
The Western-Style Diet, Calcium Deficiency and Chronic Disease
Muhammad Nadeem Aslam and James Varani*

The Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
*Corresponding author: James Varani, Department of Pathology, University of Michigan, 1301 Catherine Road/Box 5602 Ann Arbor, MI 48109, USA, Tel: 7346150298;
E-mail: varani@umich.edu

Received date: March 21, 2016; Accepted date: April 14, 2016; Published date: April 21, 2016

Copyright: © 2016 Muhammad Nadeem Aslam, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

The term “Western-style diet” refers to an eating pattern that includes a high content of saturated fat, a large
amount of processed carbohydrate and excess total calories. The Western-style diet contributes to the growing
epidemic of obesity and several age-related, chronic illnesses seen in the United States and throughout the world. In
addition to its high content of fat and sugar, the Western diet is also characterized by a deficiency in calcium (and,
undoubtedly) other trace minerals that are nutritionally associated with calcium. While epidemiological evidence
suggests that the lack of adequate dietary calcium contributes to several chronic ailments associated with the
Western-style diet, studies in experimental animals provides direct evidence. Rodents on a high-fat, low-calcium diet
suffer many of the same chronic illnesses that are seen in humans. When the calcium concentration is increased to
the level found in rodent chow diets, the ill-effects are mitigated. While calcium alone is protective, a combination of
calcium and additional trace elements has been shown, in some studies, to induce even better protection. The
implication is that providing an adequate supply of essential minerals (including calcium, of course, but also other
trace elements that support calcium’s beneficial activities), either through dietary modification or as a supplement if
dietary modification fails should be considered as part of an overall strategy for counteracting the negative effects of
the Western-style diet.
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Introduction
The term “Western-style diet” refers to an eating pattern that

includes a high content of saturated fat, a large amount of processed
carbohydrate and too many calories. Red meat, processed meat
products, refined grains and starch (potatoes) are mainstays of the
Western-style diet. High-fat dairy products are another component of
the typical diet consumed in many Western countries. Fruits,
vegetables, legumes, fish, other seafood and whole grains are, generally,
under-consumed. While the Western-style diet is commonly assumed
to be “unhealthful,” there are numerous variations in what is actually
consumed by any given individual (as is true of any diet). Not all eating
patterns are equally bad. In, perhaps, its worst form, added fat from
seed oil extractions and added highly-refined carbohydrate, i.e., sugar-
(empty calories) make up a significant percentage of the overall calorie
intake. At one time largely associated with individuals in North
America, Europe and countries of European descent, the Western-style
diet is now a world-wide phenomenon. The Western-style diet
underlies the growing epidemic of obesity in the United States and
throughout the world [1,2]. It is thought to contribute to the increasing
incidence of several chronic illnesses including cancer (especially colon
and liver), cardiovascular disease and metabolic disease (e.g. type II
diabetes) [1,3,4]. The Western-style diet has been linked to chronic
kidney disease [5], non-alcoholic fatty liver disease (NAFLD)/non-
alcoholic steatohepatitis (NASH) [6,7] and osteoporosis [8]. A recent
study has shown an association between the Western diet and early-
onset dementia [9]. A role in inflammatory skin diseases (acne,
psoriasis, atopic dermatitis) has also been suggested [10].

There is little doubt of the relationship between the Western-style
diet and the chronic diseases indicated here. What is not clear,
however, is how the food components that make up the Western-style
diet (either individually or together) bring about their detrimental
effect on health. Is it entirely related to the high content of saturated fat
and processed carbohydrates? The hypothesis we put forward here is
that the Western-style diet, with its high content of processed fat and
carbohydrate and, most concomitantly, its relative lack of unprocessed
fruits, vegetables and whole grains, leads to a deficiency in essential
minerals along with the vitamin co-factors necessary for proper
mineral metabolism. The Western-style diet, we hypothesize, is
detrimental to health as much by its lack of essential minerals as by
what it contains.

The western-style diet, calcium-deficiency and chronic illness
While the Western-style diet includes a large amount of saturated

fat and processed carbohydrates, there are additional nutritional
features associated with this diet. Fiber, folic acid and choline are
under-represented. With a deficiency in methyl group donors, the diet
has characteristics of the “choline-deficient, amino acid-defined
(CDAA) diet [11]. Additionally, and perhaps most importantly, the
Western-style diet is deficient in calcium and vitamin D. With regard to
calcium, per se, the recommended intake for adolescents and adults is
in the range of 1000-1300 mg per day [12-14]. However, the average
intact for many individuals in Western society is lower. Kudlacek et al.
[15] reported in 2003 that the average calcium intake among a sample
of over one thousand individuals in Austria was 560 mg per day. Many
individuals, of course, had much lower intake. A similar pattern in the
United States was reported a few years later [16]. The authors of both
studies concluded that low calcium intake was more wide-spread than
previously thought. In the ensuing decade, the situation has not
changed for the better. In its most recent summary of critical nutrients,
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the USDA concluded that a high percentage of individuals in multiple
age groups failed to reach minimal recommended calcium intake [17].

A calcium deficiency is independently associated with numerous
chronic diseases-i.e., with many of the same diseases noted here
[18-22]. While bone loss and osteoporosis is the obvious example, the
relationship between calcium intake and colon cancer may be
particularly instructive. Interventional trials have demonstrated that
calcium supplementation can lower the incidence of recurrent colon
polyp formation, although the reduction is modest [23-25], and not all
studies have confirmed reduced incidence [26,27]. Numerous
epidemiological studies have shown a correlation between higher
calcium intake and reduction in colon cancer risk [28-32]. While not
every study has established a statistically-significant protective
relationship, meta-analysis of past findings supports a positive
correlation (i.e., reduced polyp incidence with increased calcium
intake)  [33]  and  a  recent  analysis  suggest that  protection extends to
colon cancer itself [34].

Work with epithelial cells in culture provides mechanistic insight
[35-38]. Epithelial cells from various sources (including the colon)
proliferate optimally over a broad range of low-calcium concentrations
(0.05-0.5 mM). Under these conditions, cells do not express features of
the differentiated state. As the calcium concentration is increased
above 0.5 mM, differentiation is induced. Key features include
induction of E-cadherin synthesis; its translocation from the cytoplasm
to the cell surface; and formation of the cell surface adhesion complex.
This process is readily reversible. When calcium is removed, cells revert
to an undifferentiated state. This is depicted in Figure 1.

Two consequences of calcium-induced differentiation include: i)
reduced proliferation and ii) formation of the epithelial barrier. In
regard to proliferation, β-catenin is sequestered in the adhesion
complex along with E-cadherin. This leads to decreased β-catenin
movement into the nucleus where it otherwise functions as a Wnt-
pathway (growth-promoting) enhancer [36-38]. The end-result is
decreased proliferation. Equally important, E-cadherin - mediated cell-
cell cohesion allows the differentiated epithelial cells to form a cohesive
cell sheet (Figure 1). This is essential for barrier protein synthesis and
formation of barrier structures (tight junctures and desmosomes) [39].
Defective barrier function in the gastrointestinal tract and chronic
inflammation go “hand in hand”. Commonly, it is thought that chronic
inflammation is responsible for barrier breakdown, but it is more likely
that poor barrier function contributes to the tendency toward
inflammation [40]. In the absence of an effective barrier, bacteria,
bacterial products, toxins and food allergens can all gain access to the
interstitium. Inflammation in the gastro-intestinal tract and
carcinogenesis in the colon are linked [41] and decreased
inflammation can contribute to reduced tumor incidence with calcium.
While calcium-induced tumor suppression could reflect a direct action
on intracellular (growth-regulating) signaling pathways or result from
inhibition of chronic inflammation in the gastrointestinal tract, these
are not the only ways in which calcium might act. Calcium may be
anti-carcinogenic by altering luminal pH with an effect on the
microbial community [42] or by precipitating carcinogenic bile acids
in the gastrointestinal tract [43]. These mechanisms are not mutually
exclusive.

Figure 1: The cartoon depicts a cohesive sheet of epithelial cells in
the presence of 1.5 mM calcium. When the extracellular calcium
level is reduced to 0.15 mM, there is a rapid change in cell shape
and a loss of cell-cell cohesion. This change can be seen within
minutes. Subsequently, some of the cells undergo proliferation.
Other cells undergo injury. In addition, there is a loss of barrier
function. Microbes, toxins, allergens etc. penetrate the interstitium.
The lower panels of the figure demonstrate changes in E- cadherin
production/expression by epithelial cells in response to alterations
in extracellular calcium. A rapid loss of total E-cadherin can be seen
by Western blotting (left panel) and loss of E-cadherin from the cell
surface (right panel) occurs, resulting in dis-cohesion.

There is little doubt of the importance of calcium to effective growth
regulation (by whatever mechanism) in the colon. Ultimately, however,
the question is not whether calcium has beneficial properties, but
whether the level of calcium in the Western-style diet is sufficiently low
as to obviate any of these potential mechanisms by which calcium
could affect tumor formation in the colon. Studies in experimental
animals have begun to address this issue. Newmark et al. [44-46]
maintained C57BL/6 mice on a rodent version of the Western-style
diet for 18-24 months. A higher incidence of precancerous colon
polyps was observed in these animals than in littermates maintained
on a rodent chow diet for the same period (29% incidence versus 12%).
When calcium (reduced from 5.25 mg/kg in the rodent chow diet to
0.41 mg/kg in the Western diet) was replenished to the level of the
rodent chow diet, the adenoma incidence was reduced to near-
background levels. When other modifications of the Western diet (low
fiber, folate and choline; and replacement of methionine with cysteine)
were adjusted to conditions in the control diet, there was no mitigation
of polyp formation. In a subsequent study using mice containing a
mutated adenomatous polyposis coli (APC) gene, a similar trend was
observed; that is, there was a higher incidence of colon polyps (as well
as tumors in other sites) in Western diet-fed mice than in controls. As
seen with C57BL/6 mice, the combination of calcium and vitamin D
provided significant protection [47]. The same combination has also
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been shown to suppress formation of pre-neoplastic colon lesions
induced by the strong carcinogen, azoxymethane [48].

Using a similar approach to Newmark’s, our own studies examined
the effects of a calcium-rich, multi-mineral natural product
(Aquamin®) derived from the skeletal remains of red marine algae on
colon tumor formation in C57BL/6 mice. Consistent with the findings
of Newmark et al. [44,46] we also demonstrated a significant reduction
in tumor incidence with mineral supplementation [49,50]. In our
studies, animals maintained on a rodent chow diet, had a colon polyp
incidence of 18% (16 of 90 mice).

In animals fed a Western-style diet without the mineral supplement,
the incidence of polyp formation was 29% (26 of 90) while in
littermates fed the Western-style diet with supplementation, the
incidence was 2% (2 of 90). Of note, when the tumors were examined
histologically, several of the lesions in the Western diet-fed mice
proved to be invasive carcinomas. No invasive tumors were seen in
mice fed either the rodent chow diet or the calcium-supplemented
Western-style diet. These data, thus, suggest that supplementation may
affect tumor progression as well as tumor formation. Also of note, all of
the diets in our studies contained vitamin D (120 IU/kg), suggesting
that in the absence of an adequate supply of calcium, this amount of
vitamin D, by itself, was not effective.

Although suppression of growth-regulating signaling pathways or
effects on carcinogenic bile acids might explain anti-carcinogenicity in
the colon, a reduction in chronic inflammation could have broader
effects. Our own studies not only demonstrated reduced colon polyp
formation but also showed that mineral supplementation protected
mice against bone loss [51,52] and reduced the incidence and severity
of ulcerative dermatitis [53]. Perhaps most interesting, during the
course of our studies, we observed a high incidence of liver tumor
formation in mice on the Western-style diet [54]. Unlike what was
observed with colon polyps (where both males and females were
susceptible), virtually all of the liver tumors were in males. When these
lesions were examined histologically, they encompassed a wide range
of presentations - from large non- regenerative and regenerative
hyperplastic nodules to premalignant hepatic adenomas and fully-
malignant hepatocellular carcinomas. Other manifestations of liver
injury, i.e., inflammation, and ballooning degeneration of hepatocytes,
along with areas of necrosis and fibrosis - were also observed. In male
mice on the mineral-supplemented Western diet, tumor formation was
substantially reduced (48% incidence without supplement versus 12%
incidence in supplement-fed mice, against a background incidence of
16% for male mice on the rodent chow diet). Inflammation and
hepatocyte necrosis were also reduced.

As part of the study, serum calcium levels were assessed in mice
from each diet group. In male mice on the supplemented Western-style
diet, the average calcium level was 10.1 ± 0.7 mg/dl, while in mice on
the un-supplemented diet; the average was 9.5 ± 1.3 mg/dl. Since
serum calcium levels are tightly controlled between approximately
9-10 mg/dl, these values put the calcium-supplemented animals at the
high end of the normal range while the un-supplemented mice were at
a level midway between the upper and lower normal range values. In
the same study, male mice maintained on rodent chow diet (containing
a comparable amount of calcium to that in the supplemented Western
diet [5.25 mg/kg of diet]) also had serum calcium levels at the upper
end of the normal range (9.9 ± 1.3 mg/dl). Of interest, female mice had
higher levels of serum calcium than males under all conditions. In
females, serum calcium levels were 10.9 ± 1.3 mg/dl, 10.9 ± 1.0 mg/dl
and 11.4 ± 0.8 mg/dl on the un-supplemented and supplemented

Western-style diets and rodent chow diet, respectively). Thus, liver
disease and low serum calcium values appear to be correlated.

Of interest, while liver injury was confined almost entirely to males,
both male and female mice on the Western-style diet gained excess
weight, and demonstrated serum chemistry abnormalities. These were
not affected by calcium-supplementation.

Thus, we hypothesize that it is not up-stream consequences of the
Western diet that are mitigated by calcium, but the later events that
produce overt injury. While our studies may have been the first to
document the beneficial effects of calcium in the liver, previous studies
have shown a reduction in liver fibrosis by vitamin D [55]. The
beneficial effects of vitamin D were presumed to reflect interference
with transforming growth factor-β signaling, with little regard to its
role in calcium uptake and utilization.

If these findings can be extrapolated to humans, they open up a new
avenue for prevention of liver injury occurring as a consequence of
poor nutrition. A public health strategy that focuses on preventing the
consequences of fatty liver disease rather than targeting the formation
of fatty changes per se may prove to be more effective.

Certainly, targeting down-stream consequences of steatosis along
with steatosis, itself, should be considered. Finally, while these findings
are in the context of the Western- style diet, liver injury due to viral
infection as well as alcoholic liver disease may also be amenable to a
similar interventional approach. The up-stream initiators of tissue
damage are different, but all share common, down-stream patho-
physiological mechanisms [56].

How circulating calcium protects the liver is not fully understood.
We postulate a similar mechanism to what has been suggested in the
colon - i.e., that in the presence of calcium, hepatocyte differentiation
occurs, limiting excessive proliferation (and injury), while promoting
barrier formation (Figure 1). This, of course, will need to be established
experimentally.

Calcium supplementation to mitigate health consequences of
the western-style diet: Possibilities and limitations

To the extent that the Western-style diet is a problem of calcium-
deficiency, the solution would seem obvious - provide a sufficient
amount of calcium, preferably as part of a healthful diet, but as a
supplement where dietary improvement fails. The use of calcium
supplements (alone and in conjunction with other nutrients) is already
widespread. Their primary use is in prevention of bone loss and
osteoporosis, but people utilize calcium supplements to reduce risk of
colon polyp formation or to mitigate other health concerns. Without
minimizing the value of calcium supplementation, there are a number
of issues that should be considered. Beyond the usual - bioavailability
and tolerability - is the potential for adverse consequences at high
doses. For example, a meta-analysis of calcium supplement use data
concluded that a risk of cardiovascular events did exist for the highest
doses of supplement use [57]. An association between calcium
supplement intake (self-reported) and macular degeneration in the
elderly has also been reported [58]. Perhaps more troubling is the
positive correlation in some studies between calcium intake and
prostate cancer [59-61]. Whether the benefits of calcium supplement
use outweigh potential risks has to be determined; sometimes on a case
by case basis. Equally important is the reality that no critical nutrient,
including calcium, functions in a vacuum. How well calcium from any
source performs depends on the presence (at appropriate levels) or
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absence of other nutrients. Importance of vitamin D to calcium uptake
from the gastrointestinal tract and at the cellular level is well-known
[18-21].

Less well-known but, perhaps, equally important is the level of other
important minerals. Magnesium, for example, has little chemo-
preventive activity by itself, but the ratio of magnesium to calcium has
been shown to be important for calcium chemoprevention in the colon
[62]. Magnesium is probably not unique. However, since magnesium is
present in substantial amounts, it is possible to establish this
interaction by creating an experimental deficiency and measuring the
consequences. This is not the case with other potentially important
divalent or trivalent cationic trace elements; some of which are present
in truly “trace” amounts. The lanthanide elements constitute one such
group. The lanthanides, because of their similarity to calcium in terms
of orbital size and electronic configuration [63,64], interact with
calcium-binding sites on proteins, often with higher affinity than
calcium itself. Calcium channel proteins [65-67] and proteins that are
part of calcium-exchangers [68] have been shown to bind lanthanide
elements - leading to either enhanced or inhibited function (altered
calcium influx-efflux). The extracellular calcium-sensing receptor
(CaSR) is another calcium-binding protein capable of high-affinity
lanthanide binding [69-71]. This protein, which is sensitive to tiny
changes in the extracellular calcium concentration, plays a critical role
in colon epithelial cell growth control [72-76]. Our own past studies
have shown that in the presence of gadolinium (lanthanide family
member), there is a “left-shift” in the response to calcium. That is,
CaSR is up-regulated [73,74] and growth-suppression occurs at lower
calcium concentrations than would otherwise occur [77].

While many experimental approaches have utilized gadolinium as a
representative of the lanthanide family, we conducted a survey study in
which all 14 naturally-occurring lanthanide elements were compared
for ability to suppress epithelial cell proliferation [78]. Only three
members in the entire family (terbium, dysprosium and ytterbium)
failed to have significant activity at a concentration of 100 μM. At the
other extreme, the most potent lanthanides (thulium, gadolinium and
samarium) had activity at 5-10 μM. The capacity to modify response to
calcium was not seen with several other divalent or trivalent cationic
trace elements including aluminum, iron (ferrous and ferric), cobalt,
copper, nickel, magnesium, manganese and zinc. Thus, the lanthanides
appear to function through a mechanism that is not shared by many
other cationic trace elements. This is not to suggest, however, that the
lanthanides are unique. Two relatively abundant cationic elements
(barium and strontium) are CaSR activators [70,71,79]. Of interest, it
appears that strontium activation of CaSR and activation by calcium
do not lead to identical signaling events-providing a rationale for
potential co-operativity [80].

The question is not whether certain minor trace elements can
modulate responses to calcium, but whether they are present (as a
group) at circulating levels or tissue levels sufficient to accomplish this
task in vivo. With the lanthanides, at least, this question will be difficult
to address since the in vivo levels of individual lanthanide elements are
low and not routinely measured. One can assume, perhaps, that since
many of these trace elements are nutritionally associated with calcium,
a diet that is deficient in calcium might also be deficient in these other
trace elements, as well. The implication is that the mineral composition
of a healthy diet cannot easily be duplicated in a supplement; no matter
how well-thought-out it is. Alternatively, there are multi-mineral-
containing natural products available, and it would be premature to
suggest that these cannot provide benefit if used appropriately. In the

interest of evidence-based medicine, additional studies will be needed
to address this issue.

Conclusion
The Western-style diet has a number of features that make it

unhealthy. While the focus of this work is on minerals (in particular,
calcium), there is no doubt that the high content of saturated fat and
processed carbohydrate underlies much of what is wrong with the diet.
Our intent is not to minimize this. Rather, the intent is only to point
out that in addition to saturated fat and processed carbohydrates; the
Western-style diet is also lacking an adequate amount of calcium (and,
presumably, other trace elements that are found in the same foods as
calcium). A calcium-deficiency is an independent risk factor for many
of the same chronic illness associated with the Western-style diet, and
it is not unreasonable to hypothesize that the lack of dietary calcium
(and, perhaps, other essential trace elements) may contribute to several
of the chronic diseases associated with the Western-style diet. That
having been said, what is the potential for mitigating these health
issues by providing a supply of essential minerals (calcium, of course,
but also other trace elements that support calcium’s beneficial
activities), either through dietary modification or as a supplement if
dietary improvement fails? That, in our opinion, is still an open
question, and one worth addressing.
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