
Muhammad Shafique- Karlsruhe Institute of Technology
Muhammad Shafique
- Karlsruhe Institute of Technology
About
642
Publications
141,840
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
11,185
Citations
Introduction
Current institution
Publications
Publications (642)
The ability to train intelligent autonomous agents (such as mobile robots) on multiple tasks is crucial for adapting to dynamic real-world environments. However, state-of-the-art reinforcement learning (RL) methods only excel in single-task settings, and still struggle to generalize across multiple tasks due to task interference. Moreover, real-wor...
The rising demand for energy-efficient edge AI systems (e.g., mobile agents/robots) has increased the interest in neuromorphic computing, since it offers ultra-low power/energy AI computation through spiking neural network (SNN) algorithms on neuromorphic processors. However, their efficient implementation strategy has not been comprehensively stud...
Vision Transformer (ViT)-based models have shown state-of-the-art performance (e.g., accuracy) in vision-based AI tasks. However, realizing their capability in resource-constrained embedded AI systems is challenging due to their inherent large memory footprints and complex computations, thereby incurring high power/energy consumption. Recently, Spi...
Neuromorphic Continual Learning (NCL) paradigm leverages Spiking Neural Networks (SNNs) to enable continual learning (CL) capabilities for AI systems to adapt to dynamically changing environments. Currently, the state-of-the-art employ a memory replay-based method to maintain the old knowledge. However, this technique relies on long timesteps and c...
Financial time-series forecasting remains a challenging task due to complex temporal dependencies and market fluctuations. This study explores the potential of hybrid quantum-classical approaches to assist in financial trend prediction by leveraging quantum resources for improved feature representation and learning. A custom Quantum Neural Network...
Large language models (LLMs) offer significant potential for coding, yet fine-tuning (FT) with curated data is essential for niche languages like Verilog. Using proprietary intellectual property (IP) for FT presents a serious risk, as FT data can be leaked through LLM inference. This leads to a critical dilemma for design houses: seeking to build e...
Large Language Models (LLMs) have revolutionized code generation, achieving exceptional results on various established benchmarking frameworks. However, concerns about data contamination - where benchmark data inadvertently leaks into pre-training or fine-tuning datasets - raise questions about the validity of these evaluations. While this issue is...
Embedded systems power many modern applications and must often meet strict reliability, real-time, thermal, and power requirements. Task replication can improve reliability by duplicating a task's execution to handle transient and permanent faults, but blindly applying replication often leads to excessive overhead and higher temperatures. Existing...
Recent advancements in Single-Image Super-Resolution (SISR) using deep learning have significantly improved image restoration quality. However, the high computational cost of processing high-resolution images due to the large number of parameters in classical models, along with the scalability challenges of quantum algorithms for image processing,...
Quantized Neural Networks (QNNs) have emerged as a promising solution for reducing model size and computational costs, making them well-suited for deployment in edge and resource-constrained environments. While quan-tization is known to disrupt gradient propagation and enhance robustness against pixel-level adversarial attacks, its effectiveness ag...
Large Language Models (LLMs) offer remarkable capabilities in code generation, natural language processing, and domain-specific reasoning. Their potential in aiding quantum software development remains underexplored, particularly for the PennyLane framework-a leading platform for hybrid quantum-classical computing. To address this gap, we introduce...
Adversarial attacks have emerged as a major challenge to the trustworthy deployment of machine learning models, particularly in computer vision applications. These attacks have a varied level of potency and can be implemented in both white box and black box approaches. Practical attacks include methods to manipulate the physical world and enforce a...
Quantum federated learning (QFL) merges the privacy advantages of federated systems with the computational potential of quantum neural networks (QNNs), yet its vulnerability to adversarial attacks remains poorly understood. This work pioneers the integration of adversarial training into QFL, proposing a robust framework, quantum federated adversari...
Large Language Models (LLMs) have been used in cybersecurity in many ways, including their recent use as intelligent agent systems for autonomous security analysis. Capture the Flag (CTF) challenges serve as benchmarks for assessing the automated task-planning abilities of LLM agents across various cybersecurity skill sets. Early attempts to apply...
The rapid growth of demanding applications in domains applying multimedia processing and machine learning has marked a new era for edge and cloud computing. These applications involve massive data and compute-intensive tasks, and thus, typical computing paradigms in embedded systems and data centers are stressed to meet the worldwide demand for hig...
There has been a surge in optimizing edge Deep Neural Networks (DNNs) for accuracy and efficiency using traditional optimization techniques such as pruning, and more recently, employing automatic design methodologies. However, the focus of these design techniques has often overlooked critical metrics such as fairness, robustness, and generalization...
The challenging deployment of compute-intensive applications from domains such as Artificial Intelligence (AI) and Digital Signal Processing (DSP), forces the community of computing systems to explore new design approaches. Approximate Computing appears as an emerging solution, allowing to tune the quality of results in the design of a system in or...
In recent years, there has been a growing trend in accelerating computationally complex nonreal-time beamforming algorithms in ultrasound imaging using deep learning models. However, due to the large size and complexity, these state-of-the-art deep learning techniques pose significant challenges when deploying on resource-constrained edge devices....
As financial fraud becomes increasingly complex, effective detection methods are essential. Quantum Machine Learning (QML) introduces certain capabilities that may enhance both accuracy and efficiency in this area. This study examines how different quantum feature map and ansatz configurations affect the performance of three QML-based classifiers-t...
Quantum Machine Learning (QML) has shown promise in diverse applications such as environmental monitoring, healthcare diagnostics, and financial modeling. However, the practical application of QML faces challenges, such as the limited availability of quantum hardware and the complexity of integrating quantum algorithms with classical systems. This...
Fog computing brings about a transformative shift in data management, presenting unprecedented opportunities for enhanced performance and reduced latency. However, one of the key aspects of fog computing revolves around ensuring efficient power and reliability management. To address this challenge, we have introduced a novel model that proposes a n...
Currently, state-of-the-art RL methods excel in single-task settings, but they still struggle to generalize across multiple tasks due to catastrophic forgetting challenges, where previously learned tasks are forgotten as new tasks are introduced. This multi-task learning capability is significantly important for generalist agents, where adaptation...
The rapid advancement in Quantum Computing (QC), particularly through Noisy-Intermediate Scale Quantum (NISQ) devices, has spurred significant interest in Quantum Machine Learning (QML) applications. Despite their potential, fully-quantum QML algorithms remain impractical due to the limitations of current NISQ devices. Hybrid quantum-classical neur...
Hybrid Quantum Neural Networks (HQNNs) have gained attention for their potential to enhance computational performance by incorporating quantum layers into classical neural network (NN) architectures. However, a key question remains: Do quantum layers offer computational advantages over purely classical models? This paper explores how classical and...
Predicting loan eligibility with high accuracy remains a significant challenge in the finance sector. Accurate predictions enable financial institutions to make informed decisions, mitigate risks, and effectively adapt services to meet customer needs. However, the complexity and the high-dimensional nature of financial data have always posed signif...
This paper introduces the Federated Learning-Quantum Dynamic Spiking Neural Networks (FL-QDSNNs) framework, an innovative approach specifically designed to tackle significant challenges in distributed learning systems, such as maintaining high accuracy while ensuring privacy. Central to our framework is a novel dynamic threshold mechanism for activ...
The integration of fully homomorphic encryption (FHE) in federated learning (FL) has led to significant advances in data privacy. However, during the aggregation phase, it often results in performance degradation of the aggregated model, hindering the development of robust representational generalization. In this work, we propose a novel multimodal...
Quantized neural networks (QNNs) are increasingly used for efficient deployment of deep learning models on resource-constrained platforms, such as mobile devices and edge computing systems. While quantization reduces model size and computational demands, its impact on ad-versarial robustness-especially against patch-based attacks remains inadequate...
In this study, we investigated the robustness of Quanvolutional Neural Networks (QuNNs) in comparison to their classical counterparts, Convolutional Neural Networks (CNNs), against two adversarial attacks: FGSM and PGD, for the image classification task on both MNIST and FMNIST datasets. To enhance the robustness of QuNNs, we developed a novel meth...
Due to the significance and broad utilization of adders in computing systems, the design of low-power approximate adders (LPAAs) has received a significant amount of attention from the system design community. However, the selection and deployment of appropriate approximate modules require a thorough design space exploration, which is (in general)...
The proliferation of smartphones and other mobile devices provides a unique opportunity to make Advanced Driver Assistance Systems (ADAS) accessible to everyone in the form of an application empowered by low-cost Machine/Deep Learning (ML/DL) models to enhance road safety. For the critical feature of Collision Avoidance in Mobile ADAS, lightweight...
To adapt to real-world dynamics, intelligent systems need to assimilate new knowledge without catastrophic forgetting, where learning new tasks leads to a degradation in performance on old tasks. To address this, continual learning concept is proposed for enabling autonomous systems to acquire new knowledge and dynamically adapt to changing environ...
Autonomous vehicles (AVs) rely heavily on LiDAR (Light Detection and Ranging) systems for accurate perception and navigation, providing high-resolution 3D environmental data that is crucial for object detection and classification. However, LiDAR systems are vulnerable to adversarial attacks, which pose significant challenges to the safety and robus...
Although language model (LM) agents are demonstrating growing potential in many domains, their success in cybersecurity has been limited due to simplistic design and the lack of fundamental features for this domain. We present EnIGMA, an LM agent for autonomously solving Capture The Flag (CTF) challenges. EnIGMA introduces new Agent-Computer Interf...
Optimizing Deep Learning-based Simultaneous Localization and Mapping (DL-SLAM) algorithms is essential for efficient implementation on resource-constrained embedded platforms, enabling real-time on-board computation in autonomous mobile robots. This paper presents SPAQ-DL-SLAM, a framework that strategically applies Structured Pruning and Quantizat...
The widespread deployment of products powered by machine learning models is raising concerns around data privacy and information security worldwide. To address this issue, Federated Learning was first proposed as a privacy-preserving alternative to conventional methods that allow multiple learning clients to share model knowledge without disclosing...
Large Language Models (LLMs) represent a class of deep learning models adept at understanding natural language and generating coherent text in response to prompts or queries. These models significantly surpass conventional neural networks in complexity, often encompassing dozens of neural network layers and containing billions to trillions of param...
The growing computational demands of artificial intelligence (AI) in addressing climate change raise significant concerns about inefficiencies and environmental impact, as highlighted by the Jevons paradox. We propose an attention-enhanced quantum physics-informed neural networks model (AQ-PINNs) to tackle these challenges. This approach integrates...
The strong performance of simple neural networks is often attributed to their nonlinear activations. However, a linear view of neural networks makes understanding and controlling networks much more approachable. We draw from a dynamical systems view of neural networks, offering a fresh perspective by using Koopman operator theory and its connection...
Deploying Multi-Modal Large Language Models (MLLMs) in healthcare is hindered by their high computational demands and significant memory requirements, which are particularly challenging for resource-constrained devices like the Nvidia Jetson Xavier. This problem is particularly evident in remote medical settings where advanced diagnostics are neede...
Financial market prediction and optimal trading strategy development remain challenging due to market complexity and volatility. Our research in quantum finance and reinforcement learning for decision-making demonstrates the approach of quantum-classical hybrid algorithms to tackling real-world financial challenges. In this respect, we corroborate...
In this study, we develop a novel quantum machine learning (QML) framework to analyze cybersecurity vulnerabilities using data from the 2022 CISA Known Exploited Vulnerabilities catalog, which includes detailed information on vulnerability types, severity levels, common vulnerability scoring system (CVSS) scores, and product specifics. Our framewor...
Convolutional Neural Networks (CNNs), a prominent type of Deep Neural Networks (DNNs), have emerged as a state-of-the-art solution for solving machine learning tasks. To improve the performance and energy efficiency of CNN inference, the employment of specialized hardware accelerators is prevalent. However, CNN accelerators still face performance-...
Portfolio Optimization (PO) is a financial problem aiming to maximize the net gains while minimizing the risks in a given investment portfolio. The novelty of Quantum algorithms lies in their acclaimed potential and capability to solve complex problems given the underlying Quantum Computing (QC) infrastructure. Utilizing QC's applicable strengths t...
Recent trends have shown that autonomous agents, such as Autonomous Ground Vehicles (AGVs), Unmanned Aerial Vehicles (UAVs), and mobile robots, effectively improve human productivity in solving diverse tasks. However, since these agents are typically powered by portable batteries, they require extremely low power/energy consumption to operate in a...
Vision Transformer (ViT) is becoming widely popular in automating accurate disease diagnosis in medical imaging owing to its robust self-attention mechanism. However, ViTs remain vulnerable to adversarial attacks that may thwart the diagnosis process by leading it to intentional misclassification of critical disease. In this paper, we propose a nov...
Message from the Chairs,
The 5th Summer School on Cyber-Physical Systems and Internet of Things (SS-CPS&IoT’2024) is the fifth school in a series, organized in Budva, Montenegrin andMediterranean pearl.We were pleased to continue the tradition of hosting the SS-CPS&IoT’2024 in a hybrid format, accommodating both online and in-person participation.S...
Autonomous embedded systems (e.g., robots) typically necessitate intelligent computation with low power/energy processing for completing their tasks. Such requirements can be fulfilled by embodied neuromorphic intelligence with spiking neural networks (SNNs) because of their high learning quality (e.g., accuracy) and sparse computation. Here, the e...
Recent advancements in quantum computing have led to the development of hybrid quantum neural networks (HQNNs) that employ a mixed set of quantum layers and classical layers, such as Quanvolutional Neural Networks (QuNNs). While several works have shown security threats of classical neural networks, such as adversarial attacks, their impact on QuNN...
Recent advancements in quantum computing have led to the emergence of hybrid quantum neural networks, such as Quanvolutional Neural Networks (QuNNs), which integrate quantum and classical layers. While the susceptibility of classical neural networks to adversarial attacks is well-documented, the impact on QuNNs remains less understood. This study i...
In the realm of deploying Machine Learning-based Advanced Driver Assistance Systems (ML-ADAS) into real-world scenarios, adverse weather conditions pose a significant challenge. Conventional ML models trained on clear weather data falter when faced with scenarios like extreme fog or heavy rain, potentially leading to accidents and safety hazards. T...
Spiking Neural Networks (SNNs) have shown capabilities for solving diverse machine learning tasks with ultra-low-power/energy computation. To further improve the performance and efficiency of SNN inference, the Compute-in-Memory (CIM) paradigm with emerging device technologies such as resistive random access memory is employed. However, most of SNN...
Patch-based adversarial attacks were proven to compromise the robustness and reliability of computer vision systems. However, their conspicuous and easily detectable nature challenge their practicality in real-world setting. To address this, recent work has proposed using Generative Adversarial Networks (GANs) to generate naturalistic patches that...