
Domain Specific Modeling Language for Cyber
Physical Systems

Muhammad Waqar Aziz
Science and Technology Unit,

Umm Al-Qura University,
Makkah, 21955, Saudi Arabia

e-mail: mwabdulaziz@uqu.edu.sa

Muhammad Rashid
Department of Computer Engineering,

College of Computer and Information Systems,
Makkah, 21955, Saudi Arabia
e-mail: mfelahi@uqu.edu.sa

Abstract—The benefits of Domain Specific Modeling
Languages (DSML), for modeling and design of cyber physical
systems, have been acknowledged in previous years. In
contrast to general purpose modeling languages, such as
Unified Modeling Language, DSML facilitates the modeling of
domain specific concepts. The objective of this work is to
develop a simple graphical DSML for cyber physical systems,
which allow the unified modeling of the structural and
behavioral aspects of a system in a single model, and provide
model transformation and design verification support in future.
The proposed DSML was defined in terms of its abstract and
concrete syntax. The applicability of the proposed DSML was
demonstrated by its application in two case studies: Traffic
Signal and Arbiter case studies. The results showed that the
proposed DSML produce simple and unified models with
possible model transformation and verification support.

Keywords-Domain Specific Modeling Language; meta-
modeling; cyber physical systems; Unified Modeling Language;
abstract syntax; concrete syntax.

I. INTRODUCTION

In cyber physical systems, where system failure can
result in severe loss, system modeling is very challenging
due to the complexity and diversity involved [1, 2]. To
reduce the design complexity, Model-Driven Development
(MDD) is used that allows the development of a system
using models [3]. Models in MDD can be formulated either
using general purpose modeling languages, such as Unified
Modeling Language (UML) [4] or through a domain-specific
modeling language (DSML). Despite having rich tool
support, general-purpose modeling languages (e.g., UML)
are usually very large, where it is clumsy to add domain-
specific restrictions. In addition, these languages lack
detailed formal semantics which are needed for formal
analysis [5]. In contrast, DSML is a specialized modeling
language, which is tailored for the needs of a specific
application domain.

To combine the advantages, a DSML is often defined in
terms of UML. Among the UML profile based solutions,
some are limited to allow modeling of only one aspect, i.e.,
structure or behavior of the system. While others, if covers
both of these aspects, result usually in sets of discrete models
[6], which are difficult to handle and comprehend [7]. While
the standard UML profiles such as MARTE [8] and SysML
[9] (or their combination) can be used to fulfill the modeling

requirements of cyber physical systems, they do not provide
any verification facility at the high-level design [10].
Moreover, defining a DSML in this way by using a UML
profile is not enough for model transformation perspective in
MDD. Furthermore, it is difficult to align the systems
modeled by using the existing profiles with the widely used
concepts of web services and cloud computing (resource-as-
a-service). To handle these problems, a new simplified and
systematic DSML is proposed in this work.

The rationale of the proposed DSML is to simplify the
design models of cyber physical systems, while allowing the
representation of their structure and behavior in a unified
way. The proposed DSML is defined systematically in terms
of a meta-model (to interpret any particular model instance
formally) and implemented as a UML profile. In this way,
the drawback of relying on UML formalism is eliminated
and the benefits of the using the existing UML tool are
obtained. The proposed DSML uses the Service-Oriented
Computing (SOC) [11] concepts to align with web services
and cloud computing domains. As a part of the MODEVES1

project, this work further aims at producing design models,
which are explicit enough to be used later in the
transformation and verification phases of the project (which
are not dealt with in this paper).

To illustrate the application of the proposed DSML, it
has been applied to model two case studies: Traffic Light and
Arbiter. Although the proposed DSML was applied in these
case studies to check the soundness of the presented concepts,
it is general enough to be applied to any cyber physical
system. The rest of the paper is organized as follows: The
next section provides the background of modeling
mechanisms that can be used. The methodology of
developing the DSML is explained in Section 3. The
proposed DSML is presented in Section 4, which is then
applied to the two case studies in Section 5. The discussion
and related work are provided in Section 6, whereas the
paper is concluded in the last section.

II. BACKGROUND

Classically, a DSML can be defined in the following
ways [12, 13]: (1) by lightweight extension of UML via
stereotypes and tagged values (known as UML profile), (2)

29

DRAFT

29

by either extending the UML meta-model or by defining a
fully dedicated meta-model independent of UML using the
Meta Object Facility (MOF) [14]. The latter option of
defining a DSML is one of the most important aspects of
MDD [12]. This is because a meta-model formally specifies
a DSML by describing its abstract syntax and static
semantics. The abstract syntax simply specifies the basic
constructs of the language and their relationship, which then
can be realized through the notations provided by the
concrete syntax. The static semantics are the constraints on
the abstract syntax that tells the well-formedness of the
models. Developing a meta-model is useful not only to
validate the developed models based on the defined
constraints, but also in model-to-model transformations,
where the transformations are defined as mapping rules
between two meta-models. Moreover, a meta-model can act
as generation templates for code generation, and can be used
as a basis for tool integration [12].

On the other side, a UML profile can be defined by
introducing new stereotypes of the important domain
concepts and tag values to provide new domain specific
semantics. Most UML tools are readily available to define a
UML profile, due to their support for defining custom
stereotypes and tagged values. However, some aspects of the
abstract syntax cannot be conveniently defined through
profiling. In addition, defining a UML profile or extending
an existing one would inherit UML complexity and
ambiguity. In contrast, extending the UML meta-model has
the disadvantages of losing tool support, familiarity and
standard conformity. Therefore, this alternative is not much
used in academia and industry [15]. In existing work,
DSMLs for safety-critical systems are defined in terms of
UML profiles [7, 16, 17, 18], resulting in merely increasing
the set of concrete syntax. In this sense, these solutions
cannot be considered as holistic, as model transformation
issues are not dealt. To be useful for model transformation
and code generation these profiles still depend on the UML
abstract syntax.

In the proposed modeling mechanism, a new DSML is
defined systematically, for cyber physical systems, by
specifying its abstract and concrete syntax. The abstract
syntax is defined by developing a MOF based meta-model
that is not tied to the UML meta-model, whereas the concrete
syntax is defined by developing a profile. In this way, the
proposed modeling mechanism can be easily used by
implementing it in a UML tool, such as Papyrus [19].

III. METHODOLOGY FOR DEFINING THE DSML
To make an explicit interpretation and a common

understanding, the proposed DSML was defined by
developing a meta-model. To achieve this, the first step was
the collection of domain concepts to develop a domain
model. Although most of the concepts of cyber physical
systems are domain specific, special care was given to
represent the basic concepts in a generic way. The important
concepts and their definitions are provided:

Device: Device is a physical entity, which takes some
input, process it and performs some actions. It can range
from small IC to large standalone devices such as a printer.

Service: Service is a logical entity that represents the
functionality of a device. It can be considered similar to the
concept of service as used in SOC. Instead of representing a
software component, this concept has been adopted and
given a broader meaning here to represent any facility
offered by a device. To keep the models simple, other
concepts of SOC, such as service composition, orchestration,
service repository etc. are not included.

Event: An event is any action that takes place in the
system, on the satisfaction of a particular condition. It can be
caused both by system internal or external entities. When an
event occurs, the states of one or more devices change. In
other words, an event triggers a state change.

State: A state is a particular value of a device property at
a certain time. A device can have one or more states, which
change based on the events occurring in the system.

Once the domain concepts were collected to develop a
domain model, the following list of requirements was
defined which the meta-model should fulfill:
� Expressing the system structure in terms of devices and

the communication among them. This includes the
concepts related to a device, such as its properties,
inputs/outputs etc.

� Representing the basic functionality of a device as a
service and finding a way of representing the services of
a device. In addition to service specific properties, the
way different services communicate with each other need
also to be represented.

� Finding a way to express the system behavior in terms of
different events occurring in the system and subsequent
changes in the states of the devices in response.

� Representing different states of a device and finding a
suitable way to represent the state changes based on the
occurred events.
To make the proposed DSML usable, a profile was then

created based on the proposed meta-model, through UML
meta-classes using façade meta-modeling approach [12]. To
define the concrete syntax, different stereotype notations
were defined. The basic principle was the mapping of
concrete elements to abstract elements.

IV. THE PROPOSED DSML

Based on the methodology described in the previous
section, a DSML is proposed in this work for cyber physical
systems. The proposed DSML is specified in terms of its
abstract and concrete syntax:

A. Abstract syntax
The abstract syntax is defined in terms of MOF based

meta-model that is independent of UML. The meta-model
consists of distinct entities: the device, the service and its
components, and the relationships between them, as shown
in Figure 1. The details of the elements of the proposed
meta-model are provided below: A device is a physical entity
that provides and manages different functionalities (services).
Therefore, a device acts like a container of services. The
NFP of a device can be included as property, which holds for
all the contained services. The communication among
devices takes place via different input/output signals. A

3030

service represents a basic functionality offered by a device.
A device can provide one or more services, which can be
accessed simultaneously. In this way, services are considered
as concurrent computing units, where each service has a set
of associated properties. The service specific characteristics
are included as service property. A service can interact with
other services through service interface, which can either be
provided or required.

Figure 1. The proposed meta-model.

To define its behavior, a service may consist of a state
machine that represents different states of the device and the
way transitions among them happen. At the system
initialization or reset, every state machine is at its start state.
When an event occurs, a state generates one or more outputs,
which become the inputs to states of other devices. These
inputs cause the transition from one state to another, either in
the same or the next clock cycle. The events are represented
as a dashed line, whereas the state transition as a solid line.
The transition specific requirements (named as a condition),
such as durations and delays are represented along the state
transition lines.

B. Concrete syntax
To make the proposed modeling mechanism useable and

to allow its implementation in any UML tool, the DSML is
also defined in terms of its concrete syntax (profile). This
definition is based on the abstract syntax (proposed meta-
model). Initially, the profile is developed by defining the
stereotypes of different elements of the meta-model. In the
future, the tagged values would be added to represent the
attributes of the elements with their types and initial values.
For example, the devices are represented by using «Device»
stereotype, whereas the services they provide by the
«Service» notation. The notations used to represent these
concepts are presented in Table 1. The concrete syntax was
implemented by creating the defined stereotypes in the
Eclipse tool Papyrus, as shown in the next section.

V. APPLICATION OF THE PROPOSED DSML

This section presents the validation of the proposed
modeling mechanism via its application in the Traffic Light
case study. To ensure the completeness and consistency of
the proposed DSML, it is also applied to the Arbiter case
study. The models produced in the case studies are high-level
(platform independent); therefore they do not provide the
platform specific details.

TABLE I. CONCRETE SYNTAX OF THE PROPOSED DSML

Stereotype
notations Concept Symbol Description

<<Device>> Service
Provider Basic block The some service entity

providing

<<Service>> Basic
Functionality

Basic block
with shaded
header

Functionality provided
by a device

<<Events>> Relationship Dash line

Represents the events
occurring in the system,
where the direction of
arrow points from source
to destination

<<Condition
>>

Requirement Condition
written on
the Solid
line

Represents the
condition(s) that must be
fulfilled to allow the
state transition

<<port>> Transition Solid line
Represents the
communication between
devices

A. Traffic Light Case Study
The case study design model represents a simple traffic

light controller for a North-South and East-West intersection.
The North-South is the main road, and is given the GREEN
light unless a sensor on the rarely used East-West farm road
is activated. When that occurs, and the North-South light was
GREEN for enough time, then the light will change to give
way to the East-West traffic. The design also takes into
account emergency vehicles that can activate an emergency
sensor. When the emergency sensor is activated, then the
North-South and East-West lights will turn RED, and will
stay RED for a minimum period of 3 cycles.

In terms of the proposed modeling mechanism, the case
study comprises of four devices, which are the two traffic
signals (NS and EW), and two sensors (EW and emergency).
Each of the devices is providing exactly one service, as
shown in Figure 2. Each service consists of a state machine
representing different states of the device.

The start state is represented by a solid circle in each
state machine. A transition occurs on receiving an input
signal. For instance, both NSTrafficSignal and
EWTrafficSignal devices change to Yellow state, on
receiving emg-sensing signal from the EmergencySensor
device. Similarly, these devices change to Red state when the
timer sends a signal that EWTrafficSignal is in Green state
for 3 clock cycles (it is assumed that every device has a built-
in timer). There are some states which generate outputs, such
as sensing states of EmergencySensor and EWSensor devices.
For simplicity, the service properties and service interfaces
are not displayed at this level.

B. Arbiter Case Study
The arbiter system provides a link between 3 master

devices and 2 target devices. A link is established between
the master and the target devices by the mediator. At a given
time, only one master can conduct a read or a write
transaction and with only one target device. Any master
device can conduct a transaction with any target device. The
mediator contains arbiter logic that decides which master
will be allowed to conduct a transaction. The arbiter uses a
simple round robin technique. The mediator also contains

3131

glue logic that actually decodes the master information for
the target device and vice versa. The glue logic helps
establish the link between a specific master device and the
target device to conduct the transaction successfully.

Figure 2. Traffic Light case study as implemented in Papyrus tool.

The master device can perform a read and a write
transaction. It can support 2 target devices in a single system.
When the master device gets the instruction "ask_for_it," it is
ready to perform a transaction. It sends an active low pulse
on the "req" signal and waits for a "gnt." The "gnt" signal is
an active low signal. If the "gnt" signal does not come within
2 to 5 clock cycles, then the master will retry to get access at
a later time. If the "gnt" is acquired, then the master will
immediately assert the "frame" and "irdy" signals
acknowledging the arrival of the "gnt" signal ("frame" and
"irdy" are active low signals). In the same clock cycle, it also
selects the target device it will have the transaction with. The
master uses the output signal "rsel" to indicate this. If signal
"rsel" is set to 1, then the master will have a transaction with
target device 1. If the signal "rsel" is set to 0, then the master
will have a transaction with the target device 0.

Once the signal "rsel" is updated, the target device is
expected to identify itself to the master. The target device
uses the signal "trdy" to acknowledge its readiness. If the
target does not acknowledge itself within 3 clock cycles from
the point when "rsel" is assigned, it is an error condition. If
the target does acknowledge itself, then the master decides
whether to read or write. The master sends the data and the
instructions whether read or write through the "datac" bus.

Applying the concepts of the proposed modeling
mechanism, the case study comprises of six devices, which
are the three Master devices (Master 1, Master 2, and Master
3), one Mediator and two Target devices (Target 0 and
Target 1). As the structure of all Master devices is same, the
detail of only one Master and one Target device is shown in
Figure 3 for simplicity. The Master and Target devices are
providing one service each, but the mediator is providing
two services, which are Arbiter and Linker services. Each
service includes a state machine to represent different states.
Some state waits for an inputs (e.g., Ready state in
ConductTrans service), while other states are triggered by
the arrival of the particular signal (e.g., Acknowledge state in
ConductTrans service). Normally the states are taking one
input and producing one output, but there are some states

which are taking more than one input (e.g., Decision state in
Linker service) and producing more than one output (e.g.,
Acknowledge state in ConductTrans service). The
requirements that must be satisfied to perform a state
transition (e.g., duration = 3) are written along with the
transition arrow.

Figure 3. The unified model of Arbiter case study based on the proposed
modeling mechanism.

VI. DISCUSSION AND RELATED WORK

As stated earlier, the existing work is mostly related with
the modeling of cyber physical systems using UML profiles.
For example, SafeUML profile [20] is defined to model
safety related concepts of aerospace systems. However, this
profile is related to the generation of safety-related
certification information from UML models. Similarly,
another UML profile [21] includes safety-requirements in a
UML model. But this profile defines the stereotypes that can
only be used for safety analysis. RCSD profile [22] is
another UML based profile proposed specifically for railway
and tramway control systems. The stereotypes defined,
however, are specific enough to the domain and cannot be
used in other cyber physical systems.

Although requirements for domain-specific languages in
MDD of safety-critical systems are defined [21, 23], there is
no work available regarding the development of a MOF
based meta-model for these systems. The facility to describe
the system behavior as provided in the proposed mechanism
reduces the potential safety problems that originate due to
incomplete and ambiguous specifications.

In MODEVES project, a Systematic Literature Review [1,
2] has been performed to investigate latest MDD trends,
approaches and tools to perform modeling, model
transformation, model verification and simulation activities
for the development of cyber physical systems using MDD.
This includes Object Constraint language (OCL), MARTE
Clock Constraint Specification Language (CCSL), Property
Specification Language (PSL) and other property
specification techniques. Consequently, OCL has been
selected and its major constructs have been investigated in
detail.

It is intended to generate System Verilog RTL and
assertion code, in MODEVES project, from the developed

3232

models. Therefore, a methodology, which will be logically
equivalent to System Verilog semantics, needs to be
developed to specify the constraints/properties in these
models so that the logical mapping of concepts can be
performed [24]. It has been analyzed that all OCL constructs
cannot be mapped directly to System Verilog constructs.
Hence, it is required to extend OCL in order to support basic
constructs of System Verilog. The proposed methodology
will be based on the OCL extension that supports System
Verilog constructs. It is believed that this will significantly
reduce the transformation efforts.

VII. CONCLUSION

As a first step towards developing a holistic design
approach, a modeling mechanism for cyber physical systems
is proposed in this work. A simple DSML is proposed in
terms of MOF based meta-model and the concrete syntax is
defined, based on which the models are implemented using
the UML Papyrus tool. The proposed mechanism allows the
unified modeling of the structural and behavioral aspects of a
system in a single model. The applicability of the proposed
mechanism is demonstrated through two case studies.
In the future, it is planned to define the static semantics of
the proposed DSML in terms of the meta-model constraints
using the Object Constraints Language (OCL). To this end,
the detailed analysis of the major constructs of the OCL has
been performed, to investigate its use for formal
specification of the constraints of the proposed meta-model.
Based on this, the logical mapping of concepts would be
defined for transformation into System Verilog assertions. It
is also planned to enrich the proposed modeling mechanism
by adding more concepts, safety requirements and temporal
properties of cyber physical systems in our meta-model.

ACKNOWLEDGMENT

This project is funded by NSTIP (National Science,
Technology, Innovative Plan), Saudi Arabia (grant no. 13-
INF761-10). The authors acknowledge the support of STU
(Science and Technology Unit), Umm Al-Qura University,
Saudi Arabia.

REFERENCES

[1] M. Rashid, M. W. Anwar, A. M. Khan, “Identification of Trends for
Model Based Development of Embedded Systems”, In 12th IEEE
International Symposium on Programming and Systems (ISPS),
Algiers, April 2015, pp. 1 – 8.

[2] M. Rashid, M. W. Anwar, and A. M. Khan, “Towards the Tools
Selection in Model Based System Engineering for Embedded
Systems-A Systematic Literature Review,” Journal of Systems and
Software, vol. 106, 2015, pp. 150-163.

[3] F. Herrera, H. Posadas, P. Peñil, E. Villar, F. Ferrero, R. Valencia,
and G. Palermo, “The COMPLEX methodology for UML/MARTE
Modeling and design space exploration of embedded systems,”
Journal of Systems Architecture, vol. 60, Issue 1, January 2014, pp.
55-78.

[4] OMG Unified Modeling Language (OMG UML). Superstructure (vol
2.3). Object Management Group, Inc., 2009.

[5] A. D. Brucker, and J. Doser, “Metamodel-based UML notations for
domain-specific languages,” 4th International Workshop on Software
Language Engineering (ATEM 2007). October, 2007.

[6] K. Berkenkötter, and U. Hannemann, “Modeling the railway control
domain rigorously with a UML 2.0 profile,” Computer Safety,
Reliability, and Security. Springer: Berlin, Heidelberg, 2006, pp. 398-
411.

[7] K. Mewes, Domain-specific modelling of railway control systems
with integrated verification and validation. Verlag Dr. Hut. 2010.

[8] OMG UML Profile for MARTE: modeling and analysis of real-time
embedded systems (vol 1.0, pp 738). Object Management Group, Inc.,
2009.

[9] OMG Systems Modeling Language. http://www.omgsysml.org/.
[10] M. Rashid, M. W. Anwar and F. Azam, “Expressing Embedded

Systems Verification Aspects at Higher Abstraction Level -
SystemVerilog in Object Constraint Language (SVOCL), IEEE
International Systems Conference (SysCon), Florida, USA, April
2016.

[11] M. N. Huhns, M. P. Singh, “Service-oriented computing: key
concepts and principles,” IEEE Internet Computing, vol. 9, issue 1,
2005, pp.75-81.

[12] T. Stahl et al., Model-driven software development: technology,
engineering, management, Wiley, New York, 2006.

[13] F. Noyrit, S. Gérard, and B. Selic, Façade Metamodel: masking UML.
Springer: Berlin, Heidelberg, 2012, pp. 20-35.

[14] Meta object facility (MOF) specification, OMG document formal/05-
05-05. Also available as iso/iec 19502. 2005.

[15] M. W. Aziz, R. Mohamad, D. N. A. Jawawi, and R. Mamat, “Service
based meta-model for the development of distributed embedded real-
time systems,” Real-Time Systems, vol. 49, issue 5, 2013, pp. 563-
579.

[16] D. Kuschnerus, F. Bruns, A. Bilgic, and T. Musch, “A UML Profile
for the Development of IEC 61508 Compliant Embedded Software,”
Online Proceedings Embedded Real-Time Software and Systems,
2012.

[17] S. Bernardi, J. Merseguer, and D. C. Petriu, “A dependability profile
within MARTE,” Software and Systems Modeling, vol. 10, issue 3,
2011, pp. 313-336.

[18] M. A. de Miguel, J. F. Briones, J. P. Silva, and A. Alonso,
“Integration of safety analysis in model-driven software
development,” IET Software, vol. 2, issue 3, 2008, pp. 260-280.

[19] S. Gérard, C. Dumoulin, P. Tessier, and B. Selic, “Papyrus: A UML2
Tool for Domain-Specific Language Modeling,” In Model-Based
Engineering of Embedded Real-Time Systems, Lecture Notes in
Computer Science, Springer: Berlin Heidelberg, 2010, pp. 361-368.

[20] Z. Gregory, B. Lionel, L. Yvan, “Modeling safety and airworthiness
(RTCA DO-178B) information: conceptual model and UML profile,”
Journal of Software & Systems Modeling, vol. 10, issue 3,
SpringerVerlag, pp. 337-367, 2011.

[21] M. Wasilewski, W. Hasselbring, and D. Nowotka, “Defining
requirements on domain-specific languages in model-driven software
engineering of safety-critical systems,” 2013, pp. 467-482.

[22] K. Berkenkötter, and U. Hannemann, “Modeling the Railway Control
Domain Rigorously with a UML 2.0 Profile,” Computer Safety,
Reliability, and Security, Lecture Notes in Computer Science, vol.
4166, 2006, pp 398-411.

[23] D. S. Kolovos, R. F. Paige, T. Kelly, and F. A. Polack,
“Requirements for domain-specific languages,” Proc. of ECOOP
Workshop on Domain-Specific Program Development (DSPD), vol.
2006, July, 2006.

[24] M. Rashid, M. Waseem Anwar, F. Azam and M. Kashif, “Exploring
the Platform for Expressing SystemVerilog Assertions in Model
Based System Engineering”, 7th International Conference on
Information Science and Applications, Vietnam. February 2016.

3333

