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Upscaling Reservoir Rock
Porosity by Fractal Dimension
Using Three-Dimensional
Micro-Computed Tomography
and Two-Dimensional Scanning
Electron Microscope Images
Scaling porosity of sedimentary rocks from the scale of measurement to the scale of interest
is still a challenge. Upscaling of porosity can assist to accurately predict other petrophysi-
cal properties of rock at multiple scales. In this study, we use the two-dimensional (2D)
scanning electron microscope (SEM) and three-dimensional (3D) X-ray micro-computed
tomography (micro-CT) image to upscale porosity from the image scale to the core plug
scale. A systematic imaging plan is deployed to capture rock properties of a carbonate
and a sandstone sample, which are sensitive to the fractal nature of these rocks. Image anal-
ysis records wider pore spectrum (0.12–50 µm) in the carbonate sample than in sandstone
(0.12–30 µm). The fractal dimensions are also higher in the carbonate than in the sandstone
sample. Median, volume-weighted average of pore radius, and fractal dimensions derived
from the image analysis are used as inputs in this equation. The results of the present study
using this equation yielded to the best results on a resolution of 2.5 µm/voxel in the sand-
stone and 2.01 µm/voxel resolution in the carbonate sample for 3D micro-CT images,
where fractal-scaling porosity matches well with the porosity measured at the core plug
scale. The 2D SEM images provided a good estimation of porosity in the sandstone
sample, where micro-CT imaging techniques could not capture the full pore spectrum.
The fractal porosity equation showed promising results and offers a potential alternative
way to estimate porosity when there are no routine core measurements available.
[DOI: 10.1115/1.4047589]
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reservoirs, unconventional petroleum, underground injection and storage

1 Introduction
The heterogeneity in natural rocks prevails at a wide range of

length scales from microns to kilometers. Practically, the rocks
can be considered as arbitrary two-phase systems of the pore and
solid phases. Dealing with the pore phase is critical because it is
composed of multiscale, complex, and irregular microstructures.
Especially, the complexity in sedimentary rocks gets more

complicated where a wide variety of deposition and diagenetic
process have governed their rock fabric. Accurate quantification
of the pore space across several scales in heterogeneous rocks is a
significant challenge for oil and gas recovery, transport of ground-
water, and pollutant migration in aquifers. Euclidean dimension
(DE) has restraints to explain and compute complex tortuous pore
geometries in simple two or three-dimensions [1–4]. Mandelbrot
[1] proposed that fractal geometry provides effective means to char-
acterize the multiscale and self-similar geometries, which is an
applicable approach to upscale porosity from small scale to large
scales in natural rocks. According to this theory, the self-similar
objects are composed of similar structures at different scales. To
better understand the concept of fractal dimension, let us compare
basic concepts in the Euclidean geometry with their analogous in
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the fractal geometry: The Euclidean dimension (DE) of a straight
line is equal to 1 (DE= 1), while the dimension of an irregular
line or a surface presenting self-similar structures is a fraction
number larger than 1 and less than 2 [5,6]. The Euclidean dimension
of a volumetric object is equal to 3, while the dimension of an irreg-
ular tridimensional object that presents self-similarity is a fraction
between larger than 2 and less than 3. This provides a fractional
sense to a dimension which is known as fractal dimension (DO).
Fractal dimension quantifies irregularity of self-similar structures
at different scales.
In the case of rocks, we find the considerable literature that shows

that rocks can be described/characterized using fractal geometry.
For instance, in a microstructure study of sedimentary rocks by
small-angle neutron scattering, Wong et al. [7] concluded that the
fractal character of pore surfaces is due to the presence of clays.
Analyzing scanning electron microscope (SEM) images of sedi-
mentary rocks, Krohn [8] indicated that the fractal structures are
the product of diagenesis. Katz and Thompson [2] experimented
on a set of sandstone samples and they proposed a relation
between fractal dimension, porosity, and scales of self-similarity.
They found that pore spaces in these sandstones are fractals
across three or four orders of scale magnitude covering 1 nm to
100 µm. Since then, this fractal geometry theory has drawn huge
attention regarding its application in various restraints such as
porous media, fractures and vein studies, surface roughness, and
granular materials. Many scientists [8–16] have worked on different
techniques to find fractal behavior of pore space in sandstone and
carbonate rocks, and their results showed that pore space in these
sedimentary rocks exhibits obvious fractal nature.
Several methods are in use to determine the fractal dimension and

pore size distribution (PSD) of porous rocks such as wetting phase
saturation and capillary pressure [17–20] mercury injection capil-
lary pressure (MICP), porous plates and centrifuges [9,13], adsorp-
tion and nuclear magnetic resonance method (NMR) [21–24]. Long
ago, Katz and Thompson [2], Krohn and Thompson [25], and
Krohn [8,26] used two-dimensional (2D) SEM images for the
first time to investigate the fractal dimension of sandstone, shale,
and carbonate samples. Few studies exist that use the three-
dimensional (3D) computed tomography (CT) image to determine
fractal dimension [10,27].
Recently, Vega and Jouini [14] made fractal and multifractal

analysis on an optical microscope and SEM images, examined the
relation of magnification to fractal dimension, and derived a new
equation for scaling porosity. This equation utilizes pore size with
the approximation that the majority of the pore size is similar and
fractal dimensions measured on digital images from SEM and
thin section. The evaluation of this equation indicates the potential
to estimate porosity at different scales and an alternative way to
determine porosity from images.
In this paper, we used high-resolution SEM image mosaics and

micro-CT images at different scales to determine PSD, image poros-
ity, and fractal dimensions to calculate fractal-scaling porosity using
Vega’s equation [14]. We studied the applicability of this
fractal-scaling porosity equation on multiscale large area 2D SEM
and 3D micro-CT images from a sandstone and a carbonate rock.
This is the first time when such equation is used to calculate
fractal-scaling porosity of both 2D and 3D digital images from
two types of rocks (siliciclastic and carbonate) having similar poros-
ities. In this way, this study adds to the original paper [14] the inves-
tigation of the scaling porosity equation using 3D images and its test
in a sandstone sample.

2 Methods and Materials
2.1 Fractal-Scaling Porosity Equation. A simple empirical

relation can be drawn by plotting image resolution versus image
porosity computed to scale porosity for multiple scales. Whereas
porosity computed by images is dependent on resolution, magnifi-
cation, and artifacts, thus true relation cannot be revealed at that

multiple scale’s relationship. Fractal objects are independent of
the measurement units (length, area, or volume) and follow a
scaling law. Katz and Thompson [2] proposed an alternative
scaling law (1) to calculate porosity using fractal geometry

Φ =
L1
L2

( )(DE−Do)

(1)

where L1 is minimum and L2 is the maximum length of the fractal
structure, these are also referred as the lower and upper limits of the
self-similar structure; Do is the fractal dimension of the pore space,
and DE is the Euclidian dimension. In this case, as Do approaches
DE, the pore space tends to be Euclidian, resulting in a fractal poros-
ity equal to 1 (Ф= 1). In other words, a fractal porosity equal to 1
indicates that L1 is equal to L2, so there is not a fractal structure.
L1 can be assumed as 20 deg A, which is a minimum size of a
crystal nucleus of pore space in siliciclastic rocks. L2 yet to be
found for each specific structure. Some workers tried to establish
a correlation function in images to find L2, but the scope of this
function might be narrow and limited to measured scales [28].
Therefore, for calculating porosity at multiple scales (1), results
are not relevant.
The porosity estimation from images can simply be calculated by

dividing the pore area by the total image area (2) in 2D images, and
the pore volume by the total pore volume (3) in 3D images

Φ =
AP

AT
(2)

Φ =
VP

VT
(3)

where AP is the pore area, AT is the total area of a 2D image, VP is
the pore volume, and VT is the total volume of a 3D image.
The box-counting method is used by many authors [12,29,30] to

find fractal dimensions of binary images. The principle of this
method is to count the number of boxes N(ϵ) covering the pore
spaces by superimposing boxes with the box size ϵ onto an
image. The process is iterated in a series of decreasing caliber of
box sizes. N(ϵ) and ϵ should satisfy Eq. (4) if the pore space is
fractal in nature

N(ε) = ε−Do (4)

For 2D images, Vega and Jouini [14] derived Eq. (5) from Eq. (3)
by assuming that the pore size is determined by the box(es) that
covers the pore of dimension e× e, where e is the pore size; they
defined dimensionless pore size, e′ = e/L, where L is taken as the
length of square of image. A dimensionless image size can be
given as L′ = L∕L which will be equal to 1. They also define
dimensionless pore area ap= e′ × e′ and dimensionless image area
AT′ = L′ × L′.

Φ =
AP
AT

=
N(ε) × aP

AT′ (5)

Now, substituting Eq. (4) in Eq. (5) and approximating the box
size ϵ near to pore size e′, such that ϵ≈ e′

Φ =
ε−Do × ap

AT′ (6)

Φ =
e′−Do × ap

AT′ = e′ (DE−Do) (7)

So, we used Eq. (7) to estimate the fractal-scaling porosity in 2D
images, where DE is equal 2, and assuming that most the pores are
equal in size.
Following the same reasoning of above, now for 3D cubical

images. This is, instead of having a square image, we have a

013003-2 / Vol. 143, JANUARY 2021 Transactions of the ASME



cubical image of L× L×L of total volume. Then, Eq. (7) becomes
Eq. (8) for 3D images

Φ =
e′−Do × vp

VT′ = e′ (DE−Do) (8)

where e′ is the dimensionless pore size, vp is the dimensionless pore
volume (vp= e′ × e′ × e′), VT′ is the dimensionless total volume of a
3D image, and DE is equal 3.

2.2 Samples. A pair of samples, one carbonate (G3) and one
shaly-sandstone (ES3-1), was used in this study. The samples
were selected from a group of four sandstones and four carbonates

from two different reservoirs. The selection criterion was based on a
consideration that the pair of carbonate and shaly-sandstone
samples were comparable in terms of texture and porosity.
The shaly-sandstone sample which is moderately sorted, has

subangular to angular grains with relatively poor to moderately
developed primary and secondary porosities (Fig. 1(b)). The
porosity measured by injecting helium into the core sample is
16.01%. Dissolved silicate and lithic grains contribute significantly
to secondary porosity, whereas microporosity is present in carbon-
ate and clay cement as well. On the other side, the carbonate
sample is a grainstone (Fig. 1(a)) with sub-rounded to sun suban-
gular grains, which is a nearly similar texture to the shaly-
sandstone sample. The helium porosity of the carbonate sample

Fig. 1 Thin section photomicrographs of rock samples used in this study: (a) carbonate (G3) and (b) shaly-
sandstone (ES3-1)

Fig. 2 Diagram showing the low-resolution imaging scheme: (a) imaging scheme for the carbonate sample (G3) and
(b) imaging scheme for the shaly-sandstone sample (ES3-1). Note: first full plug was imaged in four separate tomo-
grams (tomo1, tomo2, tomo3, and tomo4), then these tomos were stitched together to make one image.
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is 15.3%, which is also very near to shaly-sandstone sample poros-
ity. We denoted the shaly-sandstone sample as “ES3-1” and the
carbonate sample as “G3.”
Core plugs of 38 mm and 25.4 mm diameter from the carbonate

and the shaly-sandstone sample, respectively, were initially used for
low-resolution micro-CT imaging. Further, a 5 mm diameter
sub-plug and a trim were drilled from the 25.4 mm and 38 mm
core plugs, respectively (Figs. 2(a) and 2(b)), and used for high-
resolution imaging in both samples. A larger sample size was
chosen for carbonate rock keeping in view that it has larger upper
limits of pore sizes.

2.3 Methods. The ability to resolve microstructures (resolu-
tion) in micro-CT is inversely proportional to sample size (dia-
meter). It is quite necessary to know about sample microstructure
(pore and grain size) to select a plug diameter to get required
results before CT scanning. Before acquiring any image, we
looked at the thin sections of the samples in an optical microscope
to get a preliminary description and to compare the selected samples
Then, CT imaging was performed in a X-ray micro-scanner (Zeiss
Xradia versa 520, available in the Rock Physics Lab of ADNOC
Research and Innovation Center—ADRIC). This equipment can
provide 3D images approaching a maximum resolution of 0.5 µm/
voxel for small samples (i.e., samples with a diameter of around
1 mm), depending on the sample characteristics. In addition, SEM
images were acquired in a Philips-FEI Quanta 200 microscope
available at Petroleum Geoscience Department in Khalifa Univer-
sity, Abu Dhabi. SEM can provide 2D images reaching a
maximum resolution upto a nanometer [20]. An integrated
imaging workflow, described in Secs. 2.4 and 2.5, was used to
image the rock samples at multiscale and multiresolution, in both
SEM and micro-CT to study the effects of scale and resolution.
Multiscale here refers to imaging the rock at different plug sizes
(i.e., 38 mm, 25.4 mm, and 5 mm), while multiresolution refers to
imaging same plug at different resolutions using zooming.

2.4 Micro-Computed Tomography Imaging. X-ray CT pro-
vides a nondestructive way to image rock samples that is an ideal
tool to characterize the internal structure of a rock in three dimen-
sions [31]. While the limitation of this CT technique is that only
small samples can provide high spatial resolution, and therefore,
often multiple scanned images will be needed in order to obtain rep-
resentative volumes [32–34]. The elaborated procedure of CT
imaging includes the acquisition of a large number of X-ray projec-
tions. Computationally intensive numerical algorithm reconstructs
these projections into a 3D volume. A series of two-dimensional
slices stack into a 3D image. Data are arranged in an array of

pixels in the two-dimensional slice. A pixel in the third dimension
makes it three-dimensional volume which is a voxel. This is, the
distance between two consecutive slices is a voxel. CT imaging
can be categorized into low-resolution tomography and high-
resolution tomography. We call here low-resolution tomography
to those in the range of 40–10 µm/voxel, and high-resolution
tomography to those between 10 and 0.5 µm/voxel. The Zeiss
Xradia versa 520 has an “optical zooming” feature, which was
used for each original sample and subsamples to acquire multiple
resolution images. Sample size imaged resolution and optical
zooming summary are present in Table 1.

2.4.1 Low-Resolution Tomography. The carbonate core plug
of 65.55 cm3 that had 38 mm diameter was scanned at three low res-
olutions (40.1, 25.86, and 14 µm/voxel) with only one optical zoom
(Fig. 2(a)) of 0.4×. The shaly-sandstone core plug of 21.64 cm3 that
had of 25.4 mm diameter was scanned at two low resolutions (26
and 7 µm/voxel resolution) with only one optical zoom (Fig. 2(b))
of 0.4×. These core plugs of 38 and 25.4 mm diameter were
imaged in four separate tomograms (Figs. 2(a) and 2(b)) with
60% overlap, and the overlap was used to stitch these tomograms
together. In addition, single tomograms for the digital subsamples
were acquired with optical zooming by selecting them in the
center of the core plugs (Figs. 2(a) and 2(b)).

2.4.2 High-Resolution Tomography. Capturing pore structures
approaching the scale of 1 µm or less was achieved using 5 mm dia-
meter sub-plug extracted from 25.4 mm plug (Fig. 3(a)) from shaly-
sandstone and trims from carbonate with high-resolution tomogra-
phy. 5 mm diameter trim from the carbonate sample was imaged
at 4 µm/voxel and 2.01 µm/voxel using the optical zoom of 4×
and 0.4×, respectively (Fig. 4(a)). While 5 mm sub-sample from
the sandstone was imaged at 5 µm/voxel (field of view (FOV):
5 mm), 2.5 µm/voxel (5 mm full plug), and 1.86 µm/voxel resolu-
tion using optical zooming of 4×, 14×, and 10×, respectively
(Fig. 4(b)).

2.5 Scanning Electron Microscope Imaging. The SEM
microscope was used to capture the microporosity in the studied
samples. The term microporosity in this paper corresponds to the
porosity that lies below the resolution of the micro-CT images,
which is 0.5 µm/(voxel or pixel). SEM is a traditional high-
resolution 2D imaging technique which can acquire images with
submicron resolution. We used trimmed tops of the of 25.4 and
38 mm plugs from both samples to make thin sections. These
trims were mounted on a standard glass plate with epoxy and pol-
ished very finely (Fig. 3(b)). The surface of the thin sections was
coated with gold and platinum to avoid the electron charging

Table 1 Summary of image size, optical zooming, and resolution used for each sample in the micro-CT and SEM imaging

Image Sample
Diameter
(mm)

Resolution
(µm/(voxel or pixel))

Optical zooming/
magnification Volume (voxel)

Micro-CT ES3-1 25.4 Low 26 0.4× 500× 500 × 500
7 0.4× 1000 × 1000 × 1000

5 High 5 4× 500× 500 × 500
2.5 14× 1000 × 1000 × 1000
1.86 10× 500× 500 × 500

G3 38 Low 40.16 0.4× 500× 500 × 500
25.86 0.4× 500× 500 × 500
14 0.4× 500× 500 × 500

5 High 4 4× 500× 500 × 500
2.01 10× 500× 500 × 500

SEM ES3-1 1.69 70× 7155 × 7155
0.12 1000× 9536 × 9536

G3 2.7 62× 6784 × 6784
0.67 120× 11,808× 11,808
0.12 1000× 8016 × 8016
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effect in SEM images. A preliminary study was made to infer
optimal magnification for two scales of imaging (full thin section
and selected subregion). Then, a series of images were acquired
under the same magnification and stitched together to get a
mosaic image. For the carbonate sample, 82, 25, and 25 images
were acquired and stitched together for each three magnifications
62×, 120×, and 1000×, respectively. For the shaly-sandstone
sample, 96 and 46 images were acquired and stitched together for
70× and 1000×, respectively (Table 1).

2.6 Image Processing. In the case of micro-CT images, the
attenuation of X-rays usually produces a beam hardening artifact,
which directly affects visual inspection and automated segmenta-
tion of micro-CT images [31]. The bean hardening artifact is
termed as false density gradients which appear as streaks between
highly attenuating structures. Most of these features appear in the
outer regions of the sample resulting in some brighter outer rims.
The strength of this artifact is sensitive to many factors, including
the shape and geometry of the sample, energy spectrum used for

Fig. 3 An illustrative diagrame showing method for the extraction of sub-plugs and thin section chips: (a) sub-plug
from shaly-sandstone plug and (b) SEM thin section from both carbonate and sandstone plugs

Fig. 4 Diagram illustrates the high-resolution imaging scheme: (a) imaging scheme for the carbonate sample (G3) and
(b) imaging scheme for the shaly-sandstone sample (ES3-1). Note: the shape of the carbonate trim sample was irreg-
ular, so we used optical zoom to get the cylindrical image.
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source X-ray, and density distribution within the sample. To correct
and avoid this artifact, the edges of the samples were eliminated.
Except for the above-explained artifact correction, the image pro-

cessing for both, SEM and micro-CT images, was done in the same
consisting way. Both SEM and micro-CT images were cropped into
maximum possible squares and cubes, respectively. The cropped
images were filtered using a non-local mean filter to reduce noise
and enhance pore space segmentation. Then, the images were manu-
ally segmented by selecting pore-solid boundary on image gray-level
histograms. Segmented imageswere thoroughly studied andcompared

with the original image to check segmentation quality (Fig. 5). Pore
space threshold for each segmented image is present in Table 2.

2.7 Calculation of Fractal Dimension. Fractal count plugin
in the open access IMAGEJ software is based on an algorithm devel-
oped by Chen et al. [35] to calculate the fractal dimension of pore
space, which is used in this study. Beside conventional box-
counting software, this software has two advantages. First, it pro-
vides an improved way in a sense that boxes are not locked to a

Fig. 5 Original (in grayscale) and segmented images (black and white) frommicro-CT and SEM: (a) 2D
slices from shaly-sandstone CT tomogram at different resolutions (26, 7, 5, 2.5, and 1.86 µm/voxel); (b)
2D slices from carbonate CT tomogram at different resolutions (40.16, 25.86, 14, 4, and 2.01 µm/voxel);
(c) SEM images from the carbonate sample at different magnifications (62×, 120×, and 1000×); (d ) SEM
images from sandstone sample at different magnifications (70× and 1000×). The gray colors in the orig-
inal images correspond to different grades of high-density material, and the white color is the lowest
density material, such as pores. The black color in the segmented images corresponds to the solid
part, and the white color corresponds to the pores.

013003-6 / Vol. 143, JANUARY 2021 Transactions of the ASME



grid in the z-direction, and they moved up and down to find the
lowest number of boxes needed for the calculation. Second, this
software supports both, 3D and 2D, binary images for calculations
in the same way.

3 Results and Discussion

3.1 Image Porosity. Image porosity calculated by Eq. (4) for
the 3D CT scan images of samples G3 and ES3-1 results in a func-
tion of e image resolution. As the image resolution gets higher (i.e.,
the values decrease), a greater number of smaller pores become
resolved, and consequently the image porosity increases
(Fig. 6(a)). This point is also evident from a visual inspection of
the CT scan segmented images at different resolutions in the
bottom rows of Figs. 5(a) and 5(b). In fact, G3 and ES3-1
samples show that the image porosity from CT scans versus resolu-
tion follows an exponential law (Fig. 6(a)). On the other hand, there
is not a clear relationship for the 2D SEM images (Fig. 6(b))
because of the limited number of different resolutions.

Table 2 Summary of the segmentation threshold for each image
used in this study

Image Sample Resolution (µm) Pore threshold

Micro-CT ES3 26 149
7 141
5 37
2.5 57
1.86 37

G3 40.16 149
25.86 136
14 114
4 76

2.01 128

SEM ES3-1 1.69 43
0.12 50

G3 2.7 70
0.67 63
0.12 60

Note: 16-bit images were converted to 8 bit before segmentation, and a total
number of gray values is 255 for each image.

Fig. 6 Graphs showing the image porosity versus image resolution from the (a) micro-CT images and (b) SEM
images

Table 3 Parameters derived from micro-CT and SEM image analysis

Image Sample

Resolution
(µm/(voxel
or pixel))

Average
pore
radius
(µm)

e′ (for
average)

Median
pore
radius
(µm)

e′ (for
median)

Fractal
dimension

(D0)

Fractal-scaling
porosity for
average pore
size (fraction)

Fractal-scaling
porosity for
median pore
size (fraction)

Image
porosity
(fraction)

Core
porosity
(fraction)

Micro-CT ES3-1 26 38.07 0.003 156 0.012 1.81 0.001 0.005 0.002 0.160
7 23.15 0.007 105 0.015 2.40 0.050 0.082 0.018
5 9.68 0.004 50 0.020 2.38 0.032 0.088 0.023
2.5 8.14 0.007 60 0.024 2.63 0.153 0.248 0.040
1.86 8.15 0.009 29.76 0.032 2.52 0.103 0.191 0.050

G3 40.16 159.80 0.008 562.24 0.028 2.20 0.021 0.058 0.008 0.153
25.86 76.72 0.006 232.74 0.018 2.26 0.023 0.051 0.011
14 29.64 0.004 154 0.022 2.54 0.082 0.174 0.026
4 11.72 0.006 84 0.042 2.69 0.199 0.370 0.118

2.01 12.32 0.012 46.02 0.046 2.60 0.174 0.293 0.160

SEM ES3-1 1.69 17.88 0.001 50.7 0.004 1.66 0.111 0.158 0.054 0.16
0.12 7.24 0.006 14.384 0.012 1.60 0.132 0.174 0.100

G3 2.70 32.4 0.002 121.5 0.007 1.85 0.385 0.470 0.165 0.15
0.67 25.98 0.003 91.79 0.012 1.76 0.248 0.338 0.146
0.12 17.64 0.018 26.88 0.027 1.67 0.261 0.300 0.164

Note: The parameters include average pore size, median pore size, fractal dimension, fractal-scaling porosity, image porosity, and core porosity.
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The calculated image porosity in 2D and 3D is different in the
shaly-sandstone and carbonate samples. In the carbonate sample,
the image porosity at the highest studied resolutions (2.01 µm/
voxel in the CT and 0.12 µm/pixel in the SEM) is 95.6% of the
core porosity (Table 3). Whereas in the sandstone sample, the
image porosity at the highest studied resolutions (1.86 µm/voxel
in the CT and 0.12 µm/pixel in the SEM) is lower (31% and
62.5%, respectively) than the measured core porosity (Table 3).
These results indicate that the micro-CT scan and SEM
images failed to resolve fully the pore space in the shaly-sandstone
sample.

3.2 Pore Size Distribution. Pore size distribution is defined as
the pore and throat size and distribution, and their connectivity as
well as the spatial distributions of all these properties [36].
IMORPH, an open-source software, was used to find the PSD of the
3D and 2D images. This software works on the binary image
where it calculates the radius of maximal ball-size for every voxel
in the pore phase (Fig. 7(a)). This radius is called aperture radius.
The mean value of the aperture radius distribution is used to give
a first approximation of the phase diameter [37]. The distribution
of the maximal included balls gives information on how pores are
distributed in the media (Figs. 7(b) and 7(c)). The same method is
used to get PSD from SEM images and the CT scan images. As
the software only accepts 3D images, for the SEM images in 2D,
the third (z) dimension was used as null. It is worth mentioning
here that the pore volume divided by the total volume found by
this method is equal to the image porosity found in Sec. 3.1,
which is an evidence of the consistency of this method. Pore
extracted with this method was assumed as the natural model (scale-
free), that have an essentially fractal topology [38].
The resulting pore size (pore radius) is plotted against its corre-

sponding percent volume for micro-CT and SEM images in
Fig. 8. Both samples, G3 and ES3-1, at all resolutions show log
normal distribution of pore radius. Basically, the samples used
here are very similar in terms of their granular texture. However,
the main difference lies in the pore size distribution, where the car-
bonate sample shows higher upper pore size limits (522 µm in CT
and 118 µm in SEM) than the sandstone (130 µm is CT and
49 µm in SEM). Both, SEM and CT PSD display that biggest pop-
ulation of pore lies over 10 µm in the carbonate sample (Figs. 8(a)
and 8(c)) while in sandstone biggest population lies below 10 µm
(Figs. 8(b) and 8(d )). However, the pore size distribution for
both, carbonate and sandstone sample, at the highest resolution
(0.12 µm/pixel) in the SEM images revealed that a small pore pop-
ulation (Figs. 8(d ) and 8(e)) exists below 1 µm size. Bigger pore

size (termed as macroporosity) usually corresponds to intergranular
pore in both studied samples. However, the pores that lie below
1 µm (microporosity) correspond to intercrystalline pore in the
clay of the shaky-sandstone and in the micrite in the carbonate
sample. We found that the resolved porosity in 2D and 3D
images are a function of the resolution. As resolution improves,
the upper limit of pore size and highest population peak also
shifts toward higher resolutions. High-resolution imaging could
not detect bigger pore properly in micro-CT due to the smaller
(2 mm or less) field of view, which might not represent elementary
volume. Therefore, it is a key necessity to integrate multiscale
observation, including low, high-resolution tomography, and
SEM imaging, to cover the whole pore spectrum.
The mode value from the PSD corresponds to the lower pore size

limit as well as the voxel size (resolution) of the image in both
samples in all images resolutions. This is because the tendency to
detect and resolve the smallest feature in the digital image is as
high as its voxel size. Arithmetic means, median, mode, and
weighted average (Eq. (9)) lie very close to each other at higher res-
olution,whereas they separate apart at low resolutions (Figs. 9(a) and
9(b)). Here, the weighted average is the mean of the pore size
weighted by volume occupancy. Usually, the arithmetic means and
median pore size are the same at each resolution in the G3 sample
because the pore radius data set is evenly spaced. However, in the
ES3-1 sample, there are some exceptions, where the mean pore
size lies lower than the median and very close to average pore size
at 5 µm/voxel and 7 µm/voxel resolution (Fig. 9(b)). The resulting
distribution curves are non-Gaussian with long tails that is why the
weighted average and the median pore sizes are suitable here to rep-
resent the central tendency of pore spectrum

weighted average =
∑

rp × Vp∑
Vp

(9)

where rp is the pore radius and vp is the pore volume.

3.3 Fractal Dimension. The degree of irregularity of an object
or set of objects defines its ability to fill a Euclidean space [10,36].
As the fractal dimension is a kind of measure of the irregularity of a
self-similar object/set, it can be considered as a measure of the
ability of that object/set to fill the space in which it resides
[39,40]. As a matter of fact, the more irregular the self-similar
object/set is, the more the Euclidian space is filled [41]. As the
fractal dimension (DO) approaches and gets closer to a Euclidean
dimension (DE), the more that the Euclidian space is filled. In the
practical case of the pore space in a rock, the more that Do gets
closer to DE, the more that the pore space is filled with the

Fig. 7 Illustration of the aperture map computation. (a) For every voxel of the pore phase, the radius of the maximal
balls is calculated that enclose the pore voxel at that location. (b) Aperture map distribution from every voxel of the
pore phase. (c) This histogram reports the number of totally included balls (here only two B1 and B2) that have been
found in the pore phase. Modified from Vicente et al. [37].
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corresponding fractal. Cai and Yu [3] also calculated maximum
pore size using fractal geometry based on porosity and permeability
data, imbibition coefficient data. The fractal dimension method
tested on sandstone micro-CT images shows a self-similar fractal
range when excluding smaller pores [42].
In accordance with the imaging work flow, we calculated fractal

dimension for each imaged resolution. In general, we found that the
fractal dimension increases in the 3D CT scan images as image res-
olution and image porosity increase; but it decreases in the 2D SEM
as image resolution and image porosity increase. A close look of the

image resolutions of the CT scan images data (Table 3) shows that
the fractal dimension increases from its lowest value at the lowest
resolution (26 µm/voxel and 40.16 µm/voxel, for ES3-1 and G3,
respectively) and reaches its highest value at the second highest
image resolution (2.5 µm/voxel and 4 µm/voxel, for ES3-1 and
G3, respectively), and decreases at the highest image resolution
(1.86 µm/voxel and 2.01 µm/voxel, for ES3-1 and G3, respec-
tively). In our opinion, this change in the fractal dimension trend
marks a switch in the fractal scale. In addition, the fractal dimension
decreases with the image resolution in the SEM images following

Fig. 8 Frequency curve showing PSD from sandstone and carbonate and sandstone
images multiple resolution: (a) G3 carbonate CT, (b) sandstone ES3-1 CT, (c) G3 carbonate
SEM, (d ) ES3-1 sandstone SEM, and (e) ES3-1 and G3 PSD from 0.12 µm/pixel resolution
image on the logarithmic scale
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the same trend for resolutions higher than 1.86 µm/voxel and
2.01 µm/voxel, for ES3-1 and G3, respectively.
As we discussed before, the PSDs in the carbonate and shaly-

sandstone sample are quite different, where the micro-CT scan
images were unable to capture the full pore spectrum in the shaly-
sandstone. This difference in PSD yielded different image porosity

versus fractal dimension trends among both samples (Fig. 10(a)),
where the shaly-sandstone observes steeper trends than the carbon-
ate sample.

3.4 Fractal-Scaling Porosity. Fractal objects follow scaling
laws and are self-similar, i.e., independent of the scale of

Fig. 10 Point scatter graph showing the relation between fractal dimension and image resolution and image porosity:
(a) fractal dimension versus image resolution from micro-CT, (b) fractal dimension versus image porosity from
micro-CT, (c) fractal dimension versus image resolution from SEM, and (d ) fractal dimension versus image porosity
from SEM

Fig. 9 The arithmetic mean, median, mode, and the weighted average pore radius calculated from PSD at different
resolutions: (a) carbonate (G3) and (b) sandstone (ES3-1)
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measurement [43]. This unique property of fractal objects is utilized
by Vega and Jouini [14] to develop an equation to estimate the
fractal-scaling porosity. This equation was deducted under the
approximation that all of the pores have the same size. To evaluate
the potential effect of this approximation, they used the minimum,
maximum, and average pore size to calculate the fractal-scaling

porosity. From the pore size analysis study, it is evident that
median and weighted average pore size are suitable candidates to
represent the central tendency of pore spectrum. Therefore, we
used the median and the weighted average pore size in the equation
to calculate the fractal-scaling porosity. The use of these two statis-
tics show quite different results, in overall, the weighted average
pore size gives good estimates (Table 3), but in the shaly-sandstone
SEM images, median pore size produces better estimated than the
average (Table 3). In addition, our results show that increasing
the image resolution, the fractal-scaling porosity also increases in
both samples (Fig. 11(a)). The trend line is in the agreement with
the trend found in the resolution versus image porosity in the
figure. The image porosity versus fractal-scaling porosity plot
shows that the fractal-scaling porosity is always higher than the
image porosity, only a few points give almost a perfect match
(Fig. 11(b)). Those points coincide with the highest value of Do
for ES3-1 and the highest resolution for G3 in the CT scan
images. The calculated fractal-scaling porosity in the SEM
images of the shaly-sandstone sample provides a very good
match with the core plug porosity, for both average and median
pore size: while in the carbonate sample, the estimation is always
overestimated (Table 4).
In the carbonate sample in general, the fractal-scaling porosity

seems to give a better result than the image porosity at the lowest
resolution of 40 µm/voxel and an acceptable relative error, less
than 30%, at the highest CT resolutions of 4 and 2.01 µm/voxel.
On the other hand, for the SEM images of the shaly-sandstone
sample, the estimation of image porosity does a better job than
the fractal-scaling porosity in the carbonate sample.

Table 4 Showing error in image and fractal-scaling porosity
calculated relative to core porosity

Image Sample

Resolution
(µm/(voxel or

pixel))
Relative error

(image porosity)

Relative error
(fractal-scaling

porosity)

Micro-CT ES3-1 26 99 99
7 89 69
5 86 80
2.5 75 5
1.86 68 36

G3 40.16 94 86
25.86 93 85
14 83 46
4 23 30

2.01 5 14

SEM ES3-1 1.69 66 31
0.12 37 17

G3 2.70 8 60
0.67 4 39
0.12 7 42

Fig. 12 Bar graph showing a relative error for calculated fractal and image porosity against image resolution:
(a) carbonate sample G3 and (b) sandstone sample ES3-1

Fig. 11 (a) Point scatter plot showing the exponential relation between image resolution and fractal-scaling porosity
and (b) scatter of data points showing calculation difference between fractal image porosity. The black line marks
perfect fit where both axes have the same values.
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In the case of 2D SEM images, the predictions are better in the
shaly-sandstone sample where there is a short tail in the pore size
distributions. This is similar to what Vega and Jouini [14] found
before for carbonates in 2D images, where the pore size distribution
was simple and unimodal, and the predictions were better. Whereas,
in this study, the carbonate sample, although has a unimodal PSD
but with a long tail. Therefore, the fractal-scaling porosity predic-
tions are less good.
In CT images, the fractal-scaling porosity seems to give a better

estimate than image porosity at all resolutions, while the SEM of
carbonate does not provide good results. This may be due to the
fact that the fractal behavior in the shaly-sandstone sample is cap-
tured at all measured scales, while SEM failed to capture the
fractal behavior in the carbonate sample. Therefore, fractal-scaling
porosity seems to be more useful for the studied shaly-sandstone
sample than for the carbonate sample. The best estimation is
given at 2.5 µm/voxel in the CT scan image of the carbonate
sample with a relative error of only 5%, followed by the estimations
of the shaly-sandstone sample at the SEM higher resolutions of 1.69
and 0.12 µm/pixel, where the relative error is 31% and 17%, respec-
tively (Fig. 12(b)). The equation for relative error that we use is
given by

Relative error =
core porosity−image or fractal porosity

core porosity

( )
× 100

(10)

Then, the results in the SEM images here suggest that they are an
alternative inexpensive way to calculate the fractal-scaling porosity
in the shaly-sandstone sample where it was able to capture the full
fractal character. On the other hand, the relatively poorer estimation
of the fractal-scaling porosity in the carbonate SEM images might
be due to the 2D SEM images did not capture of the full fractal
of the pore space in the carbonate rock.

4 Conclusion
In this study, we took digital images of a carbonate and a shaly-

sandstone sample with micro-CT scans and SEM techniques at mul-
tiple scales and resolutions. The systematic multiscale imaging plan
was used to capture the fractal behavior of pore space. The follow-
ing conclusions can be drawn:

• Pore size distribution seems to play an important effect on the
application of the fractal-scaling porosity. Our results suggest
for the SEM images that to get a good prediction from the
fractal-scaling porosity equation, the PSD needs to comply
with: (1) unimodal distribution, and (2) the PSD curve tail
should be a short. As a matter of fact, this equation can be
very useful to predict porosity at higher resolutions from cut-
tings, if the PSD curve shows short tail in a unimodal pore size
distribution.

• In the case of 3D micro-CT scan images: There is no clear cor-
relation between the PSD curve shape and the porosity predic-
tions using the fractal-scaling porosity equation. Hence, more
studies are needed for the prediction of the fractal-scaling
porosity for 3D images. So, we suggest for future work to
include explicitly the pore size distribution in the equation
instead of using a singular pore size.

• The fractal-scaling porosity calculated from the Vegas equa-
tion delivered interesting results. This equation is predicting
a good estimation of the porosity even in those cases where
full pore space cannot be captured by conventional imaging
techniques. However, care must be done while applying this
equation because the fractal character can be present at a spe-
cific scale that might not be at the scale of interest. That is why
this equation is only valid when the upper limit of self-
similarity is equal to or greater than the image size, and the
lower limit is lesser than or equal to the image resolution.
The results can vary from rock to rock, that is why sensible

multiscale imaging methodology should be designed to
capture important parameters such as PSD which might be
affected by the fractal and multifractal nature of the rock.

• In this study we used multiscale imaging methodology to
capture full pore spectrum and fractal behavior of pore
space. A resolution of 2.5 µm/voxel in the shaly-sandstone
sample and 2.01 µm/voxel in the carbonate sample provided
the best match with the core plug porosity in the CT scan
images. SEM images from the shaly-sandstone also provided
a relatively good match with the core plug porosity. Compre-
hensive imaging details and the comparison of pore size distri-
bution and fractal behavior of pore space at different scales
provide a platform for future fractal studies to select the
imaging scale and technique in these kinds of rock.

Results showed a great potential to scale porosity by this equation,
but this study is based on only in two samples. Extensive learning is
needed to validate and optimize the fractal-scaling porosity calcula-
tion and methodology. Future studies can include different rock
types and a bigger number of samples. Moreover, the effect of
pore size approximation can be reduced or eliminated by using
pore size distribution function rather than single or average pore size.
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