, the connected components are only grouped to three aforementioned general
classes according to some heuristic rules based on the size and aspect ratio in order
to save processing time in the next step.

Figure 5.5: Flow chart of the Component Detection pipeline. This pipeline takes
binary map as input, and the result of this step consists of three categories of UI

elements: Block, Image and Interface Components

36 User Interface Components Detection

5.3.1 Connected Components Labelling

This process refers to the connected-component labelling (CCL) algorithm, which is
demonstrated in Figure 5.6, the purpose is to assign each pixel a label identifying
the connected component to which this pixel belongs [Samet and Tamminen, 1988;
Dillencourt et al., 1992]. In other words, this substep aims to segment connected
components from the binary image.

I refer to the Seed Filling algorithm in computer graphic [Vincent and Soille,
1991] to implement my own method. The pseudocode of this technique is shown in
Algorithm 5.3.1.

Algorithm 1 Connected-component labeling
Input: Binary map
Output: An array of components, each component contains a group of points that

constitute it
1: Components← []
2: MarkingMap← Zeros(BinaryMap.shape)
3: for Point in BinaryMap do
4: if Point is 255 and MarkingMap[Point] is 0 then
5: MarkingMap[Point]← 1
6: Neighbors← new Queue.push(Point)
7: Component← new Stack.push(Point)
8: while Neighbors.Length > 0 do
9: NextPoint← Neighbors.pop()

10: for Neighbor in Neighborso f Point(NextPoint) do
11: if Neighbor is 255 and MarkingMap[Neighbor]is 0 then
12: MarkingMap[Neighbor]← 1
13: Neighbors.push(Neighbor)
14: Component.push(Neighbor)
15: end if
16: end for
17: end while
18: Components.push(Component)
19: end if
20: end for
21: return Components

Alternatively, this algorithm can be written as:

(1) Start from the top-left point, initialize a MarkMap with the same shape as the
input image and fill it with zeros to indicates if points are already labelled, go
to (2).

(2) If this pixel is foreground (its value is 255), and it hasn’t been labelled (MarkMap
is zero at this position), then add it to a store queue and count it as a point of
a new component, and go to (3); otherwise repeat (2) for the next pixel in the
binary map.

§5.3 Component Detection 37

(a) Binary map (b) Connected-component labelling result

Figure 5.6: Connected-component labelling demonstration. The 5.6(a) shows fore-
ground (white points) and the background (black points); the 5.6(b) is the CCL result,

where two connected components are labeled in red and white colour.

(3) Pop out an element from the store queue, inspect all of its neighbours. If the
neighbour is foreground and hasn’t been labelled, then add this point into the
store queue and count it as a point of the current component. Repeat (3) until
the store queue is empty, then go to (4).

(4) Scan the next pixel in the binary map and go back to (2) until all pixels in the
input image are inspected.

As described in the above algorithm, the output of this function is an array of
components. The way I store a component is presenting every connected component
as a list of points (coordinates), where the points are all connected foreground in
each list.

5.3.2 Component Boundary Detection

For each connected component, I calculate its outer boundary by a four-border
method. The resulting boundary consists of four borders: border-top, border-bottom,
border-left and border-right.

Because the sole information of a component acquired from the last step is the
points that constitute this component, so for the sake of efficiency, I implement
this method by means of storing the borders in form of {position : boundaryvalue}
through dictionary data structure, position is key of the dictionary and boundaryvalue
is value. For instance, the format of points in BorderTop and BorderBottom is {column :
maxrow} and {column : minrow}, which indicates the vertical boundary values of
this column in this component. In the same way, points in BorderLe f t and BorderRight
are stored as {row : mincolumn} and {row : maxcolumn} to show the horizontal
boundary value of each row.

In Algorithm 5.3.2, the Borders are initialized as four empty dictionaries that
will eventually be filled with points in the aforementioned form. BorderTop[Column]
means retrieving the vertical boundary value (minimum row index) at this column
of the component, and if this value is larger than the row index of the current point

38 User Interface Components Detection

Algorithm 2 Four-border Boundary Detection
Input: Component consisting of points that belong to it
Output: Boundary containing four borders: top, bottom, left, right; Each border is a

list of points
1: BorderTop, BorderBottm, BorderLe f t, BorderRight← { }, { }, { }, { }
2:
3: for Point in Component do
4: Row, Column← Point[0], Point[1]
5: if Column not in BorderTop or BorderTop[Column] > Row then
6: BorderTop[Column]← Row . Choose the smaller row as top
7: end if
8: if Column not in BorderBottom or BorderBottom[Column] < Row then
9: BorderBottom[Column]← Row . Choose the larger row as bottom

10: end if
11: if Row not in BorderLe f t or BorderLe f t[Row] > Column then
12: BorderLe f t[Row]← Column . Choose the smaller column as left
13: end if
14: if Row not in BorderRight or BorderRight[Row] < Column then
15: BorderRight[Row]← Column . Choose the larger column as right
16: end if
17: end for
18: Boundary← [list(BorderTop), list(BorderBottm), list(BorderLe f t), list(BorderRight)]
19: return Boundary

in the loop, then this point should be considered as the new top value at this column
in the component, done by BorderTop[Column]← Row.

For future convenience, the borders are transformed from dictionaries to list in the
way that converts point information stored in the dictionary {position : boundaryvalue}
to a list (position, boundaryvalue), so that all the points in the borders become the
format (position, boundaryvalue), which are better to retrieve and change in further
process. This conversion is done by list(BorderTop). Finally, this function returns a
list of the four borders in order of top, bottom, left and right.

Unlike other popular contour detection algorithms, especially the findContour
function implemented in OpenCV [Team, 2012], this task does not care much about
the precise outer borders and hole borders for each object, because the purpose at this
stage is to select the potential graphic interface components and filter out those un-
likely to be interface elements, instead of acquiring the detailed texture information
of each object. Besides, the findContour function is highly sensitive to parameters,
which means this method is not robust enough and requires adjustment of parame-
ters for various input images.

On the contrary, the four-border boundary detection algorithm is sufficient and
more efficient in this case because it only calculates the outer boundary, and is not
overly subject to parameters.

§5.3 Component Detection 39

(a) Original image (b) Result of Four-border (c) Result of findCountour

Figure 5.7: Demonstration of the Four-border boundary detection. The 5.7(a) is the
original input image from a web interface design; the result of this algorithm is
shown in figure 5.7(b), which does not contain the fine grained details of the com-
ponents but only the outer boundaries; the 5.7(c) shows the result of findContour
function in OpenCV library, is detects more precise border of objects but the perfor-

mance is unstable and sensitive of the parameters.

5.3.3 Rectangle Recognition

Another observation on the human-computer interface is that most of the elements
have regular shapes. For example, pictures on a website are always be displayed
in rectangle regions, and buttons and input boxes are usually round or rectangular.
Thus, a rectangle detection algorithm is introduced as a heuristic process for interface
components detection.

Figure 5.8: The proportion of UI components with different shapes.

The statistics are collected from three different datasets, in which the numbers
of Buttons, InputBoxes, Images, Blocks are 10566, 3460, 39998, 1568 respectively. The

40 User Interface Components Detection

statistics are consistent with the observation mentioned before; a large proportion of
human-computer interface components are in a rectangular shape, which proves the
necessity of the rectangle detection process.

Existing techniques, such as approxPolyDP in OpenCV [Dev, 2014] library and
Hough transform [Duda and Hart, 1972], are too complicated and rather unneces-
sary in our task. We only estimate whether the component is a rectangle or not,
but the approxPolyDP method based on Douglas-Peucker algorithm [Douglas and
Peucker, 1973] involves too much computation to calculate the precise polygonal
curves. Hough transform is also too computationally expensive because it examines
four parameters to detect a rectangle, which projects the information into a four-
dimension computation space.

Therefore, I propose a simple and efficient method to detect rectangle by calculat-
ing the smoothness of the boundary. In addition, this method measures the dentation
to filter out concave objects. The pseudocode is shown in Algorithm 5.3.3.

Algorithm 3 Rectangle Detection
Input: A component’s boundary consisting of four borders: top, bottom, left, right
Output: Boolean value to indicate if this component is rectangular shape

1: smoothBorderNo ← 0
2: smootness← 0
3:
4: for Border in Boundary do
5: for i in range(Border.length) do
6: di f f erence← Border[i]− Border[i + 1]
7: if di f f erent = 0 then
8: smootness← smootness + 1
9: end if

10: end for
11: if smoothness/Border.length > 0.8 then
12: smoothBorderNo ← smoothBorderNo + 1
13: end if
14: end for
15: if smoothBorderNo = 4 then
16: return True
17: else
18: return False
19: end if

In this implementation, Boundary is an array of size four, which contains four
borders for top, bottom, left and right directions. For each border, Border[i] means
the ith element in it, and Border[i + 1]− Border[i] calculates the variance or gradients
between two adjacent points in the same border, which indicates the smoothness of
this border.

§5.3 Component Detection 41

5.3.4 Block Recognition

We define a bordered region enclosing various multiple elements as a block, Figure
5.9 presents two examples. As explained in section 5.4, the block is a layout structure,
which could be regarded as a frame or a box. Block is usually rectangular and hollow,
but it is hard to be recognized by the machine learning methods directly because it
is often too variant and is easy to be misidentified as an image element, especially
when the block containing images as shown in Figure 5.9(c).

However, the simple and general shape attributes (rectangular and hollow) can
be well captured by the image processing methods. Therefore, I proposed a block
recognition algorithm based on pure image processing technique to identify the block
region.

One detailed observation of block is that it can be likened to a wireframe, as
demonstrated in Figure 5.9(b) and Figure 5.9(d). In other words, there should be a
gap between the borderlines and the contents in it. Therefore, the algorithm identify-
ing block is designed by detecting the gaps, and it only checks the rectangular objects
because of the shape attribute. The Python style pseudocode is shown in Algorithm
5.3.4. It just illustrates the basic idea of this algorithm, and the real implementation
would be more sophisticated because of the complicity of input images.

Algorithm 4 Block Recognition
Input: Boundaries of rectangular components; Binary map; Border thickness
Output: Boolean value to indicate if this component is block

1: GapTop, GapBottom, GapLe f t, GapRight← True, True, True, True
2: for i in range(1..MaxBorderThickness) do
3: if ∑ BinaryMap[BorderTop + i, BorderLe f t + i : BorderRight− i] = 0 then
4: GapTop← False
5: end if
6: if ∑ BinaryMap[BorderBottom− i, BorderLe f t + i : BorderRight− i] = 0 then
7: GapBottom← False
8: end if
9: if ∑ BinaryMap[BorderTop + i : BorderBottom− i, BorderLe f t + i] = 0 then

10: GapLe f t← False
11: end if
12: if ∑ BinaryMap[BorderTop + i : BorderBottom− i, BorderRight− i] = 0 then
13: GapRight← False
14: end if
15: end for
16: if GapTop = True and GapBottom = True and GapLe f t = True and GapRight =

True then
17: return True
18: else
19: return False
20: end if

Where the BorderTop, BorderBottom, BorderLe f t, BorderRight are the boundary val-

42 User Interface Components Detection

ues of this component, BorderTop, BorderBottom are the minimum row index and the
maximum row index, and BorderLe f t, BorderRight are the minimum column index
and maximum column index of it. The ∑ BinaryMap[BorderTop + i, BorderLe f t +
i : BorderRight − i] stands for summing up all pixels from column BorderLe f t + i
to column BorderRight − i in row BorderTop + i. If the amount is zero, column
BorderRight− i is hollow and is considered a gap.

(a) Clean block (b) Binary map of clean block

(c) Block containing image (d) Binary map of block con-
taining image

Figure 5.9: The demonstrations of a block. Blocks are drawn with green bounding
box, and they usually are bordered regions where contain multiple components.

5.3.5 Irregular Shaped Components Selection

On the ground of the statistics 5.8, I observe the rule that human-computer interface
components always have regular shapes (rectangle or round or oval), and the irreg-
ular objects are more likely to be image elements. However, the exception still exists
in functional UI components, although it is relatively rare. Thus, I add this step to

§5.3 Component Detection 43

check all irregular objects and estimate whether they should be selected as poten-
tial UI components or be filtered out based on heuristics of size and aspect ratio of
elements.

According to the datasets collected from web set and mobile applications whose
statistics is shown in Figure 5.10, some rules of the interface design in terms of the
scale and length-width ratio are exposed and can be used as heuristic knowledge.

(a) Shape of buttons (b) Shape of input boxes

(c) Shape of images (d) Shape of blocks

Figure 5.10: Statistics of components’ shape. For each type of UI components, three
kinds of information are collected: height, width and aspect ratio (width / height).
The amount of Buttons, InputBoxes, Images, Blocks are 10566, 3460, 39998, 1568 re-

spectively from totally three different web and mobile application datasets.

From the above statistics, we can see the distribution of the shapes for different
components. All of those distributions are long-tail, and the majority of data concen-
trate on specific ranges. For example, most of the buttons’ height is in the range of
20 pixels to 60 pixels, and most of their width is between 40 pixels and 300 pixels,
the major aspect ratio of buttons is on a scale of one to eight.

Therefore, adhoc filters are built according to the heuristics 5.1. Four rules are
defined here, and the filters are scattered over the whole process when implemented.

44 User Interface Components Detection

The SmallComponent rule leaves out those small noises; the AbnormalAspectRatio
rule is checked for all the components to filter out those impossible to be UI elements;
for all irregular objects, the IrregularImage estimation is conducted to decide if we
can directly affirm the irregular component is image; and the Block judgement should
be pass for all blocks.

Number Name Heuristics

1 Small Component Area < 175
∧

Perimeter < 70
2 Abnormal Aspect Ratio width/height < 0.4

∨
width/height > 20

3 Irregular Image isIrregular
∧

height > 70
4 Block isBlock

∧
width > 70

∧
height > 70

Table 5.1: Heuristics based on the statistics.

5.3.6 Nested Components Detection

In the previous stages, we do not inspect into components to exam their contents, but
some elements, such as button and input box, might be superimposed on an image.
Therefore, the images detected are required to be further processed to check whether
there are other interface components on them.

An observation about such nested components indicates that it is impossible to
view a button inside another button or an input box nested in another input box.
Also, technically, it is in no sense in putting a button inside another button; this
behaviour is not allowed by the front-end language either. On the other hand, the
common scenario is some interactive elements are put upon an image background,
as shown in Figure 5.11.

Figure 5.11: Example of figure that some interactive elements on a complicated image
background

As elaborated in the pre-processing section 5.2, in order to overlook the detailed

§5.4 Classification 45

texture and contents in the given image, I adopt a sensitive gradient threshold to try
to incorporate all adjacent foreground points into individual connected components.
But the drawback of this method is that the possible interface elements on an image
are also integrated into this image component and be treated as a part of it.

To conquer this problem and separate the nested elements, a novel trick is pro-
posed. I observe that the functional elements usually have a solid monochromatic
background, which makes the gradient of their background zero. So I reverse the
binary map to generate an opposite image, which means all the background points
whose pixel values are zero are assigned value 255, and vice versa, all white points
are transformed into black.

(a) Binary map (b) Opposite map

Figure 5.12: The demonstration of the binary map and its opposite image.

Figure 5.12 shows the binary map that integrates some buttons into the back-
ground and identifies them as an entire image component. But we can observe from
the binary map 5.12(a) that a black hole in the shape of a button appears surrounded
by white foreground points. While this binary map is reversed, all the background
became foreground, and the black holes turn to white components. By this means,
the nested elements are extracted and transferred to the beginning of the UI compo-
nents detection pipeline to conduct the same processes again.

As the aforementioned observation, this task cares more about the situations that
interactive elements superimpose upon background images. Thus, when selecting
the potential components inside images, I only leave those rectangular objects that
are more likely to be interface elements rather than contents of the image.

5.4 Classification

After all the possible human-computer components are picked up in the previous
steps, a classifier is built to identify their classes in order to generate the proper code
at the very end of this system. Prior to any technical details, the categories and
classes of interface elements in this task are defined as table 5.2.

46 User Interface Components Detection

5.4.1 Categories and Classes of UI Components

The ultimate purpose of the UI components detection pipeline is to segment the
potential interface elements from the input image and, based on their expected fea-
tures, label them with human-computer interface tags, such as or <button>
in HTML, for code generation. Therefore, I define three categories of the UI compo-
nents on the ground of the functional attributes those elements should have in the
real interface, and I define six classes according to the related objects and tags that
perform particular functionalities in the front-end languages.

Category Class Name

Interactive Elements
Button

Input Box

Static Resource
Image
Icon
Text

Layout Structure Block

Table 5.2: The categories and classes of UI components.

Interactive Elements: Those who are explicitly associated with some actions,
such as page jumps and close the window, and can gather instructions from users
are grouped in this category. For instance, the buttons are always related to some
functions that will be performed after clicking, and the input boxes are the places
where the user can feed their information into the application.

Static Resource: This category indicates that the elements in this group focus on
displaying contents instead of interaction with the user, just as the images and text on
a webpage. Icon here is specifically useful for mobile application, it can be regarded
as a tiny image, but it exists independently in Android development, so I separate
this class from the image. Although those resources can sometimes be implemented
as functional elements, typically as hyperlinks, I still treat them as a static resource
at this stage for convenience. But at the code generation stage, I will give them the
chance to expand their functions if need be.

Layout Structure: A special class distinguished from previous individual ele-
ments is Block, it is a layout structure that could contain multiple other kinds of
elements. In other words, it presents a section of graphical interface consisting of
various components. The meaning of this category is to find out some obvious hier-
archies and layers for future code generation.

Figure 5.13 demonstrate the visualized examples of the human-computer inter-
face components’ classes in the real application. This is also a glimpse of the final
result of the UI components detection pipeline that the input image is semantically

§5.4 Classification 47

Figure 5.13: Demo of a labeled web page screenshot. Various classes are tagged with
different colours of bounding box; the slim green boxes in this picture are the results

from the CTPN showing the text recognition.

segmented into components with tags in which we know the locations and classes of
those detected objects.

5.4.2 Classifier Model

To perform components classification, I recur to machine learning methods. Several
techniques have been tried in the process including Super Vector Machine and Neural
Network, and finally, a simple four-layer convolutional neural network is adopted for
its best performance.

Since the emphasis of this part is not on the neural network, I only simply in-
troduce the model’s structure and evaluate the performance of various classifiers to
sustain the choice of CNN.

There are three different methods implemented in this section, the Scale-invariant
Feature Transform (SIFT) [Lowe, 2004, 1999], the Histogram of Oriented Gradients
(HOG) [McConnell, 1986; Freeman and Roth, 1994] combined with Support Vector
Machine (SVM) [Cortes and Vapnik, 1995] and the Convolutional Neural Network
(CNN). Again, this part does not elaborate on the technical details of those tech-
niques; instead, it just introduces the basic theories of them and states the experi-

48 User Interface Components Detection

mental results.

5.4.2.1 HOG + SVM

Another popular feature extraction technique is the Histogram of Oriented Gradi-
ents (HOG). It is usually be utilized as a feature descriptor in computer vision and
image processing [Freeman and Roth, 1994]. This pipeline has some unique advan-
tages compared to others. First, HOG processes image on a dense grid of uniformly
spaced cells, which endows it the favourable ability to keep the optical and geomet-
ric invariant of the image. Besides, this algorithm is more robust and can be less
sensitive for small changes [Dalal and Triggs, 2005].

This pipeline consists of five steps: gradient computation, orientation binning
partition, descriptor blocks generation, block normalization and SVM object recogni-
tion.

Gradient computation: The first pre-processing step is similar to the UI com-
ponents detection pipeline, where the gradient of this image is calculated at the
beginning. Basically, the way to compute the gradient is the same as formulae 5.3,
but the author implements it by the following filter kernel: 0 −1 0

−1 0 1
0 1 0

 (5.4)

g(x, y) = w ∗ f (x, y) =
a

∑
s=−a

b

∑
t=−b

w(x, t) f (x− s, y− t) (5.5)

The kernel 5.4 is convoluted on image to compute the gradinet, the general ex-
pression of a convolution is stated in 5.5, where the g(x, y) is the filtered image,
f (x, y) is the original input image and w is the kernel. Every element of the kernel
is in range where −a ≤ s ≤ a and −b ≤ t ≤ b.

Orientation binning: This step create cell histograms for the gradient result. The
cells can be either rectangular of radial. In the radial shape, for example, the degree
of each bin depends on the total number of channels, the degree of a bin in a night-
channel histogram is 360/9 = 40◦. The gradients cast a weighted vote for those bins,
for instance, if a pixel’s gradient direction is 12◦, then the first bin (range from 0◦ to
40◦) increases by x, where x is the magnitude of the gradient.

Descriptor blocks generation: The gradients vary greatly because of the illumi-
nation and contrast, so the strength of gradients should be normalized to acquire
accurate result. To this end, the cells are grouped into larger spatially connected
blocks, and those blocks are concatenated to a descriptor.

Block normalization: As mentioned in the previous paragraph, HOG conduct the

§5.4 Classification 49

normalization to mitigate the huge variation among gradients’ lengths. I adopted the
L2-norm in my implementation; the expression of it is shown below:

f =
v√

‖v‖2
2 + e2

(5.6)

where: v is the vector, ‖v‖k is the k-norm of v which can be 1 or 2 to show L1-
norm or L2-norm, and e is a small constant.

Object recognition: The previous steps generate a normalized feature vector of
an image or object, then this vector can be feed into some classifiers to recognize
its class. A widely used technique to combine with the HOG is the Supper Vector
Machine (SVM) [Dalal and Triggs, 2005], a supervised learning model based on the
learning algorithm to perform classification and regression [Patel, 2017].

The basic idea of SVM is that we try to separate p-dimensional vectors with
(p − 1)-dimensional hyperplanes. There can be multiple hyperplanes that might
partition the data. The one representing the largest separation or margin between
the two classes is selected as the maximum margin hyperplane. The distance from it
to the nearest data point on each class is maximized [Asa Ben-Hur, 2001].

Figure 5.14: Hyperline partitioning two groups of points

Figure 5.14 [Yu, 2019] presents the demonstration of the linear SVM, where w
is the normal vector and b is a constant parameter; the parameter 2

‖~w‖ defines the
offset of the hyperplane from the origin along the normal vector ~w. All possible
hyperplanes should satisfy the expression ~w ·~x + b = 0 for the set of points ~x. In this
case, the ~x is the set of HOG feature vectors computed in the preceding steps.

5.4.2.2 SIFT

The Scale-invariant Feature Transform is a classic feature detection method widely
used in computer vision tasks to describe the local features in images. It is adopted

50 User Interface Components Detection

in many applications such as object recognition and action recognition [Lowe, 1999],
the robust performance in recognition tasks is the motivation that I try this technique.

As its name suggests, the core concern this algorithm addresses is to keep the
features of objects invariant in various scales [Mikolajczyk and Schmid, 2005]. It
searches for the extreme points in the space and extracts their location, scale and
orientation, and then all those features are stored in the database through the Hash
Table. An object from a new image is recognized by comparing and matching its
features to the database to find the candidates based on Euclidean distance of their
feature vectors. Mainly four steps involved in the SIFT algorithm, this section is just
a brief summary of it [Mordvintsev and Revision, 2013].

Scale-space extrema detection: This step extracts a large set of feature vectors
from the input image. Those vectors are theoretically invariant to image scaling and
rotation and robust to local geometric distortion. To this end, the author proposed
the scale-space extrema detection by using Gaussian filter in various σ scales, where
the σ decides the smoothness of an image. Small σ reflects the details of the image,
while large σ presents the blurred picture.

SIFT uses Difference of Gaussians (DoG) to calculate the d Gaussian Pyramid.
DoG is obtained as the difference between two images blurred by different Gaussian
filters with different σ, and this process is done for all layers in the Gaussian Pyramid
as illustrated below.

Figure 5.15: DoG are computed in all layers in Gaussian Pyramid

After the DoG is calculated, each pixel in an image is compared with its eight
neighbours as well as corresponding nine pixels in the next scale and the previous
scale to find the local extrema that can be a potentially key point representing the
feature in its scale.

Keypoint localization: For all potential keypoints, SIFT uses Taylor series expan-
sion of scale-space to get a more accurate location, but if the intensity at a point is
less than a specific threshold, it is rejected.

§5.4 Classification 51

Orientation assignment: The key points are assigned orientation in this step by
calculating the gradients with its neighbours on this scale. The gradients’ direction
and magnitude are stored in an orientation histogram with thirty-six bins. This pro-
cess is helpful to keep invariance to image rotation.

Keypoint descriptor: SIFT store the keypoints in a descriptor which consists of
multiple bins of orientation histogram. In detail, a 16x16 neighbourhood around each
keypoint is taken and divided into 16 4x4 sub-blocks. Then an eight-bin histogram is
created for each sub-block to collect the gradients. So a total of 128 bins are created
and vectorized to store the information of this keypoint.

Eventually, the features of an image are extracted and can be used to recognize
others in the same category either by matching the Euclidean distance or by utilizing
this vector as an encoder and feed into machine learning techniques such as SVM.

5.4.2.3 CNN

Compared with the aforementioned techniques, the Convolutional Neural Network
(CNN) is a more end-to-end method [Jeeva, 2018]. Because of the popularity of CNN,
I will not iterate its basic mechanism and principle in this thesis. The emphasis here
is on the model’s structure and its effectiveness.

Figure 5.16: The structure of the four-layer network. A 3x3 sliding window is adopted
to move through the original image that is resized into size of 128x128. All convolu-
tional layers are followed by a 2x2 max-pooling layer. The output layer is a five-class

softmax to classify the input into image, button, input box, icon and text.

As the classic use case, this technique is utilized to recognize the class of image in
the UI components detection pipeline. The input now is the individual component.

52 User Interface Components Detection

An observation on the datasets of human-computer interface components is that the
buttons and input boxes are less variants. In other words, components in those
two classes are always in a similar pattern. For example, the buttons are always in
the form that one or few words located in the centre of a bordered region. On the
contrary, the image elements are always variegated and colourful. So the difference
among various classes can be rather obvious, and a shallow neural network might be
sufficient in this case.

Therefore, I build a four-layer model to handle this task, and the structure is
presented in Figure 5.16. In order to offset the effect caused by the insufficient pa-
rameters in a shallow network, each layer is created more broad.

5.4.3 Performance

As mentioned above, I implement and compare those three techniques to select the
best one as the classifier. The experiment is conducted on the components dataset
consisting of images of web and mobile application. Although there are some slight
variations among interface elements of web and mobile apps, those nuances do not
impose considerable influence on the model’s performance. Therefore, all compo-
nents in the same class from different sources (web and mobile application) are
collected together and fed into the training models. The table 5.3 shows the ex-
perimental performance of those three classifiers.

Model Accuracy Recall Balanced Accuracy

SIFT + SVM 0.9166 0.9061 0.9007
HOG + SVM 0.9326 0.9112 0.9065

CNN 0.9566 0.9128 0.9226

Table 5.3: The performance of models. The balanced accuracy is taken into account
as a criterion because of the imbalanced datasets where image components are far
more than others. The experiments present that the CNN model is relatively better

than the other two in all aspects.

5.5 Text Processing

The text processing is achieved by a popular text detection method, Connectionist
Text Proposal Network (CTPN) [Tian et al., 2016]. The CTPN was originally de-
signed for accurately localizing the text lines in a nature scene, leveraging the ver-
tical anchor regression and connectist proposals to detect text lines accurately. This
technique achieves high performance on the ICDAR 2013 and 2015 benchmarks at a
fast processing speed (0.14s/image).

§5.5 Text Processing 53

5.5.1 Introduction

The CTPN refers to the state-of-the-art object detection methods, especially the Faster
RCNN [Ren et al., 2015], but the authors proposed some novel improvement to adapt
the network to the natural scene text line detection based on the visual properties of
the sentence. In this process, several following contributions are made:

First, the authors transformed the OCR problem into localizing a sequence of fine-
scale text proposals, which could apply some mechanisms of object detection means
[Girshick, 2015; Ren et al., 2015]. For instance, anchor regression that widely used in
recent object detection methods are utilized to acquire the position of the targets. But
CTPN takes the morphological characters of text line into consideration and deploys
vertical anchors to produce the region proposals, which makes significant progress
to the localization accuracy. This novelty departs from the Region Proposal Network
in the Faster RCNN, which attempts to predict a whole object, hence is difficult to
provide a satisfying localization accuracy in the case of text detection.

Second, in view of the consecutiveness of the sentence, the authors incorporated
an in-network recurrence mechanism that connects sequential proposals in the con-
volutional feature maps into the model. Thereby, the network is capable of exploring
meaningful context information.

Third, this method is scalable and robust in various environments. An end-to-
end trainable network is produced, able to handle multi-scale and multi-lingual text
in the same image without and revision and filtering. This robustness is achieved by
the diversity of the training dataset as well as the anchor regression mechanism.

Attribute to the aforementioned novelties, the CTPN refreshed a series of bench-
marks, significantly improving results of preceding methods. (e.g., 0.88 F-measure
over 0.83 in [Gupta et al., 2016] on the ICDAR 2013, and 0.61 F-measure over 0.54 in
[Zhang et al., 2016] on the ICDAR2015).

5.5.2 Technical Details

Three critical novelties are proposed in the CTPN: detecting in fine-scale proposals,
recurrent connectionist text proposals and side-refinement. Figure 5.17 shows the
architecture of the CTPN.

Fine-scale proposals: This technique adopts the fully convolutional network to
allows an input image of arbitrary size. Referring to FRCNN, it leverages slide win-
dows to detect the text areas in the convolutional feature maps, then generates a
series of fine-scale text proposals.

The sliding-windows methods used to facilitate the region proposal. Most clas-
sical sliding-windows approaches define several fixed-size anchors to detect objects
of similar size. The CTPN extends this efficient mechanism by means of revising
the scale and aspect ratio of anchors to fit the properties of text. One peculiarity
of a text line is that it is a sequential region where it does not have an obviously
closed boundary. Multi-level components, such as stroke, character, word, text line
and paragraph, are involved in the process. The text detection in this case, however,

54 User Interface Components Detection

Figure 5.17: The overall structure of the Connectionist Text Proposal Network
(CTPN). A 3x3 sliding window is applied through the last convolutional map of
the base network (VGG16). Then the sequence of windows in each row is recurrently
connected by a Bio-directional LSTM to gather the sequential context information. In
the end, the RNN layer is connected to a 512D fully-connected layer and the output
layer where the text/non-text score and y-coordinate are predicted, and the k anchors

are offset by the side-refinement.

focuses on the text line and region level, so the accuracy might not be satisfied if it
still treats the targets as single objects.

Therefore, the authors proposed a vertical mechanism that predicts a text/non-
text score and the y-axis location of each proposal. The experiments prove that
detecting text line in a sequence of fix-width proposals is more effective and accurate
than recognizing individual characters. Moreover, the fixed-width proposals also
work well the text of various scales and aspect ratios.

In detail, the CTPN utilizes k vertical anchors in a fixed width of 16 pixels. Those
k anchors have the same horizontal location, but they vary in k different heights
vertically. Thus, each predicted proposal has a bounding box with a size of h x 16,
where the h is the predicted height. The network’s output is the text/non-text scores
and the predicted y-coordinates that represent the height of this anchor for k anchors
of each window.

Recurrent Connectioist Text Proposals: The fine-scale proposals result from split-
ting the text line into a sequence of slender regions, and those proposals are predicted
independently. However, it is obviously not robust to process each part of text re-
gions separately. Therefore, the authors leveraged the recurrent mechanism to make
use of the sequential nature of the text. Furthermore, the CTPN integrates the context
information into the convolutional layer.

To this end, the CTPN, the long short-term memory (LSTM) [Hochreiter and
Schmidhuber, 1997] is used for the recurrent neural network (RNN) layer. The au-
thors adopted some tricks to address the vanishing gradient problem. Moreover,
they use a bi-directional LSTM [Graves and Schmidhuber, 2005] to extend the RNN
layer to collect the context information in both directions.

§5.6 Merge 55

Side-Refinement: After acquiring the fine-scale proposals, the CTPN straightfor-
ward connects those whose text/non-text score is greater than 0.7 to construct the
text line. The text regions are now divided by a sequence of equal 16-pixel width
proposals of different heights. Such variations can lead to inaccuracy of text line de-
tection. To address this problem, the authors proposed a side-refinement approach
to estimate the offset for each proposal horizontally.

5.6 Merge

The UI components detection and text detection are done independently by the two
branches. In the end, the pipeline cross-checks the correctness and integrates those
results.

One drawback of the image processing based method is that the noises would
be selected by mistake. The pre-processing stage attempts to incorporate all the var-
iegated contents into individual components and plenty of objects that are unlikely
to be interface components are filtered out based on their sizes and aspect ratios ac-
cording to the heuristics in table 5.1. But there are still some isolated regions where
are wrongly selected as component candidates. The observation on those false posi-
tives is that they always come from two sources, the small isolated parts of the image
components and the text regions.

As stated at the beginning of this chapter, the detection of interface components
and recognition of text regions are separate and performed in two specified pipelines.
Those two branches are expected to focus on their won tasks for the sake of accuracy.
Therefore, the text regions are not desired in the UI components detection pipeline
and should be filtered out as noises. To this end, the CNN in this branch is also
trained to be able to recognize the text to avoid mixing it up with other interface
elements.

But the real text regions still have chance to be improperly recognized as buttons
or images because of the false prediction of the CNN. Thus the system applies the
results of CTPN to double-check the results of components detection and discard
those misidentified human-interface elements. The process is visualized in Figure
5.18.

To achieve this, the resulting UI components on the left-hand side are filtered
by computing the overlap with the text lines. The overlap computation is on the
ground of their Intersection over Area (IoA), as IoA(a, b) = Areaa∩Areab

Areaa
. A valid UI

component i should satisfy the two requirements:

∀j ∈ Text(IoA(i, j) < 0.7) (5.7)

(∑
j∈Text

Inter(j, i))/Areai < 0.85 (5.8)

The requirement 5.7 means the intersection area of a single text region with the
component i should be smaller than the 70 percentage of component i’s area; and the

56 User Interface Components Detection

(a) Result of the UI components detection (b) Result after merging with text detection

Figure 5.18: A section of web application interface. The 5.18(a) demonstrates the de-
tecting result of the UI components detection pipeline, in which several text regions
are wrongly recognized as image elements (marked with red bounding boxes). The
merged result is shown in the 5.18(b), the green slim lines in this figure are the text
areas detected by the CTPN. After double-checking by the CTPN, those false positive

image elements that are actually text are discarded.

expression 5.8 stipulates that the total text area of an interface element should less
than 85 percentage of its area.

Eventually, the merged result is presented to the user as the visualized output of
this whole detection system, and it is also transferred to the code generation section
to produce the corresponding front-end code.

5.7 Summary

This chapter presents the UI components detector of UI2CODE in which two branches
are involved: graphical component detection and text recognition. I built a pipeline
utilizing image processing algorithms to achieve the graphical component detector.
Three steps compose this part: (1) pre-processing that manufactures the binary map
by calculating gradients of the input image; (2) components detection section seg-
menting the connected components and select the potential UI element candidates;
(3) a CNN classifier to categorize the components into several predefined classes.
Meanwhile, I utilized a powerful text recognition model CTPN to detect the text ar-
eas of the UI. In the end, the results of two branches are integrated to produce the
final result.

Chapter 6

Code Generation

Code generation module, functioning as the output section, produces the front-end
code that implements the input UI design. This part combines components detection
results from the previous step and some UI layout structure identification algorithms
based on common practices of UI development to generate the deliverable.

Through the processing of the above pipeline, we acquire the spacial positions
and classes of UI widgets. To facilitate developers and designer more straightfor-
wardly, as mentioned in Chapter 1, UI2CODE converts the detected information into
usable front-end code (HTML, CSS). However, there are still some gaps between the
detection result and the professional program. For example, the output locations of
elements are absolute coordinators on the image. It is not sufficient for front-end
programming where the position of a component is always relative to its parent con-
tainer and neighbours[WHATWG, 2019], such as 50 pixels from the left element. In
addition, the proper hierarchy among UI components is also critical for a maintain-
able program Harris [2014].

Therefore, I proposed several algorithms and cascaded them in a pipeline to pro-
duce the final deliverable code. In order to bridge the gaps between detection and de-
liverable program, this technique includes two high-level parts: (1) hierarchical seg-
mentation and (2) front-end code generation. The hierarchical segmentation adopted
some image processing algorithms to detect cutting lines which always be partitions
of blocks on a UI and applied some strategies to decide the hierarchy of regions. The
front-end code generation phase only focuses on HTML and CSS languages in this
stage. We investigated practices of web development to produce a high-quality code
that is easy to expand and maintain.

To evaluate the effectiveness of this technique, I ran the generated code on the
browser and compared its visual effect with the input UI design [White et al., 2019].
However, due to a lack of time, this part is rather not robust and requires more
improvement in terms of methodology and evaluation. More user study and bench-
mark is needed to judge the quality of the created code.

This part of the work has not been completely finished yet. Hence, this chapter
only introduces some of the progress and outcomes so far, including a cutting line
detection algorithm based on image processing, block segmentation, hierarchy estab-
lishment, and web code generation referring to standards and usual practices of web
development.

57

58 Code Generation

Figure 6.1: Visualized demonstration of hierarchical block segmentation. From left
to right are: (1) the input or a web UI which is a full-size screenshot from YouTube;
(2) the binarized gradients map of the original image; (3) the result of cutting line
detection, where we only care horizontal lines and vertical lines; (4) the hierarchical

blocks with various colours segmented based on the cutting lines.

6.1 Hierarchical Block Segmentation

In order to reconstruct the layout of a UI, we need first segment it into several regions,
or blocks we call them here. Typically, all UI elements can be categorized into two
class, block level elements and inline elements [Tutorialspoint, 2016]. Each block can be
regarded as a container where single or multiple UI elements are gathered in it, and
it can be the fundamental layout structure of a UI [MDN, 2019]. Therefore I proposed
a technique, in accordance with solid borders of each container combined with gaps
between components, that divides an entire image into various blocks as sub-regions
of the UI and establishes hierarchies among them.

Blocks we acquire from the previous steps in section 5.3.4 can be merged with
the result of this pipeline at the end, but we cannot only count on that approach for
several reasons. First, the previous block recognition method requires blocks having
an entire rectangular boundary comprising four borders. However, sometimes a
block in UI only has one or two or even no borders, such as a single upper border
or a left border; in that case, the algorithm is no longer available. Second, that
algorithm is designed to apply in extracted components, which is incompatible with
the situation that we want to segment the regions rather than analyze all elements
directly.

Thus, I proposed a new approach to settle down the problems. The technique is
composed of several steps: (1) detecting the explicit partitions of blocks, which are
always their boundary lines; (2) segmenting the UI into blocks on the basis of those
cutting lines, as well as some implicit information between elements such as gaps;

§6.1 Hierarchical Block Segmentation 59

(3) establishing their hierarchy for further code generation.
Figure 6.1 presents the visualized pipeline in which we take the UI design in

any size as input, and convert it into the binary map by applying the pre-processing
proposed in the last chapter 5.2. Then I built an efficient line detection algorithm to
acquire cutting lines or partitions, and these lines are considered as solid borders of
blocks. The blocks are segmented according to the lines, and their hierarchies are
decided according to their relative positions and inclusion relations.

6.1.1 Cutting Line Detection

As mentioned above, the purpose of this step is to detect partition lines of blocks,
which are also their boundary lines. To this end, this section introduces an image
processing based method to analyze the UI design. However, unlike the existing
popular line detection algorithm, such as Hough Transform [Duda and Hart, 1972],
here we do not need to concern complicated and universal situations; instead, we
only focus on particular cases based on the characteristics of UI.

One observation on web UIs is that borders of elements implemented by HTML
or CSS are always rectangular [W3Cschool], and they are either horizontal or vertical,
as shown in Figure 6.2. Therefore, the target lines we desire to find are also should
be these two types, which requires a horizontal and vertical line detection algorithm.

Figure 6.2: Various borders of HTML elements, but the common characteristic is that
they are all rectangular.

Thus, I proposed an efficient method to fulfil this need. This approach refers to
the block recognition algorithm in 5.3.4. One common assumption with that is there
should be a gap between the border of a block and the nested object within it. So,

60 Code Generation

this method identifies a point as part of a line by inspecting its neighbouring pixels.
For instance, the points above or below a horizontal line should be background (zero
pixel); similarly, the points next to the left side or right side of a vertical line should
be background.

As the graphical components detection pipeline, the process also feeds on the
binary map of the original image where the foreground is clearly exposed as white
points. Then we scan row by row to find horizontal lines and column by column to
acquire vertical lines. The pseudocode is presented in algorithm 5.

Algorithm 5 Line Detection - Horizontal
Input: Binary map, Minimum gap between border and contents, Minimum length

of line
Output: An array of lines, each lines contains a start point and an end point

1: HorizontalLines← []
2: x ← 0
3: for x in range(Row) do
4: FoundLine← False
5: for j in range(Column) do
6: if Map[x][j] = 255 and FoundLine = False then
7: Head← j
8: FoundLine← True . Start a new line
9: else if (Map[x][j] = 0 or j = Column− 1) and FoundLine = True then

10: End← j
11: FoundLine← False . End the line
12: if Head− End > MinLength then . Check the length and gap
13: if ∑

x+Gap
i=x+1 ∑End

j=Head Mapij = 0 and ∑
x−Gap
i=x−1 ∑End

j=Head Mapij = 0 then
14: HorizontalLines.append((x, Head), (x, End))
15: end if
16: end if
17: end if
18: end for
19: end for
20: return HorizontalLines

This algorithm shows that the process of detecting horizontal lines. The method
for vertical lines is rather similar. We scan the binary map row by row and detect the
foreground where the pixel value is 255, and each line is terminated when encoun-
tering a background point or the margin of the map. Then we check the length of
these lines and inspect its upper and lower neighbouring rows to check gaps. While
detecting vertical lines, we only need to change the row-by-row scanning to column-
by-column scanning and inspect the left and right side neighbours rather than up
and below ones. The algorithm is efficient due to its simple complexity, as well as
sufficient for UIs because of their cutting line’ s unique property.

§6.1 Hierarchical Block Segmentation 61

6.1.2 Block Segmentation

After acquiring cutting lines, we segment the entire UI into independent blocks as
the fundamental layout structure elements. The objective of this step is to enhance
the usability and maintainability of the further generated code in the way that fits
usual practices of web development [Musciano and Kennedy, 2007; WHATWG, 2019;
Harris, 2014].

This problem is similar to the Plane Division by Lines problem [Engel, 1997; Gra-
ham et al., 1994]. It is a classical mathematical problem that questions the maximum
number of regions divided by n lines in the plane. But here we care more about
positions of these divided regions rather than their amount. In other words, the
challenge in this case is how to split the entire image by multiple intersecting vertical
and horizontal lines.

One characteristic in HTML elements is that the length of a border amounts to
the length of its relevant side. For instance, the length of the left and right border
of a block is exactly equal to the block’s height, and the length of the block’s upper
or lower border is equal to its width. Therefore, given one line, we can divide the
plane into two zones with a certain size. For example, in Figure 6.3, given linea, the
plane is split into region1 and region2 where widths are the same as the length of
linea. Similarly, widths of region3 and region4 are equal to the length of lineb.

This division already exposes some hints of region’s hierarchy. region3 and
region4 can be regarded as nested blocks of region2, in other words, these two regions
are children nodes of region2 in HTML. According to the definition and attribute of
child node in HTML, the children should always be completely contained by its par-
ent [Lee, 2012]. Thus, the upper boundary of region3 should lower than or equal to
the position of lineb, and the lower boundary of region4 should higher than or equal
to the lower bound of region2.

Figure 6.3: Two horizontal lines a and b divide the plane into four regions. Widths of
all regions are equal to their cutting lines’ length, while their heights are related to

their parents.

Figure 6.3 shows the division of horizontal lines. Similarly, a vertical line splits
plane into two zones where their heights are the same as the length of the line, and
their width cannot exceed the left or right bound of the parent region. Figure 6.4(b)
illustrates a more complicated situation where both vertical and horizontal lines are

62 Code Generation

involved. We give priority to the horizontal lines because block-level elements are
always followed by a line-break which puts the next block below this one [Tutorials-
point, 2016]. Thus, if a block split by a vertical line is identical with anyone divided
by a horizontal partition, we simply ignore it.

To this end, I proposed an algorithm taking the cutting lines as input and output
block divisions. It consists of two parts: (1) each horizontal line is assigned an upper
bound and a lower bound, and each vertical line is assigned a left bound and a right
bound; (2) according to lines and their bounds, we generate the block defined by two
points, the top-left and the bottom-right.

Algorithm 6 Block Division - Horizontal
Input: An array of cutting Lines comprising vertical and horizontal lines
Output: An array of blocks represented by top-left and bottom-right corners

1: Upper ← Numbero f Lines× [0] . Initialize upper line for each line
2: Lower ← Numbero f Lines× [Heighto f Image] . Initialize lower line for each line
3: for i in range(len(Lines)) do
4: for j in range(len(Lines)) do
5: if i 6= j and Linesi.Headcolumn < Linesj.Headcolumn
6: and Linesi.Endcolumn > Linesj.Endcolumn then
7: . Check inclusion relationship between two lines
8: if Linesi.row > Linesj.row > Upperi then
9: Upperi ← Linesj.row . Get closer upper line

10: end if
11: if Linesi.row < Linesj.row < Loweri then
12: Loweri ← Linesj.row . Get closer lower line
13: end if
14: end if
15: end for
16: end for
17: Blocks← [] . Generate Block
18: for i in range(len(Lines)) do
19: if Loweri − Linesi.row > MinHeight then
20: Blocks.append((Linesi.Head), (Loweri, Linesi.End.column))
21: end if
22: end for
23: for i in range(len(Lines)) do
24: if Linesi.row−Upperi > MinHeight
25: and (Upperi, Linesi.Head.column), (Linesi.End) not in Blocks then
26: Blocks.append((Upperi, Linesi.Head.column), (Linesi.End))
27: end if
28: end for
29: return Blocks

Algorithm 6 presents the horizontal version of block division, which is fed on
horizontal cutting lines and divides the image by them. The first step is to assign an

§6.1 Hierarchical Block Segmentation 63

upper bound and a lower bound for each line. I defined an Covering Relation for a
pair of lines in the way that horizontally, if Linea’s start point’s column coordinate
is less than that of Lineb’s, and Linea’s end point’s column coordinate is larger than
that of Lineb’s, then we say Lineb is covered by Linea. For example, in Figure 6.3,
Linea covers Lineb. In this case, the upper bound of the upper Block3 generated from
Lineb should be Linea. Secondly, we generate blocks on the basis of the lines and
their bounds. This process is conducted in both upper bounds and lower bounds,
and it filters out the redundant blocks to get the final set of blocks.

6.1.3 Hierarchy Establishment

We now can establish the hierarchies among blocks. The fundamental principle here
is that if a block is contained by another, then it is the child node of the container.
This definition fits the node’s property in HTML [Lee, 2012]. Therefore, this question
can be converted to judging the inclusion relations of blocks.

The format of the presentation of a block is (Top-left, Bottom-right) which is a set
of two points. So it is rather straightforward to judge the inclusion relation between
two blocks: if Blocka’s top-left corner is in the upper left of Blockb’s top-left point,
and the bottom-right corner of Blocka is in the lower right of Blockb’s bottom-right
corner, then we can say than Blocka contains Blockb. However, this criterion only
applies to a pair of blocks, while we have to draw the overall hierarchy of all blocks.
Understandably, if we simply apply the above inclusion criterion, a block would turn
out to have multiple containers. For example, in Figure 6.4(b), Block14 is not only
contained by Block6 but also contained by Block4. But we only want to acquire the
immediate parent of a block [imm, 2019], such as parent Block6 for children Block14

and Block15.

Algorithm 7 Block Hierarchy
Input: An array of blocks represented by top-left and bottom-right corners
Output: Each block acquire its children and the immediate parent

1: for i in range(len(Blocks)) do
2: for j in range(len(Blocks)) do
3: if i 6= j and Block j contains Blocki then
4: Blocki.Parents.append(Block j)
5: end if
6: end for
7: end for
8: for i in range(len(Blocks)) do
9: for P in Blocksi.Parents do

10: Blocksi.Parents.remove(P.Parents ∩ Blocksi.Parents)
11: end for
12: Blocksi.Parents.Children.append(Blocksi) . Only one immediate parent
13: end for

Therefore, I proposed a method shown in Algorithm 7 to establish the holistic

64 Code Generation

hierarchy. This algorithm first compares each block to all others to judge containing
relations. Then, it follows a principle to pick the immediate parent that my parent’s
parent is not my parent. So, the block filters out all its parents that are also its
parent’s parents, and only one node will be selected at the end.

Now, we can travel from the root nodes that have no parent node through its
children nodes to draw the global hierarchy. Figure 6.4 illustrates the division results
and the hierarchical map generated based of the inclusion relations of blocks.

(a) Block division (b) Hierarchical map of blocks

Figure 6.4: Illustration of block division by cutting lines, and the hierarchy is estab-
lished by checking the inclusion relations among these blocks.

So far, we’ve acquired the UI components information from the detection pipeline
and the hierarchical layout structure from approaches above in this chapter, and we
can produce the deliverable code based on these results.

6.2 Web Code Generation

This section yields the final deliverable of the UI2CODE, a set of front-end program-
ming files including HTML and CSS, which implements the identical visual effect of
the input UI design as well as some expected functionalities for certain UI widgets,
such as button and input box. To this end, all the detection and division results are
combined and converted into programming expressions. To be more specific, I trans-
formed all the sizes, contents and spacial positions of UI elements into HTML code
and reconstructed the layout of the design according to the divided blocks. Further-
more, in order to make enhance usability and maintainability of the generated code,
I referred to some usual practices of real web development and discussed with some
professionals to the feedback of the artificial program.

§6.2 Web Code Generation 65

As mentioned in chapter 2, few similar works have been done in this field, but we
can still have inspiration from some indirectly related works. For example, some of
the web data extraction tools involved methodologies of formalization of web code.
Several works [Gupta et al., 2003; Le et al., 2006; Cosulschi et al., 2006] provide a
though that treats the web UI as a structured file and analyzed it systematically.
I adopted some approaches, especially the Document Object Model (DOM), when
producing the HTML code.

6.2.1 DOM Tree

In order to manufacture a high-quality program, I referred to the Document Object
Model (DOM) specification. DOM is a set of platform and language-independent
application programming interface that treats an XML or HTML document as a tree
structure in which each node is an object representing a part of the document [Whit-
mer, 2009]. Therefore, the classified UI components from the previous detection
pipeline are constructed as the leaf node of the DOM tree, and they are clustered
into their container blocks which are roots and branch nodes [tre, 2019] in this tree.
Then, the branches are used to represent the hierarchies among end elements and
blocks.

The tree in Figure 6.5 illustrates the tree representing the hierarchical structure
of the division in Figure 6.4. In HTML, we use <body> tag to define an HTML doc-
ument [Musciano and Kennedy, 2007] where all contents of a web page are written
in this area, so the root of the DOM tree is also <body> tag. The branch illustrates
the relation between a parent node in a higher level with smaller layer number and
a children node with bigger layer number.

Figure 6.5: A tree constructed for the segmentation in Figure 6.4. The root node is
the HTML <body> node which defines the document’s body. Totally four layers are

involved here to present the hierarchy.

The DOM tree is essentially a data structure for storing the information of an
HTML file from which we can acquire the layout structure and the contents of each
node of the web page. Thus, we now can fill in this tree with the detected information

66 Code Generation

of UI elements from previous steps to express a web UI. For example, Figure 6.6
illustrates a HTML DOM tree for a real-entire HTML code below.

1 <!DOCTYPE html>
2 <html lang="en">
3 <head>
4 <title>Title</title>
5 </head>
6 <body>
7 <div>
8 <h1>Web page template</h1>
9 <a>Click here

10 </div>
11 <div>
12 <div>
13
14 </div>
15 <div>
16 <input>
17 <button id="but1">Submit</button>
18 </div>
19 </div>
20 </body>
21 </html>

Here is an entire HTML code for a simple web page. It is worth noting that the
<div> element actually functions as a container, it is used to cluster multiple end UI
elements and create an independent layout block where it can be rendered separately
[Musciano and Kennedy, 2007].

Figure 6.6: The HTML DOM tree for above web page code.

In the instantiated HTML DOM tree, the leaf nodes present attributes, such as id,
class, href, src, and contents of end UI elements [Lee, 2012]; branch nodes are web

§6.2 Web Code Generation 67

elements which can be rendered and filled contents; the root node is the <html> tag
which defines the whole scope of this HTML file.

6.2.2 HTML Generation

This section presents an approach to implement the conceptual DOM tree into real
code. It is a fairly straightforward process to generate code from the DOM, but
several corners are worth noticing to produce a high-quality program in terms of
usability and maintainability. However, this part is still immature yet, so I only
introduce some principle and present the semi-manufactured product that needs
further improvement.

The first issue is how to make the product easy to read and use. As mentioned in
chapter 1, one obvious drawback of the downloaded source code of a real website is
that there would be various customized element classes and attributes, which cause
the difficulty to understand. To avoid the problem, I assign a unique and manageable
ID to each element, so that the user can systematically control elements by referring
their IDs.

Second, to enhance the extendability, I reverse some interfaces for functional UI
widgets. For example, the onclick function is added to the <button> element’s at-
tribute for further function implementation.

Third, in order to maintain the layout structure in a convenient and decoupling
way, the spatial positions of elements are always relative to their parent node and
peer nodes. So I recalculate the coordinates of elements according to its container.
Furthermore, as usual practice of web development, the rendering program is sepa-
rate from the HTML layout and restored in CSS file.

1 <div id="div1">
2 <div id="div3">
3 <h1>Register Now!</h1>
4 <p>Ready for joining the No.1 Jazz Club!</p>
5 </div>
6 <div id="div4">
7 <input id="input1">
8 <button id="but1" onclick="">Submit</button>
9 </div>

10 </div>
11 <div id="div2">
12 <div id="div5">
13
14
15 </div>
16 </div>

Here we see a piece of generated code where each element is assigned a unique
ID for the sake of future control. And the functional widget, such as the but1, has a
interface "onclick" for implementing the real action of this button in future.

68 Code Generation

1 #div1{
2 height: 200px;
3 width: 400px;
4 }
5 #div2{
6 height: 350px;
7 width: 400px;
8 }
9 #img1{

10 height: 150px;
11 width: 300px;
12 margin: 20px 30px 20px;
13 }
14 #img2{
15 height: 150px;
16 width: 300px;
17 margin: 20px 30px 20px;
18 }

The above code is a section of the corresponding CSS rendering file in which
implementing the size, location and other rendering attributes, such as background
colour, as well as some special layout attribute, such as text-align and float.

6.3 Issues and Limitations

However, this part of the work is still immature. Several issues have not been ad-
dressed and require more in-depth researches. First, I only produced the CSS and
HTML code of a web page, which do not include the real actions and functionality of
elements. The functional part of a real website is usually implemented in Javascript
[Musciano and Kennedy, 2007], so the future work should take Javascript part into
consideration as well. Second, the generated code can not perfectly reproduce the
input UI design because of some particular layout attributes of UI elements, such as
float and centring. Third, the coordinates and sizes of elements should be refined in
the way that transfers some fixed numbers into relative numbers, such as replacing
width:200px with width:50%, to achieve a more adjustable design that is in line with
real UI development.

6.4 Summary

This chapter introduces the code generation part of UI2CODE, which functions as
the final output layer of this work to produce the deliverable code. To this end, I
proposed a pipeline that first hierarchically segments the entire UI into layout blocks
on the basis of cutting lines and gaps between elements, and then assembles all the
detection and segmentation results from above steps to a DOM tree to generate the
final web program. Nevertheless, the code generation part is not mature enough and
requires further researches to address the aforementioned issues.

Chapter 7

Results

This chapter presents some results of the UI2CODE. As mentioned in the previous
text, the code generation part is yet unrobust, so I focus on demonstrating the de-
tection results of the UI components detector and evaluating its performance with
respect to the accuracy of localization and classification.

7.1 Evaluation

To evaluate the effectiveness of the UI component detector, I test them on the col-
lected datasets of different types.

The classifier is implemented by a simple four-layer CNN, which is trained on a
fairly large size of UI component datasets. It is trained on various GUI components
shown in table 7.1, in which I used 80% as training data and 20% as testing data. The
confusion matrix is presented in Figure 7.1.

Class Name Number

Input Box 1632
Text 16406

Button 6604
Icon 3601
Img 29991

Table 7.1: Training data of classifier

To judge the effectiveness of the localization part of the UI components detection,
I calculate the Intersection-over-union (IoU) between the ground truth and the pre-
diction bounding box. Due to the high demand for precision property of GUI design,
as mentioned in section 3.1, the IoU value should be more than 0.8 if two boxes are
considered matching.

Figure 7.2 presents the evaluation of the localization by the graphical components
detector with respect to the accuracy and recall. We can observe several phenomena
from it: (1) The detector’s performance on web UI is proven best. The reason for that
is the web screenshot is less compact, and there are more gaps among elements so
that they are easier to segment, while the mobile UI’s layout is tighter hence harder

69

70 Results

Figure 7.1: The confusion matrix of the CNN classifier from which we calculate the
recall:0.937, accuracy:0.920, and the balanced accuracy:0.912

to perform accurate connected component labelling. (2) The overall recall is better
than accuracy. It attributes to the pixel-level image processing approaches that cover
all pixels in the image whereby few objects would be omitted.

Regarding the processing time, it varies with the sizes of input image as well
as the complexity of UI. I conducted the experiment on a windows machine with
Intel(R) Core(TM) i7-7700HQ CPU @ 2.80GHz (8 CPUs) and NVIDIA GeForce GTX
1050 Ti. Typically, an 800 x 600 artistic design drawing takes average 26s to perform
UI components detection and text recognition; a 2000 x 1300 real web screenshot
takes average 57s to process; a 1000 x 800 mobile UI takes average 32s to process.

7.2 Results Demonstration

This section demonstrates the detection results on randomly selected UIs from the
three datasets mentioned in chapter 4. The thick colourful bounding boxes with
labels are predictions given by graphical component detector while the slender green
bounding boxes are text recognition results of the CTPN.

Theoretically, the size of the input image can be arbitrary, which only affects the
processing time. For the sake of display, I resized and clipped some pictures. The
average processing time of these presented images is stated in the captions.

§7.2 Results Demonstration 71

(a) Accuracy

(b) Recall

Figure 7.2: Evaluation of UI graphical component detector.

72 Results

(a)

(b)

(c)

Figure 7.3: UI component detection on real web UI screenshots. Average processing
time: 57s.

§7.2 Results Demonstration 73

(a)

(b)

(c)

(d)

Figure 7.4: UI component detection on artistic UI design drawing from Dribbble.
Average processing time: 28s.

74 Results

(a)

(b)

(c)

Figure 7.5: UI component detection on real mobile UI screenshots from GooglePlay
and Rico. Average processing time: 36s.

Chapter 8

Conclusion

8.1 Conclusion

This thesis introduces a novel computer vision based user interface reverse engineer-
ing technique, UI2CODE. The major objective of this system is to bridge the gap
between the conceptual design and the code implementation in graphical human-
computer interface development, hence boosting the efficiency of the workflow and
relieving pains of designers and developers. In detail, UI2CODE takes the UI im-
age, either real screenshot or design drawing, as input and automatically identifies
UI components whereby manufacturing the usable and maintainable source code.
Unlike existing UI development tools, such as Wix and Wordpress, which focus at-
tention on supporting the fancy design and convenient drag and drop editor but do
not offer high-quality source code, UI2CODE provides users with easy-to-use code
with interfaces for further development. Thus, it is more suitable for professional
projects where full knowledge and ownership are required.

To this end, I built this system as a pipeline consisting of two high-level mod-
ules: UI components detector and code generator. Besides, I applied three datasets,
including a repository of real web UI screenshot, a published large mobile appli-
cation database Rico and a self-built dataset of artistic UI design drawings. These
data are used to observe the attributes of graphical user interfaces and evaluate
UI2CODE. The graphical user interface has various characteristics distinctly dif-
ferent from nature pictures, including heterogeneous contents, picked components,
arbitrary-shaped elements and strict demand for precision. These properties hamper
deep learning based object detection approaches from performing effective predic-
tion.

Therefore I leveraged the conventional computer vision and image processing
methods to implement the UI component detection part to fulfil the particular re-
quirements. Two separate branches are involved in achieving the graphical compo-
nent detection and text recognition. The graphical component detector comprises
multiple novel algorithms and embeds them into three steps: (1) pre-processing that
produces the distinct binary map of foreground and background; (2) component de-
tection part extracting and segmenting the connected components as candidates; (3)
a classifier based on convolutional neural network to categorize the selected compo-
nents. On the other hand, I adopted CTPN to perform text recognition on the UI. In

75

76 Conclusion

the end, the results are integrated to deliver the final result.
Then a code generator takes the detection result and produces the deliverable

front-end program that implements the identical visual effect and expected function-
alities of the input UI image. This part is composed of two sections: (1) hierarchical
layout block segmentation dividing the image into multiple clusters on the basis of
cutting lines; (2) web code generator that first converts the blocks into HTML DOM
tree and then transforms this tree into HTML/CSS code in which unique IDs are as-
signed to elements and interfaces are created for future extension. Finally, UI2CODE
exports the high-quality code to the user in short timeframe.

8.2 Future Work

This work has not been finalized yet, and few problems and challenges still exist in
each part.

One significant defect of current datasets is the lack of appropriate annotation. In
other words, a big proportion of images have no information about their contents,
such as the classes and position of components. This problem is caused by the issues
of the crawling agent, which is mentioned in section 4.1.2. So the solution could be
improving or exploiting a new crawler or combining human power as supplemen-
tary.

The UI components detector can well handle most real UI designs, but it suf-
fers the noise caused by false positive detection of small objects. Those noises al-
ways come from the isolated content of the image element and are treated as UI
components by mistake. I have some clues to settle this problem inspired by a non-
maximum suppression extension work [Rothe et al., 2015]. Besides, the layout align-
ment assumption in artificial UI should also be utilized to refine the results in some
ways.

Furthermore, the performance of the text recognition model CTPN is not as ac-
curate as of the UI components detector so we might consider finding some new
technique to enhance the precision of text detection.

The code generator can only produce HTML/CSS code so far, but the functional-
ities are always supported by Javascript program. Besides, there is a huge potential
for improvement of the generated code to better accord with the professional prod-
uct. We can achieve by co-operating with some specialists to gain their feedback and
comments.

Finally, the quantitative comparison between UI components detector of UI2CODE
and deep learning object detection methods should be drawn after we improve the
datasets by adding more annotations of images.

Bibliography

2019. Block-level elements. https://developer.mozilla.org/en-US/docs/Web/HTML/
Block-level_elements. (cited on page 63)

2019. Tree (data structure). https://en.wikipedia.org/wiki/Tree_(data_structure).
(cited on page 65)

Alharbi, K. and Yeh, T., 2015. Collect, decompile, extract, stats, and diff: Min-
ing design pattern changes in android apps. In Proceedings of the 17th Interna-
tional Conference on Human-Computer Interaction with Mobile Devices and Services, Mo-
bileHCI ’15 (Copenhagen, Denmark, 2015), 515–524. ACM, New York, NY, USA.
doi:10.1145/2785830.2785892. http://doi.acm.org/10.1145/2785830.2785892. (cited
on pages 10 and 26)

Asa Ben-Hur, H. T. S. V. V., David Horn, 2001. Support vector clustering. Jour-
nal of Machine Learning Research, (2001), 125–137. http://www.jmlr.org/papers/v2/
horn01a.html. (cited on page 49)

Basten, B., 2011. Ambiguity detection for programming language grammars. s.n. (cited
on page 23)

Brown, C. M., 1999. Human-computer interface design guidelines. Intellect. (cited on
pages 1 and 9)

Campos, P. and Nunes, N., 2007. Practitioner tools and workstyles for user-interface
design. IEEE Software, 24, 1 (2007), 73–80. doi:10.1109/ms.2007.24. (cited on page
9)

Canny, J., 1986. A computational approach to edge detection. IEEE Transactions
on Pattern Analysis and Machine Intelligence, PAMI-8, 6 (Nov 1986), 679–698. doi:
10.1109/TPAMI.1986.4767851. (cited on pages 9, 11, and 31)

Canny, J., 1987. A computational approach to edge detection. Readings in Computer
Vision, (1987), 184–203. doi:10.1016/b978-0-08-051581-6.50024-6. (cited on page 17)

Cepelewicz, J., 2019. Where we see shapes, ai sees textures. https://www.
quantamagazine.org/where-we-see-shapes-ai-sees-textures-20190701. (cited on page
29)

Cortes, C. and Vapnik, V., 1995. Support-vector networks. Machine Learning, 20, 3
(Sep 1995), 273–297. doi:10.1007/BF00994018. https://doi.org/10.1007/BF00994018.
(cited on page 47)

77

https://developer.mozilla.org/en-US/docs/Web/HTML/Block-level_elements
https://developer.mozilla.org/en-US/docs/Web/HTML/Block-level_elements
https://en.wikipedia.org/wiki/Tree_(data_structure)
http://dx.doi.org/10.1145/2785830.2785892
http://doi.acm.org/10.1145/2785830.2785892
http://www.jmlr.org/papers/v2/horn01a.html
http://www.jmlr.org/papers/v2/horn01a.html
http://dx.doi.org/10.1109/ms.2007.24
http://dx.doi.org/10.1109/TPAMI.1986.4767851
http://dx.doi.org/10.1109/TPAMI.1986.4767851
http://dx.doi.org/10.1016/b978-0-08-051581-6.50024-6
https://www.quantamagazine.org/where-we-see-shapes-ai-sees-textures-20190701
https://www.quantamagazine.org/where-we-see-shapes-ai-sees-textures-20190701
http://dx.doi.org/10.1007/BF00994018
https://doi.org/10.1007/BF00994018

78 BIBLIOGRAPHY

Cosulschi, M.; Giurca, A.; Udrescu, B.; Constantinescu, N.; and Gabroveanu,
M., 2006. Html pattern generator–automatic data extraction from web pages. In
2006 Eighth International Symposium on Symbolic and Numeric Algorithms for Scientific
Computing, 75–78. doi:10.1109/SYNASC.2006.43. (cited on pages 4, 11, and 65)

Coyette, A.; Kieffer, S.; and Vanderdonckt, J., 2007. Multi-fidelity prototyping
of user interfaces. Lecture Notes in Computer Science Human-Computer Interaction –
INTERACT 2007, (2007), 150–164. doi:10.1007/978-3-540-74796-3_16. (cited on
page 9)

Dalal, N. and Triggs, B., 2005. Histograms of Oriented Gradients for Human
Detection. In International Conference on Computer Vision & Pattern Recognition
(CVPR ’05), vol. 1, 886–893. IEEE Computer Society, San Diego, United States.
doi:10.1109/CVPR.2005.177. https://hal.inria.fr/inria-00548512. (cited on pages 48
and 49)

Deka, B.; Huang, Z.; Franzen, C.; Hibschman, J.; Afergan, D.; Li, Y.; Nichols, J.;
and Kumar, R., 2017. Rico: A mobile app dataset for building data-driven design
applications. In Proceedings of the 30th Annual ACM Symposium on User Interface
Software and Technology, UIST ’17 (Québec City, QC, Canada, 2017), 845–854.
ACM, New York, NY, USA. doi:10.1145/3126594.3126651. http://doi.acm.org/10.
1145/3126594.3126651. (cited on pages 9, 10, and 26)

Deka, B.; Huang, Z.; and Kumar, R., 2016. Erica: Interaction mining mobile apps.
In Proceedings of the 29th Annual Symposium on User Interface Software and Technology,
UIST ’16 (Tokyo, Japan, 2016), 767–776. ACM, New York, NY, USA. doi:10.1145/
2984511.2984581. http://doi.acm.org/10.1145/2984511.2984581. (cited on page 26)

Dev, O., 2014. Structural analysis and shape descriptors. https://docs.opencv.org/
2.4/modules/imgproc/doc/structural_analysis_and_shape_descriptors.html#id5.
(cited on pages 11 and 40)

Dillencourt, M. B.; Samet, H.; and Tamminen, M., 1992. A general approach to
connected-component labeling for arbitrary image representations. J. ACM, 39,
2 (Apr. 1992), 253–280. doi:10.1145/128749.128750. http://doi.acm.org/10.1145/
128749.128750. (cited on page 36)

Dixon, M. and Fogarty, J., 2010. Prefab. Proceedings of the 28th international conference
on Human factors in computing systems - CHI 10, (2010). doi:10.1145/1753326.1753554.
(cited on page 9)

Douglas, D. and Peucker, T., 1973. Algorithms for the reduction of the num-
ber of points required to represent a digitized line or its caricature. The
Canadian Cartographer, (1973), 112–122. doi:https://utpjournals.press/doi/10.3138/
FM57-6770-U75U-7727. (cited on pages 11 and 40)

Dribbble, 2019. Discover the world’s top designers creatives. https://dribbble.com/.
(cited on page 10)

http://dx.doi.org/10.1109/SYNASC.2006.43
http://dx.doi.org/10.1007/978-3-540-74796-3_16
http://dx.doi.org/10.1109/CVPR.2005.177
https://hal.inria.fr/inria-00548512
http://dx.doi.org/10.1145/3126594.3126651
http://doi.acm.org/10.1145/3126594.3126651
http://doi.acm.org/10.1145/3126594.3126651
http://dx.doi.org/10.1145/2984511.2984581
http://dx.doi.org/10.1145/2984511.2984581
http://doi.acm.org/10.1145/2984511.2984581
https://docs.opencv.org/2.4/modules/imgproc/doc/structural_analysis_and_shape_descriptors.html##id5
https://docs.opencv.org/2.4/modules/imgproc/doc/structural_analysis_and_shape_descriptors.html##id5
http://dx.doi.org/10.1145/128749.128750
http://doi.acm.org/10.1145/128749.128750
http://doi.acm.org/10.1145/128749.128750
http://dx.doi.org/10.1145/1753326.1753554
http://dx.doi.org/https://utpjournals.press/doi/10.3138/FM57-6770-U75U-7727
http://dx.doi.org/https://utpjournals.press/doi/10.3138/FM57-6770-U75U-7727
https://dribbble.com/

BIBLIOGRAPHY 79

Duda, R. O. and Hart, P. E., 1972. Use of the hough transformation to detect lines
and curves in pictures. Comm. ACM, Vol. 15,, (01 1972), 11–15. (cited on pages 5,
11, 40, and 59)

D’Haen, J.; den Poel, D. V.; Thorleuchter, D.; and Benoit, D., 2016. Integrating
expert knowledge and multilingual web crawling data in a lead qualification sys-
tem. Decision Support Systems, 82 (2016), 69 – 78. doi:https://doi.org/10.1016/j.dss.
2015.12.002. http://www.sciencedirect.com/science/article/pii/S016792361500216X.
(cited on pages 5, 10, and 11)

EGGLESTON, P., 2015. Understanding oversegmentation and region merging.
https://www.vision-systems.com/non-factory/security-surveillance-transportation/
article/16739494/understanding-oversegmentation-and-region-merging. (cited on
page 18)

Engel, A., 1997. Problem Solving Strategies. Springer-Verlag New York, Incorporated.
(cited on page 61)

Farrugia, L. J., 2007. ORTEP-3 for Windows - a version of ORTEP-III with a Graph-
ical User Interface (GUI). Journal of Applied Crystallography, 30, 5 Part 1 (Oct 2007),
565. doi:10.1107/S0021889897003117. https://doi.org/10.1107/S0021889897003117.
(cited on page 1)

Felzenszwalb, P. F.; Girshick, R. B.; McAllester, D.; and Ramanan, D., 2010.
Object detection with discriminatively trained part-based models. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 32, 9 (Sep. 2010), 1627–1645.
doi:10.1109/TPAMI.2009.167. (cited on page 16)

Freedman, D., 2012. Statistical models: theory and practice. Cambridge University
Press. (cited on page 14)

Freeman, W. T. and Roth, M., 1994. Orientation histograms for hand gesture recog-
nition. Technical Report TR94-03, MERL - Mitsubishi Electric Research Laborato-
ries, Cambridge, MA 02139. https://www.merl.com/publications/TR94-03/. (cited
on pages 11, 47, and 48)

Fu, B.; Lin, J.; Li, L.; Faloutsos, C.; Hong, J.; and Sadeh, N., 2013. Why people
hate your app: Making sense of user feedback in a mobile app store. In Proceedings
of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’13 (Chicago, Illinois, USA, 2013), 1276–1284. ACM, New York, NY,
USA. doi:10.1145/2487575.2488202. http://doi.acm.org/10.1145/2487575.2488202.
(cited on page 10)

Gandhi, R., 2018. R-cnn, fast r-cnn, faster r-cnn, yolo -
object detection algorithms. https://towardsdatascience.com/
r-cnn-fast-r-cnn-faster-r-cnn-yolo-object-detection-algorithms-36d53571365e. (cited
on pages 13 and 16)

http://dx.doi.org/https://doi.org/10.1016/j.dss.2015.12.002
http://dx.doi.org/https://doi.org/10.1016/j.dss.2015.12.002
http://www.sciencedirect.com/science/article/pii/S016792361500216X
https://www.vision-systems.com/non-factory/security-surveillance-transportation/article/16739494/understanding-oversegmentation-and-region-merging
https://www.vision-systems.com/non-factory/security-surveillance-transportation/article/16739494/understanding-oversegmentation-and-region-merging
http://dx.doi.org/10.1107/S0021889897003117
https://doi.org/10.1107/S0021889897003117
http://dx.doi.org/10.1109/TPAMI.2009.167
https://www.merl.com/publications/TR94-03/
http://dx.doi.org/10.1145/2487575.2488202
http://doi.acm.org/10.1145/2487575.2488202
https://towardsdatascience.com/r-cnn-fast-r-cnn-faster-r-cnn-yolo-object-detection-algorithms-36d53571365e
https://towardsdatascience.com/r-cnn-fast-r-cnn-faster-r-cnn-yolo-object-detection-algorithms-36d53571365e

80 BIBLIOGRAPHY

Geirhos, R., 2018. Out of shape? why deep learning works differently. https://blog.
usejournal.com/why-deep-learning-works-differently-than-we-thought-ec28823bdbc.
(cited on page 29)

Geirhos, R.; Rubisch, P.; Michaelis, C.; Bethge, M.; Wichmann, F. A.; and Bren-
del, W., 2019. Imagenet-trained CNNs are biased towards texture; increasing shape
bias improves accuracy and robustness. In International Conference on Learning Rep-
resentations. https://openreview.net/forum?id=Bygh9j09KX. (cited on page 29)

Girshick, R., 2015. Fast r-cnn. In The IEEE International Conference on Computer Vision
(ICCV). (cited on pages 10, 13, and 53)

Girshick, R.; Donahue, J.; Darrell, T.; and Malik, J., 2014a. Rich feature hi-
erarchies for accurate object detection and semantic segmentation. In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). (cited on pages 10
and 13)

Girshick, R.; Donahue, J.; Darrell, T.; and Malik, J., 2014b. Rich feature hier-
archies for accurate object detection and semantic segmentation. (cited on page
14)

GmbH, 2019. Websitebuilders. https://www.top10best-websitebuilders.com/
au/website-builders/?gclid=CjwKCAjwlovtBRBrEiwAG3XJ-4QfLLJb3Rg_
BQWCV-5-EiMfFEgpgozldPUNwjcvx4tNITj_4HH-9hoCE9AQAvD_BwE. (cited
on page 2)

Gordiyenko, S., 2019a. Website development process: Full guide in 7 steps. https:
//xbsoftware.com/blog/website-development-process-full-guide/. (cited on page 1)

Gordiyenko, S., 2019b. Website development process: Full guide in 7 steps. https:
//xbsoftware.com/blog/website-development-process-full-guide/. (cited on page 7)

Graham, R. M.; Knuth, D. E.; and Patashnik, O., 1994. Concrete mathematics.
Addison-Wesley. (cited on page 61)

Graves, A. and Schmidhuber, J., 2005. Framewise phoneme classification with
bidirectional lstm and other neural network architectures. Neural Networks, 18, 5
(2005), 602 – 610. doi:https://doi.org/10.1016/j.neunet.2005.06.042. http://www.
sciencedirect.com/science/article/pii/S0893608005001206. IJCNN 2005. (cited on
page 54)

Gu, J.; Wang, Z.; Kuen, J.; Ma, L.; Shahroudy, A.; Shuai, B.; Liu, T.; Wang,
X.; Wang, G.; Cai, J.; and Chen, T., 2018. Recent advances in convolutional
neural networks. Pattern Recognition, 77 (2018), 354 – 377. doi:https://doi.
org/10.1016/j.patcog.2017.10.013. http://www.sciencedirect.com/science/article/
pii/S0031320317304120. (cited on page 16)

https://blog.usejournal.com/why-deep-learning-works-differently-than-we-thought-ec28823bdbc
https://blog.usejournal.com/why-deep-learning-works-differently-than-we-thought-ec28823bdbc
https://openreview.net/forum?id=Bygh9j09KX
https://www.top10best-websitebuilders.com/au/website-builders/?gclid=CjwKCAjwlovtBRBrEiwAG3XJ-4QfLLJb3Rg_BQWCV-5-EiMfFEgpgozldPUNwjcvx4tNITj_4HH-9hoCE9AQAvD_BwE
https://www.top10best-websitebuilders.com/au/website-builders/?gclid=CjwKCAjwlovtBRBrEiwAG3XJ-4QfLLJb3Rg_BQWCV-5-EiMfFEgpgozldPUNwjcvx4tNITj_4HH-9hoCE9AQAvD_BwE
https://www.top10best-websitebuilders.com/au/website-builders/?gclid=CjwKCAjwlovtBRBrEiwAG3XJ-4QfLLJb3Rg_BQWCV-5-EiMfFEgpgozldPUNwjcvx4tNITj_4HH-9hoCE9AQAvD_BwE
https://xbsoftware.com/blog/website-development-process-full-guide/
https://xbsoftware.com/blog/website-development-process-full-guide/
https://xbsoftware.com/blog/website-development-process-full-guide/
https://xbsoftware.com/blog/website-development-process-full-guide/
http://dx.doi.org/https://doi.org/10.1016/j.neunet.2005.06.042
http://www.sciencedirect.com/science/article/pii/S0893608005001206
http://www.sciencedirect.com/science/article/pii/S0893608005001206
http://dx.doi.org/https://doi.org/10.1016/j.patcog.2017.10.013
http://dx.doi.org/https://doi.org/10.1016/j.patcog.2017.10.013
http://www.sciencedirect.com/science/article/pii/S0031320317304120
http://www.sciencedirect.com/science/article/pii/S0031320317304120

BIBLIOGRAPHY 81

Gupta, A.; Vedaldi, A.; and Zisserman, A., 2016. Synthetic data for text localisation
in natural images. In The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). (cited on page 53)

Gupta, S.; Kaiser, G.; Neistadt, D.; and Grimm, P., 2003. Dom-based content
extraction of html documents. In Proceedings of the 12th International Conference on
World Wide Web, WWW ’03 (Budapest, Hungary, 2003), 207–214. ACM, New York,
NY, USA. doi:10.1145/775152.775182. http://doi.acm.org/10.1145/775152.775182.
(cited on pages 4, 11, and 65)

Harris, A., 2014. HTML5 and CSS3 all-in-one for dummies. John Wiley Sons, Inc.
(cited on pages 57 and 61)

He, K.; Gkioxari, G.; Dollár, P.; and Girshick, R. B., 2017. Mask R-CNN. CoRR,
abs/1703.06870 (2017). http://arxiv.org/abs/1703.06870. (cited on page 13)

Hochreiter, S. and Schmidhuber, J., 1997. Long short-term memory. Neu-
ral Computation, 9, 8 (1997), 1735–1780. doi:10.1162/neco.1997.9.8.1735. https:
//doi.org/10.1162/neco.1997.9.8.1735. (cited on page 54)

Huizinga, D. and Kolawa, A., 2007. Automated defect prevention
best practices in software management. https://www.amazon.com/
Automated-Defect-Prevention-Practices-Management/dp/0470042125. (cited
on page 22)

Jacobs, D., 2005. Image gradients. Class Notes for CMSC, (9 2005). http://www.cs.
umd.edu/~djacobs/CMSC426/ImageGradients.pdf. (cited on page 32)

Jeeva, M., 2018. The scuffle between two algorithms -neural network
vs. support vector machine. https://medium.com/analytics-vidhya/
the-scuffle-between-two-algorithms-neural-network-vs-support-vector-machine-16abe0eb4181.
(cited on page 51)

Kobayashi, M. and Takeda, K., 2000. Information retrieval on the web. ACM Comput.
Surv., 32, 2 (Jun. 2000), 144–173. doi:10.1145/358923.358934. http://doi.acm.org/10.
1145/358923.358934. (cited on pages 21 and 23)

Landay, J. A. and Myers, B. A., 1994. Interactive sketching for the early stages of
user interface design. (1994). doi:10.21236/ada285339. (cited on page 9)

Landay, J. A. and Myers, B. A., 2001. Sketching interfaces: toward more human
interface design. Computer, 34, 3 (March 2001), 56–64. doi:10.1109/2.910894. (cited
on page 9)

Laurel, B. and Mountford, S. J. (Eds.), 1990. The Art of Human-Computer Interface
Design. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA. ISBN
0201517973. (cited on pages 1 and 9)

http://dx.doi.org/10.1145/775152.775182
http://doi.acm.org/10.1145/775152.775182
http://arxiv.org/abs/1703.06870
http://dx.doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://www.amazon.com/Automated-Defect-Prevention-Practices-Management/dp/0470042125
https://www.amazon.com/Automated-Defect-Prevention-Practices-Management/dp/0470042125
http://www.cs.umd.edu/~djacobs/CMSC426/ImageGradients.pdf
http://www.cs.umd.edu/~djacobs/CMSC426/ImageGradients.pdf
https://medium.com/analytics-vidhya/the-scuffle-between-two-algorithms-neural-network-vs-support-vector-machine-16abe0eb4181
https://medium.com/analytics-vidhya/the-scuffle-between-two-algorithms-neural-network-vs-support-vector-machine-16abe0eb4181
http://dx.doi.org/10.1145/358923.358934
http://doi.acm.org/10.1145/358923.358934
http://doi.acm.org/10.1145/358923.358934
http://dx.doi.org/10.21236/ada285339
http://dx.doi.org/10.1109/2.910894

82 BIBLIOGRAPHY

Le, D.; Thoma, G. R.; and Zou, J., 2006. Combining dom tree and geometric layout
analysis for online medical journal article segmentation. In Proceedings of the 6th
ACM/IEEE-CS Joint Conference on Digital Libraries (JCDL ’06), 119–128. doi:10.1145/
1141753.1141777. (cited on page 65)

Lee, S.; Kwak, S.; and Cho, M., 2019. Universal bounding box regression and its
applications. CoRR, abs/1904.06805 (2019). http://arxiv.org/abs/1904.06805. (cited
on pages 10 and 14)

Lee, X., 2012. Jargons explained: Tag, element, node, object, attribute, prop-
erty, method. http://xahlee.info/js/javascript_DOM_confusing_terminology.html.
(cited on pages 5, 61, 63, and 66)

Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; and Berg, A. C.,
2016. Ssd: Single shot multibox detector. In Computer Vision – ECCV 2016, 21–37.
Springer International Publishing, Cham. (cited on pages 4, 10, and 13)

Lowe, D. G., 1999. Object recognition from local scale-invariant features. In Proceed-
ings of the Seventh IEEE International Conference on Computer Vision, vol. 2, 1150–1157
vol.2. doi:10.1109/ICCV.1999.790410. (cited on pages 11, 47, and 50)

Lowe, D. G., 2004. Distinctive image features from scale-invariant keypoints. Inter-
national Journal of Computer Vision, 60, 2 (Nov 2004), 91–110. doi:10.1023/B:VISI.
0000029664.99615.94. https://doi.org/10.1023/B:VISI.0000029664.99615.94. (cited
on pages 11 and 47)

McConnell, R. K., 1986. Method of and apparatus for pattern recognition. https:
//patents.google.com/patent/US4567610. (cited on pages 11 and 47)

MDN, 2019. Block-level elements. https://developer.mozilla.org/en-US/docs/Web/
HTML/Block-level_elements. (cited on page 58)

Mehmet Sezgin, B. S., 2004. Survey over image thresholding techniques and quan-
titative performance evaluation. Journal of Electronic Imaging, , 13 (2004), 146 – 165.
doi:https://doi.org/10.1117/1.1631315. (cited on page 33)

Mikolajczyk, K. and Schmid, C., 2005. A performance evaluation of local descrip-
tors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27, 10 (Oct 2005),
1615–1630. doi:10.1109/TPAMI.2005.188. (cited on page 50)

Moizuddin, K., 2019. Components of the selenium automation tool - dzone de-
vops. https://dzone.com/articles/components-of-selenium-automation-tool. (cited
on pages 22 and 23)

Mordvintsev, A. and Revision, A. K., 2013. Introduction to sift (scale-invariant
feature transform)¶. https://opencv-python-tutroals.readthedocs.io/en/latest/py_
tutorials/py_feature2d/py_sift_intro/py_sift_intro.html. (cited on page 50)

http://dx.doi.org/10.1145/1141753.1141777
http://dx.doi.org/10.1145/1141753.1141777
http://arxiv.org/abs/1904.06805
http://xahlee.info/js/javascript_DOM_confusing_terminology.html
http://dx.doi.org/10.1109/ICCV.1999.790410
http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94
http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://patents.google.com/patent/US4567610
https://patents.google.com/patent/US4567610
https://developer.mozilla.org/en-US/docs/Web/HTML/Block-level_elements
https://developer.mozilla.org/en-US/docs/Web/HTML/Block-level_elements
http://dx.doi.org/https://doi.org/10.1117/1.1631315
http://dx.doi.org/10.1109/TPAMI.2005.188
https://dzone.com/articles/components-of-selenium-automation-tool
https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_feature2d/py_sift_intro/py_sift_intro.html
https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_feature2d/py_sift_intro/py_sift_intro.html

BIBLIOGRAPHY 83

Musciano, C. and Kennedy, B., 2007. HTML XHTML: the definitive guide. OReilly.
(cited on pages 11, 61, 65, 66, and 68)

Nguyen, T. A. and Csallner, C., 2015. Reverse engineering mobile application
user interfaces with remaui (t). In 2015 30th IEEE/ACM International Conference on
Automated Software Engineering (ASE), 248–259. doi:10.1109/ASE.2015.32. (cited on
pages 7 and 9)

Olston, C. and Najork, M., 2010. Web crawling. Foundations and Trends R© in Infor-
mation Retrieval, 4, 3 (2010), 175–246. doi:10.1561/1500000017. http://dx.doi.org/10.
1561/1500000017. (cited on pages 5, 10, and 11)

Patel, S., 2017. Chapter 2 : Svm (support vector ma-
chine) - theory. https://medium.com/machine-learning-101/
chapter-2-svm-support-vector-machine-theory-f0812effc72. (cited on pages 11
and 49)

Prewit, J., 1970. Object enhancement and extraction. In Picture Processing and Psy-
chopictorics, 75–120. B.S. Lipkin. (cited on page 32)

R., M. S. and P., B. B., 2014. Searching for Inspiration: An In-Depth Look at Designers
Example Finding Practices. vol. Volume 7: 2nd Biennial International Conference
on Dynamics for Design; 26th International Conference on Design Theory and
Methodology of International Design Engineering Technical Conferences and Computers
and Information in Engineering Conference. doi:10.1115/DETC2014-35450. https://
doi.org/10.1115/DETC2014-35450. V007T07A035. (cited on page 9)

Redmon, J.; Divvala, S.; Girshick, R.; and Farhadi, A., 2016. You only look once:
Unified, real-time object detection. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). (cited on pages 4, 10, 13, and 29)

Redmon, J. and Farhadi, A., 2018. Yolov3: An incremental improvement. CoRR,
abs/1804.02767 (2018). http://arxiv.org/abs/1804.02767. (cited on pages 10 and 29)

Ren, S.; He, K.; Girshick, R.; and Sun, J., 2015. Faster r-cnn: Towards real-time
object detection with region proposal networks. In Advances in Neural Information
Processing Systems 28 (Eds. C. Cortes; N. D. Lawrence; D. D. Lee; M. Sugiyama;
and R. Garnett), 91–99. Curran Associates, Inc. http://papers.nips.cc/paper/
5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks.
pdf. (cited on pages 4, 10, 13, 17, 29, and 53)

Richardson, L., 2015. Beautiful soup documentation. https://www.crummy.com/
software/BeautifulSoup/bs4/doc/. (cited on page 22)

Riva, M. d. l., 2019. 32 user interface elements for ui designers: Your ultimate
glossary. https://careerfoundry.com/en/blog/ui-design/ui-element-glossary/. (cited
on pages 23 and 24)

http://dx.doi.org/10.1109/ASE.2015.32
http://dx.doi.org/10.1561/1500000017
http://dx.doi.org/10.1561/1500000017
http://dx.doi.org/10.1561/1500000017
https://medium.com/machine-learning-101/chapter-2-svm-support-vector-machine-theory-f0812effc72
https://medium.com/machine-learning-101/chapter-2-svm-support-vector-machine-theory-f0812effc72
http://dx.doi.org/10.1115/DETC2014-35450
https://doi.org/10.1115/DETC2014-35450
https://doi.org/10.1115/DETC2014-35450
http://arxiv.org/abs/1804.02767
http://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks.pdf
http://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks.pdf
http://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks.pdf
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://careerfoundry.com/en/blog/ui-design/ui-element-glossary/

84 BIBLIOGRAPHY

Roberts, L., 1963. Machine perception of three-dimensional solids. (1963). https://
dspace.mit.edu/bitstream/handle/1721.1/11589/33959125-MIT.pdf. (cited on page
32)

Rothe, R.; Guillaumin, M.; and Van Gool, L., 2015. Non-maximum suppression
for object detection by passing messages between windows. In Computer Vision –
ACCV 2014, 290–306. Springer International Publishing, Cham. (cited on page 76)

SACHAN, A., 2017. Zero to hero: Guide to object detection using
deep learning: Faster r-cnn,yolo,ssd. https://cv-tricks.com/object-detection/
faster-r-cnn-yolo-ssd/. (cited on page 17)

Sahami Shirazi, A.; Henze, N.; Schmidt, A.; Goldberg, R.; Schmidt, B.; and

Schmauder, H., 2013. Insights into layout patterns of mobile user interfaces by an
automatic analysis of android apps. In Proceedings of the 5th ACM SIGCHI Sympo-
sium on Engineering Interactive Computing Systems, EICS ’13 (London, United King-
dom, 2013), 275–284. ACM, New York, NY, USA. doi:10.1145/2494603.2480308.
http://doi.acm.org/10.1145/2494603.2480308. (cited on pages 10 and 26)

Samet, H. and Tamminen, M., 1988. Efficient component labeling of images of
arbitrary dimension represented by linear bintrees. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 10, 4 (July 1988), 579–586. doi:10.1109/34.3918.
(cited on page 36)

SEAL, H. L., 1967. Studies in the History of Probability and Statistics. XV The his-
torical development of the Gauss linear model. Biometrika, 54, 1-2 (06 1967), 1–24.
doi:10.1093/biomet/54.1-2.1. https://doi.org/10.1093/biomet/54.1-2.1. (cited on
page 14)

Selene M., B., 2018. 6 phases of the web site design and development process. https:
//www.idesignstudios.com/web-design/phases-web-design-development-process/.
(cited on page 1)

Shapiro, S. G. C., Linda G., 2002. In Computer Vision. B.S. Lipkin. (cited on page 33)

Sobel, I., 1968. An isotropic 3x3 image gradient operator. Presentation at Stanford A.I.
Project 1968, (02 1968). (cited on page 32)

Suzuki, S. and be, K., 1985. Topological structural analysis of digitized binary images
by border following. Computer Vision, Graphics, and Image Processing, 30, 1 (1985), 32
– 46. doi:https://doi.org/10.1016/0734-189X(85)90016-7. http://www.sciencedirect.
com/science/article/pii/0734189X85900167. (cited on page 32)

Team, O. D., 2012. Structural analysis and shape descriptors. https:
//docs.opencv.org/2.4/modules/imgproc/doc/structural_analysis_and_shape_
descriptors.html#structural-analysis-and-shape-descriptors. (cited on pages 32
and 38)

https://dspace.mit.edu/bitstream/handle/1721.1/11589/33959125-MIT.pdf
https://dspace.mit.edu/bitstream/handle/1721.1/11589/33959125-MIT.pdf
https://cv-tricks.com/object-detection/faster-r-cnn-yolo-ssd/
https://cv-tricks.com/object-detection/faster-r-cnn-yolo-ssd/
http://dx.doi.org/10.1145/2494603.2480308
http://doi.acm.org/10.1145/2494603.2480308
http://dx.doi.org/10.1109/34.3918
http://dx.doi.org/10.1093/biomet/54.1-2.1
https://doi.org/10.1093/biomet/54.1-2.1
https://www.idesignstudios.com/web-design/phases-web-design-development-process/
https://www.idesignstudios.com/web-design/phases-web-design-development-process/
http://dx.doi.org/https://doi.org/10.1016/0734-189X(85)90016-7
http://www.sciencedirect.com/science/article/pii/0734189X85900167
http://www.sciencedirect.com/science/article/pii/0734189X85900167
https://docs.opencv.org/2.4/modules/imgproc/doc/structural_analysis_and_shape_descriptors.html##structural-analysis-and-shape-descriptors
https://docs.opencv.org/2.4/modules/imgproc/doc/structural_analysis_and_shape_descriptors.html##structural-analysis-and-shape-descriptors
https://docs.opencv.org/2.4/modules/imgproc/doc/structural_analysis_and_shape_descriptors.html##structural-analysis-and-shape-descriptors

BIBLIOGRAPHY 85

Tian, Z.; Huang, W.; He, T.; He, P.; and Qiao, Y., 2016. Detecting text in natural
image with connectionist text proposal network. In Computer Vision – ECCV 2016,
56–72. Springer International Publishing, Cham. (cited on pages 4, 29, and 52)

Tutorialspoint, 2016. Html - blocks. https://www.tutorialspoint.com/html/html_
blocks.htm. (cited on pages 58 and 62)

Uijlings, J. R. R.; van de Sande, K. E. A.; Gevers, T.; and Smeulders, A. W. M.,
2013. Selective search for object recognition. International Journal of Computer Vision,
104, 2 (Sep 2013), 154–171. doi:10.1007/s11263-013-0620-5. https://doi.org/10.1007/
s11263-013-0620-5. (cited on page 16)

Vincent, L. and Soille, P., 1991. Watersheds in digital spaces: an efficient algorithm
based on immersion simulations. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 13, 6 (June 1991), 583–598. doi:10.1109/34.87344. (cited on page 36)

W3Cschool. https://www.w3schools.com/css/css_border.asp. (cited on page 59)

W3Cschool, 2019. https://www.w3schools.com/css/css_boxmodel.asp. (cited on
page 11)

WHATWG, 2019. Html. https://html.spec.whatwg.org/. (cited on pages 57 and 61)

White, T. D.; Fraser, G.; and Brown, G. J., 2019. Improving random gui testing with
image-based widget detection. In Proceedings of the 28th ACM SIGSOFT International
Symposium on Software Testing and Analysis, ISSTA 2019 (Beijing, China, 2019), 307–
317. ACM, New York, NY, USA. doi:10.1145/3293882.3330551. http://doi.acm.org/
10.1145/3293882.3330551. (cited on pages 3, 10, and 57)

Whitmer, R., 2009. Document object model (dom). https://www.w3.org/DOM/
#what. (cited on pages 5, 10, 11, 21, and 65)

Yu, S., 2019. Svm - theory. https://zhuanlan.zhihu.com/p/31886934. (cited on page
49)

Zeidler, C.; Lutteroth, C.; Stuerzlinger, W.; and Weber, G., 2013. The auckland
layout editor: An improved gui layout specification process. 343–352. doi:10.1145/
2501988.2502007. (cited on page 7)

Zhang, Y.; Chen, Y.; Huang, C.; and Gao, M., 2019. Object detection network based
on feature fusion and attention mechanism. Future Internet, 11, 1 (Feb 2019), 9.
doi:10.3390/fi11010009. (cited on page 17)

Zhang, Z.; Zhang, C.; Shen, W.; Yao, C.; Liu, W.; and Bai, X., 2016. Multi-oriented
text detection with fully convolutional networks. In The IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR). (cited on page 53)

https://www.tutorialspoint.com/html/html_blocks.htm
https://www.tutorialspoint.com/html/html_blocks.htm
http://dx.doi.org/10.1007/s11263-013-0620-5
https://doi.org/10.1007/s11263-013-0620-5
https://doi.org/10.1007/s11263-013-0620-5
http://dx.doi.org/10.1109/34.87344
https://www.w3schools.com/css/css_border.asp
https://www.w3schools.com/css/css_boxmodel.asp
https://html.spec.whatwg.org/
http://dx.doi.org/10.1145/3293882.3330551
http://doi.acm.org/10.1145/3293882.3330551
http://doi.acm.org/10.1145/3293882.3330551
https://www.w3.org/DOM/##what
https://www.w3.org/DOM/##what
https://zhuanlan.zhihu.com/p/31886934
http://dx.doi.org/10.1145/2501988.2502007
http://dx.doi.org/10.1145/2501988.2502007
http://dx.doi.org/10.3390/fi11010009

	Acknowledgments
	Abstract
	Contents
	Introduction
	Thesis Statement
	Introduction
	UI Components Detection
	Code Generation

	Thesis Outline

	Background and Related Work
	Motivation
	Related work
	UI Reverse Engineering
	Data Collection
	UI Components Detection
	Code Generation

	Summary

	Difference from Object Detection
	Characters of the Human-computer Interface
	Deep Neural Network's Mechanism
	Region-based Methods
	Single Shot Methods

	Experiments and Comparison
	Summary

	Data Collection
	Web Dataset
	Dataset Construction
	Selenium
	Breadth-first Search

	Problems with Web Crawling
	Ambiguity of Web Components
	Malposition of Annotation

	Mobile Application Dataset: Rico
	Artistic Design Drawing
	Glimpse of Data
	Summary

	User Interface Components Detection
	Architecture
	Pre-processing
	Gradient Calculation
	Binarization

	Component Detection
	Connected Components Labelling
	Component Boundary Detection
	Rectangle Recognition
	Block Recognition
	Irregular Shaped Components Selection
	Nested Components Detection

	Classification
	Categories and Classes of UI Components
	Classifier Model
	HOG + SVM
	SIFT
	CNN

	Performance

	Text Processing
	Introduction
	Technical Details

	Merge
	Summary

	Code Generation
	Hierarchical Block Segmentation
	Cutting Line Detection
	Block Segmentation
	Hierarchy Establishment

	Web Code Generation
	DOM Tree
	HTML Generation

	Issues and Limitations
	Summary

	Results
	Evaluation
	Results Demonstration

	Conclusion
	Conclusion
	Future Work

