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A B S T R A C T

The convergence of Internet of Things (IoTs), mobile computing, cloud computing, edge computing and big data
has brought a paradigm shift in computing technologies. New computing systems, application models, and ap-
plication areas are emerging to handle the massive growth of streaming data in mobile environments such as
smartphones, IoTs, body sensor networks, and wearable devices, to name a few. However, the challenge arises
about how and where to process the data streams in order to perform analytic operations and uncover useful
knowledge patterns. The mobile data stream mining (MDSM) applications involve a number of operations for, 1)
data acquisition from heterogeneous data sources, 2) data preprocessing, 3) data fusion, 4) data mining, and 5)
knowledge management. This article presents a thorough review of execution platforms for MDSM applications.
In addition, a detailed taxonomic discussion of heterogeneous MDSM applications is presented. Moreover, the
article presents detailed literature review of methods that are used to handle heterogeneity at application and
platform levels. Finally, the gap analysis is articulated and future research directions are presented to develop
next-generation MDSM applications.
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1. Introduction

The escalation in mobile data was witnessed about 4000-fold over
the past decade (Cisco, 2015). Cisco, the big name in network infra-
structures, predicts that mobile data will grow up to 30.6 Exabytes (i.e.
30.6 billion Gigabytes) by the year 2020 (Cisco, 2015). This massive
amount of data will be generated by next generation of mobile systems
such as mobile IoTs, WSNs, BSNs, robotics, unmanned aerial vehicles,
and satellite systems to name a few (Rehman et al., 2016a). Consider-
ing this growth, mobile data will challenge the storage and processing
capacities of existing computing systems. Next-generation applications
will be developed to handle the data in streaming mode and on-the-fly
using in-memory data processing architectures before storing in large
scale distributed systems (Zhang et al., 2015). These trends will high-
light the importance of data stream mining applications which perform
in-memory analytic operations over streaming data in order to uncover
hidden knowledge patterns (Krishnaswamy et al., 2012). These knowl-
edge patterns will help understanding the underlying data and benefit
in decision making in personal and commercial applications.

Mobile streaming data which is the subset of overall big data is help-
ful in improving business operations across the enterprises (Rehman et
al., 2016b). For example, the analysis of mobile data streams generated
by remote vehicles help in optimizing supply chain management oper-
ations (Kargupta, 2016). Similarly, the mobile data streams collected
from remote customers is useful for creating personalized services for
online shoppers (Tan et al., 2016). The governments can also improve
the daily and emergency response management operations by analyzing
real-time mobile streaming data from citizen's mobile devices (Murphy,
2016). Despite wide applicability, it is quite challenging to decide about
where and when to process the streaming mobile data.

This article presents a thorough literature review of existing MDSM
applications and platforms in order to establish the state of the art and
find the future research directions. A few relevant literature reviews
were proposed in the past, however, they emphasized on other perspec-
tives. For example, the authors in Gaber et al. (2005), Parthasarathy
et al. (2007), Goel et al. (2010), Fuqiang (2011), Krishnaswamy et
al. (2012), Tsai et al. (2014), Gaber et al. (2014a), Nguyen et al.
(2015) and Chen et al. (2015) focused on general MDSM
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algorithms and lack the discussion on application-level and plat-
form-level issues. Similarly, in our previous study (Rehman et al., 2015),
we studied mobile data mining applications in batch mode execution
and static datasets. To the best of our knowledge, this is the first ar-
ticle that presents the review of MDSM applications and platforms in
MECC environments. The article is structured as follows. Section 2 pre-
sents the bibliometric analysis of mobile data mining and mobile data
stream mining publications which were indexed in web of science data-
bases. Section 3 presents a detailed discussion on execution platforms
for MDSM applications and the associated opportunities and challenges.
Section 4 presents the taxonomy of heterogeneous MDSM applications.
Section 5 presents a thorough literature review of methods for han-
dling heterogeneity in MDSM applications. Section 6 discusses the het-
erogeneity issues at platform level and Section 7 presents a detailed lit-
erature review of selected platforms for MDSM applications. Section 8
presents the gap analysis of existing literature and discusses the future
research directions. Finally, the article concludes in Section 9.

2. Bibliometric analysis of Web of Science databases

Research on mobile data mining is growing rapidly in recent years.
We performed a preliminary study on Web of Science (WoS) databases
(Web of science databases, 2016) by querying the string “mobile data

mining”. According to retrieved statistics, as of 28th January 2016,
the WoS databases indexed 1930 publications in last 27 years (from
1990 to 28th January 2016) from International Scientific Indexing
(ISI)-listed journals, conferences and workshop proceedings, and maga-
zines (See Fig. 1). There was no significant research on the topic from
1990 to 2002. Since Year 2002, the miniaturization of technologies
and on-board sensing technologies had geared-up the research on mo-
bile data mining. However, the major boom started from Year 2007
when both Google (Android (operating system), 2016) and Apple (Apple
iphone history, 2016) released their mobile operating systems.

According to Fig. 1, the number of publications rapidly increased till
2015 which shows that mobile data mining is continuously becoming
a hot research topic. In near future, we perceive a major shift towards
the research on mobile data mining due to rapid growth in far-edge mo-
bile devices for example smartphones, wearable devices, mobile IoTs,
and body sensor networks to name a few. The citation trends for the
topic “mobile data mining” are depicted in Fig. 2. The citation analy-
sis showed that publications on the topic of mobile data mining ob-
tained 9041 total citations from 8180 citing publications which were
indexed in WoS databases. The popularity of research on mobile data
mining is witnessed by the fact that 7935 citing publications were pub-
lished without self-citations by the respective authors. The average ci-
tations per publication is 4.68 with h-index as 40. Fig. 2 also depicts

Fig. 1. Year-wise publications (1990–2016).

Fig. 2. Year-wise citations (1990–2016).
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that arrival of mobile operating systems in 2007, boomed the research
on mobile data mining and it is still increasing day by day.

Since the main focus of this article is on mobile streaming data,
therefore, we further analyzed the bibliographic records from WoS data-
bases with another query string as “mobile data stream mining”. We
found 112 publications indexed by WoS databases from Year 1990 to
28th January 2016. These 112 publications were cited by 343 other
publications in WoS databases whereby 331 publications do not contain
any self-citation by respective authors. The average citation per pub-
lication is 3.06 with h-index as 11 which was lower when compared
with bibliometric analysis of “mobile data mining” because less num-
ber of publications on the topic. Likewise, the major boom in “mobile
data stream mining” was also witnessed after Year 2007 and it is rapidly
growing. Considering the fast growth of research in MDSM algorithms,
applications, and execution platforms, a thorough literature review is
presented in this article.

3. Mobile data stream mining platforms

The MDSM platforms facilitate in efficient execution of analytic com-
ponents. The literature review reveals that MDSM platforms (see Fig. 3)
were deployed in multiple topological settings (Abdallah et al., 2015;
Gaber et al., 2014b; Haghighi et al., 2013; Jayaraman et al., 2014a).
The underlying communication models include multiple computing de-
vices and systems having different form factors. These devices and sys-
tems include mobile devices, Internet, and intranet based application
servers and cloud data centers to name a few (Jayaraman et al., 2014b;
Kargupta et al., 2010; Mukherji et al., 2014). The topological settings of
MDSM platforms that are presented in this article are based on far-edge
mobile devices, far-edge to far-edge communication models, mobile and
immobile edge servers based communication models, mobile cloud com-
puting and mobile edge cloud computing systems.

3.1. Far-edge mobile devices

Far-edge mobile devices are defined as any portable system or device with
wireless communication interfaces and ability to produce or process data.
Smartphones, wearable sensors, wireless body sensor networks, smart
vehicles, and Mobile Internet of Things (IoTs) are a few examples of
far-edge mobile devices. Although modern far-edge mobile devices en-
able rich MDSM applications such as virtual reality, computer vision,
and multimedia applications using cloud augmented computational re-
sources (Satyanarayanan et al., 2015) however the execution of hetero-
geneous MDSM applications inside far-edge devices is a challenging task
(Rehman et al., 2015). Far-edge mobile devices usually contain limited
computational resources and battery power, therefore, MDSM applica-
tions consider these limitations for efficient process execution in mobile
environments (Krishnaswamy et al., 2012). Data stream mining compo-
nents, as shown in Fig. 4, are designed to be light-weight to unleash the
maximum utilization of on-board computational resources (Haghighi et
al., 2013).

Opportunities: The deployment of MDSM applications in far-edge de-
vices offers multi-fold opportunities. The MDSM applications help in re-
ducing outgoing data streams which in turn reduce network traffic as

Fig. 3. Taxonomy of MDSM platforms.

Fig. 4. MDSM applications in far-edge mobile devices.

well minimize the cost of communication in terms of bandwidth uti-
lization and GSM data plans (Jayaraman et al., 2014b). In addition,
the close proximity of data sources and computational components in
far-edge devices lowers the latency in execution time when compared
with offloading raw data streams in external environments such as
servers, cloud data centers, and grid computing resources (Jayaraman
et al., 2014a). The privacy preservation and local knowledge availabil-
ity are additional benefits of the deployment of MDSM applications
in far-edge devices (Arunkumar et al., 2015). The knowledge patterns
acquired after onboard execution of MDSM applications enable local
knowledge availability, reduce dependency on external systems for data
processing, and preserve the privacy of users' personal data.

3.2. Far-edge to Far-edge

The Far-edge to Far-edge (F2F) communication models are based on a
set of Far-edge devices that can communicate with each other directly with-
out any additional controlling mechanism or data communication point. For
example, F2F communication model (see Fig. 5) facilitates in a direct
communication between smart watch like Samsung Gear and a smart-
phone such as Samsung Galaxy S5 (Samsung unveils galaxy s5 and new
gear range, 2014). Similarly, multiple devices owned by a single user
such as wearable devices, smartphones, tablet PCs, and laptops can of-
fer a direct communication network through Bluetooth communication

Fig. 5. MDSM applications in F2F communication model.
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interfaces and do not require any other communication point such
as Wi-Fi router or local wireless hub (Gaber et al., 2014b). The F2F
communication model is adequate for single-user multi-device settings
where far-edge devices can initiate point-to-point and group commu-
nication sessions to execute MDSM applications collaboratively
(Framework, 2015).

Opportunities: In F2F settings, the closer far-edge mobile devices can
pool the computational resources to augment the resource-constrained
far-edge mobile devices with maximum execution support within Per-
sonal Area Network (PAN) (Wang et al., 2012; Rehman et al., 2015). In
addition, the F2F settings enable to distribute application logic among
different far-edge mobile devices for seamless application execution
(Li et al., 2015; Wang et al., 2012). For example, the far-edge mo-
bile devices with minute computational facilities perform data acqui-
sition operations and facilitate in data transfer operations in relatively
high-power far-edge mobile devices. The high-power far-edge mobile
devices execute MDSM application components and synchronize the
knowledge among other far-edge mobile devices in PAN (Gaber et al.,
2014b).

3.3. Mobile edge servers

Mobile Edge server is defined as any mobile device or mobile system
that resides at a one-hop wireless distance from far-edge mobile devices. A
mobile edge server enables data stream mining functionality by providing
mobile services to thin and thick far-edge mobile devices (see Fig. 6). The
thin far-edge mobile devices function as data acquisition and data trans-
fer elements, however, thick far-edge devices enable extra functionality of
light-weight data stream mining algorithms. Some examples of mobile edge
servers include frequently co-located far-edge devices such as personal
mobile devices (wearable devices, smartphones, Tablet PCs, and laptop
computers), far-edge mobile devices owned by co-workers, family mem-
bers, and friends, and shared far-edge mobile devices such as appliances
in smart home environments, and office equipment in smart co-working
spaces.

Opportunities: The co-location and co-movement of far-edge mobile
devices and mobile edge servers reduce dependency over large-scale
centralized systems (Kargupta et al., 2010). In addition, far-edge mo-
bile devices can offload resource-intensive tasks to mobile edge servers
without Internet connections by utilizing local communication chan-
nels such as wireless hub, Wi-Fi direct, and Bluetooth Low Energy in-
terfaces. Mobile edge servers may own and control by different users,
therefore, MDSM applications should be device-centric and mobile edge
servers sho-uld provide complete application clones to reduce the high
coupling. An added advantage of mobile edge servers is the elastic ser-
vice availability where far-edge device can offload data mining tasks
in multiple mobile edge servers using device-centric task scheduling

schemes (Rehman et al., 2016c). The addition of location aware con-
text features in MDSM applications can enable mobile distributed intel-
ligence where multiple far-edge mobile devices can sense and log the
data and act as both far-edge mobile devices and mobile edge servers.

3.4. Immobile edge servers

Immobile edge servers are defined as the physically static and resourceful
computing systems that reside at a one-hop wireless distance from far-edge
mobile devices. The immobile edge servers include cloudlets, micro data
centers, radio access network (RAN) servers in GSM networks, applica-
tion servers, and smart-routers in local area networks to name a few
(Bonomi et al., 2012; Satyanarayanan et al., 2015; Bahl, 2015; Ha and
Satyanarayanan, 2015). Similar to mobile edge servers, the commu-
nication model (see Fig. 6) facilitates thin/thick far-edge devices but
physically bounded nature of immobile edge servers enforce collabora-
tive execution models between far-edge mobile devices and immobile
edge servers (Ferreira et al., 2010). The collaborative execution model
needs to perform operational monitoring at far-edge mobile devices and
immobile edge servers for seamless execution of MDSM applications
(Sherchan et al., 2012).

Opportunities: The deployment of MDSM applications at immobile
edge servers helps in prolonging battery lifetime of far-edge mobile de-
vices (Satyanarayanan et al., 2015). In addition, the availability of high
computational resources reduces the application processing time hence
minimizes the latency (Bahl, 2015).

3.5. Mobile cloud computing system

Mobile cloud computing (MCC) systems are defined as the computing sys-
tems that provide heterogeneous computing, networking, and storage services
to far-edge mobile devices through large scale data centers. The applica-
tion models for mobile cloud computing based data stream mining ap-
plications involve thin and thick far-edge mobile devices (Altomare et
al., 2013) (see Fig. 7). For example, wearable devices directly upload
data stream in cloud data centers and data stream mining operations are
performed in cloud environments. Alternately, far-edge mobile devices,
such as in the case of CARDAP, perform data stream mining operations
locally using on-board computational resources and enable on-demand
data offloading when required (Jayaraman et al., 2014a).

Opportunities: The MCC systems offer many opportunities to aug-
ment MDSM applications. The MCC systems enable the provision of
highly available and hypothetically unlimited computing, networking,
and storage resources through large-scale data centers. The MCC sys-
tems enable multiple forms of services namely Storage-as-a-Services
(SaaS), Application-as-a-Services (AaaS), Network-as-a-Services (NaaS),

Fig. 6. MDSM applications in edge servers.
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Fig. 7. MDSM applications in mobile cloud systems.

and a large plethora of services at hardware, operating systems, and ap-
plication levels (Fernando et al., 2013; Sharma et al., 2016).

3.6. Mobile edge cloud computing system

Mobile edge cloud computing (MECC) systems extend the traditional
MCC services on the edge of the Internet through mobile and immobile
edge servers that reside at one-hop wireless distances from mobile devices.
The MECC systems enable distributed MDSM applications by replica-
tion of traditional infrastructure based cloud services in edge servers
as well as application partitioning at multiple levels (Ye et al., 2012).
The MECC based MDSM applications span over far-edge mobile devices,
edge servers, and traditional cloud computing infrastructures (Ha et al.,
2014) (see Fig. 8).

Fig. 8. MDSM applications in mobile edge cloud systems.

Opportunities: The MECC systems provide the scalable computing in-
frastructure which can help in the deployment of highly distributed
MDSM applications (Ye et al., 2012). Far-edge mobile devices in MECC
systems perform single-site and multiple-site computation offloading
(Simoens et al., 2013). In addition, the unlimited computational and
storage support from traditional infrastructure based cloud computing
systems enable to deploy and dedicate heterogeneous resources for edge
servers (Ortiz et al., 2015). The edge servers can further utilize the ac-
quired resources for seamless application execution. Edge servers also
perform the resource intensive computations to prolong battery life time
and minimize latency in MDSM applications (Drolia et al., 2013). Fur-
thermore, the MDSM applications are geographically distributed to min-
imize the load-balancing efforts in infrastructure based cloud (Luan et
al., 2015).

3.7. Challenges

The MDSM platforms need to address several challenges for efficient
application execution.

3.7.1. Resource constraints and light-weight data processing
The limitations in battery power, CPU, and memory are the main

bottlenecks in far-edge mobile devices, F2F communication models,
and mobile edge servers (Krishnaswamy et al., 2012; Gaber et al.,
2014a; Rehman et al., 2014). The challenge arises due to miniaturiza-
tion of computational elements and the constraints of designing small
size, light-weight, and less heat dissipating far-edge mobile devices.
Since far-edge devices offer limited computational and battery power
resources. Existing MDSM platforms adapt the execution behavior ac-
cording to resource availability and situation awareness which enforce
light-weight execution of application components and result in compro-
mising the quality of knowledge patterns (Haghighi et al., 2013).

3.7.2. Compute-intensive operations
Far-edge mobile devices produce continuous data streams therefore

MDSM application need to process or store whole data streams in order
to uncover maximum knowledge patterns. Although modern far-edge
devices come with sophisticated computational elements and enable
power saving functions, the heterogeneity in MDSM applications in-
crease the computational complexities of application components. Han-
dling the increased computational complexities together with high data
rates is still a challenging task (Gaber et al., 2014a; Rehman et al.,
2014).

3.7.3. Distributed application logic
The distribution of application logic among far-edge devices, edge

servers, and cloud data centers is a major challenge (Wang et al., 2012).
The MDSM applications need to be carefully designed to run the re-
source-intensive components in relevantly high-power far-edge devices
or cloud servers in order to avoid resource unavailability in low-power
far-edge mobile devices (Min and Cho, 2011). The application logic
could be distributed statically by deploying application components
across far-edge mobile devices, edge servers, and cloud servers. The sta-
tic distributions may introduce high coupling among application com-
ponents and the applications may fail in F2F and mobile edge servers
settings due to unavailability of computational and battery power re-
sources (Braojos et al., 2014; Liu et al., 2013). To handle this issue, the
application components could be distributed dynamically or adaptively,
however, existing literature still lacks the relevant studies.

3.7.4. Mobility
Far-edge mobile devices constantly move among different commu-

nication networks and switches between Wi-Fi, Blue tooth, and
GSM-based Internet connections. Keeping a track record of mobility
patterns
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for seamless application execution is a challenging task especially when
far-edge mobile devices continuously and rapidly switches among dif-
ferent communication interfaces (Ahmad and Ahmad, 2016). The mo-
bility becomes a major challenge when MDSM platforms operate in F2F
settings or the applications are executed using mobile edge servers. The
mobility of devices may also impact the privacy and security of device
data because far-edge mobile devices may need to upload data streams
to different mobile edge servers (Khan, 2015). In addition, heterogene-
ity in operating systems of mobile edge servers, programming environ-
ments, and communication interfaces requires extensive profiling of mo-
bile edge servers to provide optimal user experience.

3.7.5. Resource provisioning in MECC
The MCC and MECC communication models provide virtual ma-

chines (VMs) and containers (i.e. light-weight VMs) for application exe-
cution on the edge and cloud servers (Ahmad et al., 2015). Due to fast
mobility of devices and continuously streaming data, live VM migration
becomes very challenging because the time taken during migration must
remained lower than the time spent by far-edge mobile device in the
same communication network. The containers enable fast provisioning
of cloud resources however it requires a lot of programming efforts to
design containers for each MDSM application. In addition with VM mi-
gration, the saving and resumption of application states also becomes
challenging especially when the far-edge mobile devices continuously
switch among mobile edge servers (Ha and Satyanarayanan, 2015).

3.7.6. Dependency over internet connections
Far-edge mobile devices need persistent Internet connections for effi-

cient application execution using MCC and MECC communication mod-
els. To handle the connectivity issues, MDSM applications perform on-
board data management operations which may quickly hamper onboard
memory resources and result in application failure. Therefore, MDSM
applications must reduce dependency over Internet connection either
by executing application components locally in far-edge mobile devices
or by optimizing onboard data management schemes (Sherchan et al.,
2012; Jayaraman et al., 2014a).

3.7.7. Increased data communication and high latency
The continuous data production in far-edge mobile device increases

the network traffic between far-edge devices and edge servers and
cloud servers. In addition, large transfer of raw data stream increases
in-network data communication in cloud data centers. The increased

data communication results in high bandwidth utilization cost and extra
energy consumption for data transfer, data management, and data pro-
cessing in MCC and MECC systems (Ha and Satyanarayanan, 2015). The
cloud servers in MCC systems reside at multi-hop distance from far-edge
mobile devices which results in increased makespan in MDSM appli-
cations hence increases latency. In addition, high data rates increases
the size of data stream which impacts the data communication cost in
MDSM applications (Ha and Satyanarayanan, 2015).

In this section, we presented the execution platforms for MDSM
applications and discussed the relevant opportunities and challenges.
However, MDSM applications in itself need to deal with heterogeneous
components. We present a detailed taxonomic discussion on heteroge-
neous MDSM applications in next section.

4. Heterogeneity in MDSM applications

MDSM applications work in five steps: (a) mobile applications pro-
vide functionality to acquire data streams from one or more data
sources, (b) fusion of data stream from multiple sources results in in-
formation rich data stream representing multiple facets of each data
tuple, (c) preprocessing operations enable to improve the quality of
data stream by handling missing values, removing noise, and detect-
ing anomalies and outliers, (d) data stream mining operations are per-
formed for online knowledge discovery using different model-based and
model-less data mining algorithms, and (e) uncovered knowledge pat-
terns are summarized, integrated and managed for further utilization
using multiple knowledge management approaches. Fig. 9 presents the
taxonomy of heterogeneous MDSM applications.

4.1. Heterogeneity in data acquisition

Data acquisition in MDSM applications is a challenging task because
of massive heterogeneity in multiple aspects. Although data streams are
represented as subset of big data, however, it also need to handle few
big data properties such as volume, velocity, variety, variability, and ve-
racity.

4.1.1. Volume (Size)
MDSM applications need to handle continuous and unboun-ded data

streams, therefore, limiting the size of data stream is a tedious task
(Krishnaswamy et al., 2012). MDSM applications handle volume us-
ing few methods based on sliding windows and segmentation (Oneto
et al., 2015; Abdallah et al., 2015; Wu et al., 2013). The sliding win-
dows are used to sample a preset number of tuples at a given time in

Fig. 9. Taxonomy of heterogeneous MDSM applications.
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terval. The size of sliding windows may vary in different applications.
Sliding windows are used in two modes. The overlapping sliding win-
dows contain a portion of data which overlaps the previous window.
The overlapping is performed to improve the quality of data stream so
that the useful data items on the start and end of the windows should
not be wasted. The non-overlapping sliding windows also play a vital
role in some of the application areas. For example, mobile health ap-
plications with non-overlapping sliding windows are more useful than
overlapping windows. Similarly, data segmentation is used as an alter-
nate of sliding windows methods where the buffered data streams are
equally distributed in a finite number of chunks for lateral processing.

4.1.2. Velocity (speed)
The speeds of incoming data streams play a vital role in MDSM appli-

cations (Gaber et al., 2009). Velocity is the key challenge in mobile ap-
plications that increases latency. MDSM applications handle velocity in
two ways: (a) the applications collect raw data in centralized data stores
for lateral data processing and (b) the data is analyzed using in-mem-
ory operations before data storage. In the first approach, MDSM appli-
cation create a delay between data acquisition and knowledge discov-
ery. This strategy is more useful for analysis of historical data. The sec-
ond approach is more appropriate for real-time data analysis. However,
in this case, MDSM applications compromise on the quality of knowl-
edge patterns because the continuous entrance of data stream bounds to
one-time data processing (Gama, 2013).

4.1.3. Variety (number and type of data sources)
The variety property represents collection of the data stream from

heterogeneous data sources and multiple data formats (i.e. structured,
unstructured, and semi-structured) (Rehman et al., 2015; Swan, 2012).
MDSM applications collect the data stream from multiple data sources
including the on-board sensors (such as in IoT systems, wearable de-
vices, and smartphones) and off-board sensors such as accumulating
data from other devices or external environments. A thorough review
of the data sources is presented in Rehman et al. (2015) for interested
readers.

4.1.4. Variability (variable data production rates)
The data rates in MDSM applications vary according to the nature of

data sources and application requirements. Therefore, variability prop-
erty of data stream needs serious attention in MDSM applications in
order to deal with inconsistencies and uncertainties of incoming data
streams. In addition, MDSM applications sometimes need to handle con-
sistently continuous data streams and sometimes data streams come in
episodic patterns. This behavior increases the importance of variability
property of data streams.

4.1.5. Veracity (authenticity of data sources)
The veracity property shows that MDSM application need to collect

the data streams from trustworthy and reliable data sources. The verac-
ity property ensures that the data streams are collected in an authentic
way and the correctness of the data is guaranteed. Therefore, if properly
handled, the veracity property of the data stream improves the quality
and usefulness of collected data. Otherwise, inefficient handling of ve-
racity property may lead to degradation of quality of knowledge pat-
terns produced by MDSM applications.

4.2. Heterogeneity in data fusion

Data sources generate data stream with different sampling frequen-
cies and introduce heterogeneity in data fusion operations. For example,
the sampling frequency of accelerometer is absolutely different when
compared with a parallel data stream that is being sampled from the
camera.

4.2.1. Early data fusion
Early data fusion methods are applied when raw sensor data from

multiple data sources is sampled at the same data rate which is mea-
sured as a number of samples in each given time period (Oneto et al.,
2015; Mukherji et al., 2014; Khan et al., 2013; Wang et al., 2012).
For example, activity recognition applications that are sampling data
streams from accelerometer and GPS location sensor at the same time
with same sampling rate. The average sampling frequency of accelerom-
eter for activity recognition applications is recommended as 25HZ how-
ever user location do not change so frequently hence produce a lot of
redundant GPS data. Similarly, if the sampling frequency is set as 1HZ
the under-sampling of accelerometer produce inaccurate data hence af-
fects the results of data mining algorithms. Therefore early data fusion
strategies are helpful for MDSM applications with low sampling rates
but under perform in case of high variance in sampling rates of different
data sources.

4.2.2. Late data fusion
Late data fusion methods are applied after preprocessing the data

stream (Min and Cho, 2011; Sherchan et al., 2012; Jayaraman et al.,
2014a). The late fusion strategies helps in addressing the data redun-
dancy issues. The data stream from multiple data sources is sampled
at different sampling rates, preprocessed and the resultant data is inte-
grated to generate events data streams. For example, the accelerometer
samples the sensors at 25 Hz while the GPS is sampled at 1 Hz. The late
data fusion strategies first create sliding windows of 25 readings from
the accelerometer and performs the feature extraction from each sliding
window. The extracted features and GPS locations are integrated and
transformed into events. When compared with early data fusion, the late
data fusion strategies helps in data reduction and improving data qual-
ity.

4.2.3. Discriminatory features based data fusion
Far-edge mobile devices such as wireless sensor networks and mobile

IoTs may involve homogeneous sensing settings where multiple data
sources represent same information (Shoaib et al., 2014). However, sen-
sor configurations and placement may affect in quality data acquisition.
The discriminatory fusion methodologies involve the identification of
quality data sources and fusion of discriminatory features which may
help in improving the quality of uncovered knowledge patterns.

4.3. Heterogeneity in data preprocessing

The preprocessing operations enable to improve the quality of the
data stream. The heterogeneity in preprocessing operations arise when
MDSM applications need to handle missing values, remove noise, and
detect anomalies and outliers from the data stream.

4.3.1. Noise filtration
Noise refers to the inclusion of extraneous and irrelevant information

in mobile data streams (Khan et al., 2010). The data streams becomes
noisy due to multiple reasons such as improper placement of sensors,
wrong sensor configurations, and inducement of environmental noise
among others.

4.3.2. Outliers detection
Outliers refer to misreported data points where the acquired data

streams do not fully represent the desired data streams. Numerous clas-
sification and clustering methods are used to detect and remove the out-
liers (Hromic et al., 2015).
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4.3.3. Anomaly detection
Anomaly detection refers to the presence of anomalous data points

in acquired data streams (Suarez-Tangil et al., 2015). The anomaly de-
tection helps in improving the quality of knowledge patterns.

4.3.4. Feature extraction
Massive data streams need to handle efficiently. The feature extrac-

tion methods help in extracting features (also known as attributes) from
incoming data streams (Siirtola and Roning, 2013; Yang et al., 2014;
Oshin et al., 2015). Feature extraction methods convert data streams
from unstructured and semi-structured formats into structured data for-
mats.

4.3.5. Sparsity handling
Highly sparse data may hamper the performance of far-edge mobile

devices in some cases (Wang et al., 2013). Similarly, low sparsity also
degrades the performance of data stream mining applications. There-
fore, handling sparsity and maintaining an adequate level of sparsity in
data stream mining applications help in improving the quality of knowl-
edge patterns.

4.4. Heterogeneity in data stream mining

Data stream mining algorithms vary in terms of frequent pattern
mining, classification, and clustering schemes and the learning models
vary in terms of supervised, unsupervised, semi-supervised, and deep
learning schemes.

4.4.1. Learning model heterogeneity
The learning models represent the machine learning algorithms and

used to support the clustering, classification, and frequent pattern min-
ing algorithms for knowledge discovery. The heterogeneity in learning
model arises in terms of learning type, learning model, and learning
modalities. The training type varies in terms of supervised, unsuper-
vised, semi-supervised, and deep learning models. The supervised learn-
ing models are trained using labeled data streams wherein the learn-
ing models adopt the recognition behaviors in order to predict and
classify the future data streams (Cord and Cunningham, 2008; Dogan
and Tanrikulu, 2013). On the contrary, the unsupervised learning mod-
els are trained without labeling the data streams wherein the learn-
ing model adopt the behavior and group the future events on the ba-
sis of similarities and dissimilarity measures (Huang et al., 2014). The
semi-supervised learning models are initially trained with labeled data
streams, however, it adopts with unlabeled data for future recogni-
tion (Settles, 2012; Goldberg et al., 2009; Triguero et al., 2015). The
deep learning models are the multi-level implementations of super-
vised, semi-supervised, and unsupervised learning models wherein data
streams are segregated on the basis of preset criteria set by application
designers and separate learning models are developed for each subspace
of the data stream (Martens, 2010).

MDSM applications train learning models either online or offline.
The online learning models are trained inside far-edge mobile devices,
edge servers, and cloud data centers using live data streams. However
offline learning models are trained using already collected data (Liang
et al., 2014). Although online learning models are computationally com-
plex, the knowledge patterns produced by online learning models are
more accurate and can cater the evolving data streams (Gomes et al.,
2012a). Alternatively, the offline learning models produce less accuracy
and become personalization-agnostic because of training with historical
data (Khan et al., 2013).

4.4.2. Mining algorithm heterogeneity
MDSM algorithms are categorized as classification, clustering, and

frequent pattern mining algorithms.
Classification: The classification algorithms use supervised, semi-su-

pervised, and deep learning models in order to classify the input data
streams. The classifiers use single class recognition or multi class pre-
diction models depending upon the application requirements. The clas-
sification algorithms vary in terms of (a) universal model, wherein a
global model is used for the whole data stream; (b) personalized model,
wherein the local models are used depending upon the needs of users,
applications, and machines; and (c) adaptive model, wherein the classi-
fication process starts from a global model which is retrained as a per-
sonalized model (Lu et al., 2012). Despite various modeling techniques,
the classification algorithms posses the data labeling overhead either
manually or automatically, therefore, the automation of classification
algorithms is a laborious and time consuming process.

Clustering: The clustering algorithms use unsupervised learning mod-
els and cluster data points on the basis of similarities and dissimilari-
ties (Abdallah et al., 2015; Haghighi et al., 2013; Suarez-Tangil et al.,
2015). The measurement of similarities and dissimilarities depends on
cluster centroids and the attribute values of data points. The data clus-
tering algorithms in MDSM applications vary in terms of subspace clus-
tering, density based, centroid-based, hierarchical, subspace, spectral,
and constrained based methods. The choice of these techniques solely
depends upon the type and nature of data to be clustered as well as
the application requirements. However, clustering algorithms are not
widely adopted in far-edge mobile device-based data stream mining sys-
tems due to high and sometimes unlimited computational requirements.

Frequent Pattern Mining: The Frequent pattern mining algorithms are
applied over similar sets of items (Agrawal et al., 1994; Rehman et al.,
2014). The frequent pattern mining algorithms mines the frequently
occurring itemsets with a preset frequency threshold named as min-
imum support (minsup). The frequent itemsets are further mined to
find the associations among itemsets and establish the association rules
among them. The rule establishment is performed using another thresh-
old called minimum confidence (minconf). The itemsets and their asso-
ciation rules vary in simple, closed, maximal, rare, sporadic and utility
based itemsets. These algorithms are generally designed to mine only
frequent patterns and/or to find associations among different itemsets.
Overall research in frequent pattern mining varies from basic patterns to
multilevel and multidimensional patterns, to extended patterns for data
sets and streams.

4.5. Heterogeneity in knowledge management

The integration, storage, and utilization of knowledge patterns in
MDSM applications take place at various places.

4.5.1. On-device
The on-board storage refers to the storage capabilities of far-edge de-

vices that are used to store locally uncovered knowledge patterns (Wang
et al., 2013; Yoon, 2013). In addition, the synchronized knowledge pat-
terns for personalized user experience are also stored on-board far-edge
mobile devices.

4.5.2. on-edge
The service provision from edge servers enables data reduction (Ye

et al., 2012; Yoon, 2013). The location-aware aggregation of knowledge
patterns facilitate in reduced data transfer in remote environments and
minimize bandwidth utilization.
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4.5.3. Remote
Conventionally knowledge patterns are integrated and stored in re-

mote data stores which include cloud data center, clusters, grids, and
application servers. Remote knowledge aggregation is useful for global
knowledge discovery (Ferreira et al., 2010).

In this section, we presented the detailed taxonomic discussion on
heterogeneous MDSM applications. In the next section, we present a
thorough literature review of proposed methods for heterogeneous
MDSM applications.

5. Handling heterogeneity in MDSM applications

5.1. Methods for handling data acquisition heterogeneity

Number and type of data sources vary depending upon the nature
of data stream mining systems. The application specific systems facili-
tate only essential data sources, however, the number of data sources
in generic systems varies. For example, the application specific sys-
tems such as mobile activity recognition system mostly use accelerom-
eters, GPS receivers, and magnetometers (Oneto et al., 2015; Khan et
al., 2013; Yang et al., 2014). Alternately, generic systems like CAR-
DAP, OMM, and MobiSens caters bundles of sensory and non-sensory
data sources to enable generality and support wide range of applica-
tions (Jayaraman et al., 2014a; Haghighi et al., 2013; Wu et al., 2013).
The data sources include homogeneous and heterogeneous type of data
sources. Homogeneous data sources are mainly used when same type of
data is produced by multiple data sources such as multiple accelerome-
ters deployed in wireless body sensor networks (Shoaib et al., 2014). Al-
ternately heterogeneous data sources are used when MDSM applications
need to collect and analyze data stream from different data sources. The
heterogeneous data sources produce integrated and multi-dimensional
data stream. Systems such as MineFleet and MobiSens utilizes hetero-
geneous data sources and produce multi-format information-rich data
streams (Kargupta et al., 2010; Wu et al., 2013).

The data streams are collected from both on-board and off-board
data sources (Pasricha et al., 2015; Abdallah et al., 2015). Similarly,
the systems are designed as first-person data stream mining systems
whereby personal data is analyzed and personalized knowledge discov-
ery is performed (Gu et al., 2011; Mukherji et al., 2014). Alternatively,
the data stream mining systems integrate the data streams from multi-
ple users/devices/data sources for the production of generalized knowl-
edge patterns (Pasricha et al., 2015; Jayaraman et al., 2014b). MDSM
systems handle multiple data types ranging from numerical and textual
data to multimedia and event data streams. Literature review reveals
that most of the systems cater only the numerical data streams such as
accelerometer axis and GPS coordinates, however, a few systems such
as MSM (Mukherji et al., 2014) and OMM (Haghighi et al., 2013) sup-
ports multiple data formats. These data types finally lead towards the
nature of data streams as structured, unstructured, and semi-structured
data tuples.

To handle the resource constraints, MDSM systems adopt different
data collection strategies which differ in terms of collection mode, and
amount and nature of collected data. The data streams are either col-
lected offline for lateral data processing or immediately processed us-
ing either on-board computational resource, offloaded to other compu-
tational system/infrastructures such as edge servers, cloud servers, or
perform collaborative data processing by harnessing computational re-
sources from nearer similar devices/systems. MDSM systems either col-
lected raw data streams or initially process and reduce the data streams
to lower on-board resource consumption as well as bandwidth utiliza-
tion cost for data offloading.

In addition, some studies reported the representative and context
aware data collections strategies as well. The representative data col

lection strategies are useful when multiple data sources generate same
data stream representing the same knowledge. The representative data
collection strategies work best in crowd-sensing like application sce-
nario and useful in handling highly redundant data streams. The con-
textual information about user states, locations, and behavior helps in
inferring current situations of users which in turn facilitate in data
reduction whereby data stream mining applications only collect the
data stream when a specific situation occurs. CAROMM utilizes con-
text aware data collection strategies based on fuzzy situation inference
model which infer current situation of users (Sherchan et al., 2012).
Table 1 presents the detailed literature review of methodologies for han-
dling data acquisition used by selected studies.

5.2. Methods for handling data fusion heterogeneity

Literature review reveals that early data fusion is adopted in data
stream mining systems which collect data streams from multiple data
sources and aggregate for further processing (Srinivasan et al., 2014;
Braojos et al., 2014). Early data fusion results in redundant and noisy
data streams therefore introduce inefficiency and extraneous resource
consumption in mobile devices. A few studies use late data fusion strate-
gies whereby collected data streams are preprocessed in parallel before
data fusion (Min and Cho, 2011; Jayaraman et al., 2014a). The late data
fusion strategies consume onboard computational resources however it
improves the data quality for lateral data processing. Late data fusion is
useful when preprocessed data is integrated from multiple persons and
different data sources. Although discriminatory data fusion strategies
are also proposed by the researchers but existing literature still lacks its
application in MDSM systems (Shoaib et al., 2014).

Data fusion strategies either work as online methods where all com-
putations are performed in memory or work offline where data streams
are stored onboard before data fusion (Oshin et al., 2015; Yoon, 2013).
The online strategies are effective and improve system performance in
terms of latency and local storage I/O operations. However, in-mem-
ory computations sometimes result in data loss and reduced data quality
when dealing with large and complex data streams. Offline data fusion
facilitates in improved data quality and complete data streams however
quickly hampers onboard storage resources. Table 2 presents a detailed
literature review of data fusion heterogeneity in MDSM applications.

5.3. Methods for handling data preprocessing heterogeneity

MDSM applications adopt various data preprocessing methods for
sliding windows based data stream segmentations, feature extraction,
data conversion from unstructured to structured formats, signal analy-
sis, noise and data filtration, privacy and security, dimension reduction,
outliers' detection and many others.

The selection of preprocessing methods depend upon the nature
of data streams and application requirements. For example, overlap-
ping sliding windows based segmentations are used for activity recogni-
tion applications (Suarez-Tangil et al., 2015). Similarly, anonymization
and encryption techniques facilitate in privacy and security features of
MDSM applications (Mukherji et al., 2014).

Similar to data fusion operation, data preprocessing operations are
performed in offline and online mode (Lu et al., 2012; Yuan and
Herbert, 2014). The offline preprocessing methods are applied over his-
torical data which is acquired and stored using onboard storage. The on-
line data preprocessing operations are performed in memory. However,
in-memory computations become challenging due to variant complexi-
ties of data preprocessing algorithms. Table 3 presents the detailed lit-
erature review of preprocessing methods.
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Table 1
Data acquisition heterogeneity.

Reference
Data
Sources Types Name Users Data Types Nature Mode

Oneto et al. (2015) 2 Off-
board

Accelerometer and
Magnetometer

Multiple Numeric/Textual Structured Offline

Pasricha et al.
(2015)

1 Onboard Application Log Files NA Textual Structured Online

Abdallah et al.
(2015)

72 Onboard Accelerometer Multiple Numeric/Textual Structured Offline

Suarez-Tangil et al.
(2015)

Numerous Onboard Sequence of System Calls NA Textual Structured Online

Boukhechba et al.
(2015)

1 Onboard GPS Receiver Multiple Textual Structured Offline

Haghighi et al.
(2013)

2 Off-
board

ECG Sensors, Accelerometers Single Numerical Structured Offline

Gomes et al.
(2012b)

1 Onboard Accelerometer Multiple Numerical Structured Online

Liu et al. (2012) 1 Off-
board

Accelerometers Multiple Numerical Structured Online

Khan et al. (2010) 5 Onboard Accelerometer Multiple Numerical Structured Offline
Mukherji et al.
(2014)

3 Onboard Application Log Files, Call
Records, Location

Single Textual Structured Offline

Abdallah et al.
(2012)

72 Onboard Accelerometer Single Numerical/Textual Structured Offline

Sidek et al. (2014) Numerous Off-
board

ECG Sensors Multiple Continuous Signals Unstructured Offline

Khan et al. (2013) 5 Onboard Accelerometer Multiple Numerical Structured Offline
Srinivasan et al
(2014)

3 Onboard Application Log Files, Call
Records, Locations

Multiple Textual Structured Offline

Siirtola and Roning
(2013)

1 Onboard Accelerometer Multiple Numerical Structured Offline

Siirtola and Röning
(2012)

1 Onboard Accelerometer Multiple Numerical Structured Offline

Yang et al. (2014) 1 Onboard Accelerometer Multiple Numerical Structured Offline
Lu et al (2012) 1 Onboard Microphone Multiple Audio Unstructured Offline
Donohoo et al.
(2014)

Numerous Onboard GPS/user Interactions Multiple Numerical/Textual Structured Offline

Oshin et al. (2015) 1 Onboard Accelerometer Multiple Numerical Structured Offline
Rai et al. (2012) 1 Onboard Accelerometer Multiple Numerical Structured Offline
Wang et al. (2012) 7 Off-

board
5 Accelerometers and 2 RFID Multiple Numerical Structured Offline

Gaber et al. (2014b) Numerous Both Multiple Data Sources Multiple Both Both Both
Ortiz et al. (2015) 1 Onboard Camera Multiple Images Unstructured Offline
Braojos et al. (2014) 9 Both Accelerometer Multiple Numerical Structured Offline
Min and Cho (2011) Numerous Both Accelerometer and

Magnetometer
Multiple Numerical Structured Offline

Stahl et al. (2012) Numerous Both Multiple Data Sources Multiple Both Both Both
Jayaraman et al.
(2014b)

13 Both Multiple Multiple Both Both Online

Wu et al. (2013) 8 Onboard Multiple Multiple Both Both Offline
Sherchan et al.
(2012)

Numerous Both Multiple Data Sources Multiple Both Both Offline

Jayaraman et al.
(2014a)

Numerous Onboard Multiple Data Sources Multiple Both Both Online

Lin et al. (2013) 1 Onboard GPS Receiver Multiple Numerical Structured Offline
Yuan and Herbert
(2014)

2 Both Accelerometer and Gyroscope Multiple Numerical Structured Both

Talia and Trunfio
(2010)

Numerous NA Numerous Multiple NA NA Offline

Kargupta et al.
(2010)

Numerous Onboard On-board Vehicle Sensors Multiple Both Both Online

Yoon (2013) 2 Onboard Accelerometer and GPS Multiple Numerical Structured Online
Gu et al. (2011) 2 Off-

board
Accelerometer and Camera Multiple Both Both Offline

5.4. Methods for handling data mining heterogeneity

MDSM applications use different learning models based on super-
vised, unsupervised, semi-supervised and deep learning approaches.
Currently, most of the learning models are trained offline in desktop
PCs, servers, or cloud systems. Some studies trained learning models in
mobile devices as well however online training of learning models in

side mobile environments is a challenging task. The challenge arises be-
cause training types of supervised, unsupervised, semi-supervised and
deep learning approaches differ. In the case of supervised learning mod-
els, the training data stream needs to be labeled/annotated so that learn-
ing models can accurately recognize and predict the future similar data
streams.

However, the labeling of data streams differs in manual, automatic,
and observational settings. The manual labeling is performed when
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Table 2
Data fusion heterogeneity.

Reference
Nature of Fused
Data

Data
Fusion

Fusion
Mode

Oneto et al. (2015) Raw Early Offline
Abdallah et al.
(2015)

Raw Early Offline

Haghighi et al.
(2013)

Raw Early Offline

Khan et al. (2010) Raw Early Offline
Mukherji et al.
(2014)

Raw Early Offline

Abdallah et al.
(2012)

Raw Early Offline

Sidek et al. (2014) Preprocessed Early Offline
Khan et al. (2013) Raw Early Offline
Srinivasan et al
(2014)

Raw Early Offline

Donohoo et al.
(2014)

Raw Early Offline

Oshin et al. (2015) Raw Early Offline
Rai et al. (2012) Raw Both Offline
Wang et al. (2012) Raw Early Offline
Gaber et al. (2014b) Raw Both Online
Ortiz et al. (2015) Raw Early Online
Braojos et al. (2014) Raw Early Online
Min and Cho (2011) Preprocessed Late Online
Stahl et al. (2012) Raw Both Online
Jayaraman et al.
(2014b)

Raw Early Online

Wu et al. (2013) Raw Early Offline
Sherchan et al.
(2012)

Preprocessed Late Offline

Jayaraman et al.
(2014a)

Raw Late Online

Lin et al. (2013) Raw Early Online
Yuan and Herbert
(2014)

Raw Early Online

Talia and Trunfio
(2010)

Raw Early Offline

Kargupta et al.
(2010)

Raw Early Online

Yoon (2013) Raw Both Online
Gu et al. (2011) Raw Early Offline

each segment/chunk of the data stream is manually annotated however
this process is quite laborious and needs a lot of efforts. An alternate
methodology is the adoption of automatic application driven labeling
where the applications are configured at the time of data collection and
the resultant data streams are annotated accordingly. The automatic la-
beling is more promising as compared to manual labeling in order to
reduce the training efforts. The observational settings further enhance
the automatic labeling by allowing users to intervene in data labeling
process. In this approach the learning models are initially trained in au-
tomatic settings however in the case of discrepancies users are allowed
to intervene by manually labeling the data streams.

The selection of learning algorithms significantly impacts the per-
formance of MDSM applications in order to perform energy-efficient,
cost-effective, highly accurate data stream mining operations. For de-
ployment in mobile environments, the internal structures of learning
models and their processing behavior play an important role in de-
vising the computational complexity of learning models. In essence,
MDSM applications need to perform online data stream mining oper-
ations on continuous data streams. Therefore, most of the studies ei-
ther separate the training and recognition processes or use shallow data
structures like arrays, lists, or pruned trees for improved efficiency.
Learning in MDSM applications is performed to achieve multiple objec-
tives which include system level and application level performance en-
hancements. The system level performance objectives include battery
life enhancements in mobile devices and performing offloading deci

sions in mobile cloud settings. However the majority of methods used
learning models to enhance application performance in terms of change
detection from uncertain data streams, model personalization, predic-
tion and optimization of next locations, online activity recognition, find-
ing emerging patterns, to name a few.

Once the learning models are trained and deployed, the MDSM ap-
plications process the incoming data streams in both online and offline
mode. The offline data streams are stored in the onboard local storage
and processed whenever the feasible environment for data stream pro-
cessing is available. The online data streams are directly processed ei-
ther using on-board computational resources or offloaded in other de-
vices and systems in F2F, mobile-edge, MCC, or MECC settings. Ma-
jority of the studies in literature used classification algorithms due
to low computational complexities and easy deployment as compared
to clustering and frequent pattern mining algorithms. The classifica-
tion algorithms are used for multiple purposes that include onboard
classifications, on-wireless node classification, distributed classification,
multi-level classification, and light-weight classification. A few studies
implemented light-weight clustering and association rule mining algo-
rithms which show the practicality of clustering and frequent pattern
mining algorithms in mobile environments. Table 4 presents a detailed
literature review of data stream mining heterogeneity in MDSM applica-
tions.

5.5. Methods for handling knowledge management heterogeneity

Since MDSM applications process data streams at multiple devices
and systems, therefore, the integration and summarization of knowl-
edge patterns needs careful attention. MDSM applications usually run
the knowledge discovery operations such as learning and recognition
and knowledge management operations such as integration, summariza-
tion, and storage of knowledge patterns at the same device or system.
However, few studies present the synchronization/transfer of knowl-
edge patterns among different systems whereby the knowledge patterns
are stored either in local storage such as onboard data stores in far-edge
mobile devices or in remote data stores such as those in cloud data
centers and edge servers. The hierarchical knowledge management fa-
cilitate in enabling both local and remote storage settings. Hierarchi-
cal knowledge management strategies enable local storage at a lower
level where far-edge mobile devices manage the knowledge patterns us-
ing on-board settings. At the second level, multiple devices transfer the
knowledge patterns to nearer edge servers which integrate and manage
local data stores. Finally, multiple edge servers in different geographical
settings transfer the knowledge patterns to centralized cloud data cen-
ters which enable knowledge integration for a global view.

Knowledge visualization is another challenge that MDSM applica-
tions need to handle efficiently. MDSM applications provide the visu-
alization functionalities either on-screen in far-edge mobile devices or
provide a web interface for remote visualization. On-screen visualiza-
tion in far-edge mobile devices is handy for real-time applications how-
ever limited screen size and energy intensive operations quickly ham-
pers the on-board computational and battery resources. The knowledge
management strategies work in both online and offline mode. The on-
line knowledge management strategies integrate, summarize and visual-
ize the knowledge patterns before storage and lateral aggregation if re-
quired. However, offline strategies first integrate, summarize, and store
the knowledge patterns. In such cases, the on-demand visualization is
enabled whereby knowledge patterns are visualized when required. For
example, the historical activity patterns of a user or noise level in a par-
ticular city. Table 5 presents the detailed literature review of knowledge
management heterogeneity in MDSM applications.

In this section, we presented a detailed literature review of hetero-
geneous MDSM applications. In the next section, we present a thorough
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Table 3
Data preprocessing heterogeneity.

Reference Data Preprocessing Method Type of Preprocessing Algorithm Mode Preprocessing Objective

Oneto et al.
(2015)

Sliding Windowing with 50% Overlap Time and Frequency Domain Feature Extraction Offline Extraction of 561 Features

Abdallah et al.
(2015)

Clustering Sliding Windows KNN Clustering Online Extraction of Features from
Clusters and Sub-clusters

Suarez-Tangil
et al. (2015)

Sliding Windowing with 50% Overlap Histogram Features Online
/
Offline

Feature Extraction for
Anomaly Detection

Haghighi et al.
(2013)

ECG signals converted using mobile
health open source framework

ECG signals to numeric value conversion Offline Feature Extraction

Khan et al.
(2010)

Feature Extraction Methods Noise Filtering and Feature Extraction Offline Feature Extraction from Non-
linear Space

Abdallah et al.
(2012)

Clustering of Sliding Windows Cluster-based Features Online Extracted Features from
Clusters

Mukherji et al.
(2014)

Anonymization and Encryption Privacy and Security Offline User De-identification

Sidek et al.
(2014)

QRS Selection/Normalization Feature Selection and Normalization Offline Feature Extraction from ECG
Data

Khan et al.
(2013)

SMA, LDA, and KDA Noise Filtering and Feature Extraction Offline Feature Extraction from Non-
linear Space

Srinivasan et al
(2014)

Anonymization and Encryption Privacy and Security Offline User De-identification

Siirtola and
Roning (2013)

Feature Extraction Statistical Feature Extraction Methods Offline Features Extraction from
Accelerometer Data

Siirtola and
Röning (2012)

Feature Extraction Statistical Feature Extraction Methods Offline Features Extraction from
Accelerometer Data

Yang et al.
(2014)

Feature Extraction Time and Frequency Domain Features Offline Feature Extraction

Lu et al (2012) Feature Extraction Statistical and Acoustic Features Offline Feature Extraction from Voice
Data

Donohoo et al.
(2014)

Principle Component Analysis Feature Extraction Offline Feature Extraction Onboard
Sensors

Oshin et al.
(2015)

Feature Extraction Mathematical Functions for Feature Extraction Offline Feature Extraction from
Accelerometer Data

Rai et al.
(2012)

Feature Extraction Statistical Feature Extractions Offline Feature Extraction

Wang et al.
(2012)

Dynamic Time Wrapping Template Matching Offline Template Matching

Gaber et al.
(2014b)

Numerous Numerous Both Multiple

Ortiz et al.
(2015)

Sift/Surb/ORB Feature Extraction Method Online Feature Extraction

Braojos et al.
(2014)

Time-domain and Frequency domain Feature Extraction Method Online Feature Extraction

Min and Cho
(2011)

Segmentation Activity-based Classification Offline Segmentation

Stahl et al.
(2012)

Numerous Numerous Both Multiple

Jayaraman et
al. (2014b)

Sliding Windows with 50% Overlap FFT and Light-weight Analysis Online Multiple

Wu et al.
(2013)

Sliding Windowing for Segmentation NA NA NA

Sherchan et al.
(2012)

Change Detection Light-weight Clustering Online Quality Data Collection

Jayaraman et
al. (2014a)

Light-weight Algorithms Light-weight Clustering Online Quality Data Collection

Yuan and
Herbert (2014)

Sliding Windowing with 50% Overlap
and Feature Extraction

66 Time Domain and Frequency Domain Features
Extracted through Statistical Methods

Online Multi-user Data Collection

Yoon (2013) Filtration methods are applied Filtration Online Data Filtration
Gu et al.
(2011)

Sliding Windows based Segmentation NA Offline Improving Data Quality

literature review of methods that are used to handle platform level het-
erogeneity for MDSM applications.

6. Handling heterogeneity in data stream mining platforms

The heterogeneous devices and systems offer variable computational
and energy resources to MDSM applications. Therefore, platform level
heterogeneity is handled using adaptation methods, application parti-
tioning and computation offloading schemes, and data transfer strate-
gies.

6.1. Adaptation

The adaptations are made at system-level to adapt the generic pro-
cessing behavior of data stream mining applications. Alternately, the
adaptation strategies work at algorithm level by altering the execu-
tion behaviors of data stream mining algorithms. The adaptations are
made using multiple parameters such as data rate, memory, CPU, con-
text aware features, learning models, and specific event. The data rate
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Table 4
Data stream mining heterogeneity.

Reference
Learning
Mode

Learning
Type Learning Algorithm Learning Objective Mining Mode

Learning
Model Training Mode

Data Mining
Algorithm Purpose

Oneto et al.
(2015)

Offline SL Multiple Learning Algorithms Battery Life Enhancement Online Yes Offline Feed Forward
Selection

Classification

Pasricha et al.
(2015)

Online SL Q-learning Battery Life Enhancement Online Yes Offline/Adaptive Bayesian Classifier Classification

Abdallah et
al. (2015)

Both SL/UL Incremental/Active Learning Handling Concept Drift Online/Offline Yes Offline Ensemble
Classifier

Classification

Suarez-Tangil
et al. (2015)

Both SL ONB, J48, K-means Offload or not to Offload Online Yes Both Naive Bayes,
J−48, K-means

Classification/Clustering

Boukhechba
et al. (2015)

Online SL Habit Tree Data Structure To Optimize and Predict
Next Location

Online Yes Online Association Rule
Mining (ARM)

ARM

Haghighi et
al. (2013)

Online SL/UL Multiple Learning Algorithms On-board Data Stream
Mining

Online Yes Online ARM,
Classification,
Clustering

Light-weight Data
Mining

Gomes et al.
(2012b)

Online SL Naive Bayes Model Personalization Online Yes Online Naive Bayes Classification

Liu et al.
(2012)

NA SL/UL Multiple Learning Algorithms Proof of concept for
Mobile Data Mining

Online Yes NA Mobile WEKA
library

Classification,
Clustering, ARM

Khan et al.
(2010)

Offline SL Feed Forward Neural
Network

On-board Multi-sensor
Activity Recognition

Online Yes Offline Feed Forward
Selection

Classification

Mukherji et
al. (2014)

Online SL Tree based To Perform Context
Prediction

Online Yes Online Sequential Pattern
Mining

Sequential Pattern
Mining

Abdallah et
al. (2012)

Both SL/UL Incremental/Active Learning Clustering Online Yes Offline K-means Clustering

Sidek et al.
(2014)

Both SL NB, BN, and MLP ECG Signal Classification
for Biometric
Identification

Online Yes Online BN, MNN Classification

Khan et al.
(2013)

Offline SL Feed Forward Neural
Network

On-board Multi-sensor
Activity Recognition

Online Yes Offline Feed Forward
Selection
Algorithm

Classification

Srinivasan et
al (2014)

Online SL Tree based To Perform Context
Prediction

Online Yes Online Sequential Pattern
Mining

Sequential Pattern
Mining

Siirtola and
Roning
(2013)

Offline SL Decision Tree and QDA Model Training Online Yes Offline Decision Tree and
QDA

Classification

Yang et al.
(2014)

Offline SL SVM Model Training Online Yes Offline Support Vector
Machine

Classification

Lu et al
(2012)

Offline SL Gausian Mixture Model Speaker Identification Online Yes Offline GMM, K-means,
and EM

Classification

Donohoo et
al. (2014)

Offline SL LDA, LLR, SVM, VRL Model Training Online Yes Offline LDA, LLR, SVM,
KNN

Classification

Oshin et al.
(2015)

Offline SL EHMS Model Training Online Yes Online EHMS Classification

Rai et al.
(2012)

Online SL/ UL K-means and SVM Higher Order Feature
Extraction/ Model
Training

Online Yes Online Support Vector
Machine

Classification

Wang et al.
(2012)

Offline UL Emerging Patterns Activity Recognition Offline Yes Offline Emerging Patterns Classification

Gaber et al.
(2014b)

Offline SL Hoefding Tree Distributed Classification Online Yes Offline Emerging Patterns Classification

Ortiz et al.
(2015)

Online SL NA NA Online No NA K-means Distributed Clustering

Braojos et al.
(2014)

Offline SL NFC Classification Online No Offline Nero Fuzzy
Classifier, DT

Multi-level
Classification



UNCORRECTED PROOFTable 4 (Continued)

Reference
Learning
Mode

Learning
Type Learning Algorithm Learning Objective Mining Mode

Learning
Model Training Mode

Data Mining
Algorithm Purpose

Min and Cho
(2011)

Offline SL SVM, NB, DT Classification Online Yes Offline SVM, NB, DT Multi-level Classification

Stahl et al.
(2012)

Offline SL Hoefding Tree Distributed Classification Online Yes Offline Hoefding Tree Distributed
Classification

Jayaraman et
al. (2014b)

NA NA NA NA NA NA NA Light-weight
Algorithms

Classification,
Clustering, ARM

Dou et al.
(2011)

NA NA NA NA Online No NA K-means Distributed Clustering

Wu et al.
(2013)

Offline SL EM Classification Offline Yes Offline HMM Classification

Eom et al.
(2015)

Online SL Instance based Learning,
Naive Bayes, Single Layer
Perceptron

Classification Online Yes Online Instance based
Learning, Naive
Bayes, Single
Layer Perceptron

Machine Learning based
Dynamic Task
Scheduling

Sherchan et
al. (2012)

Online UL Light-weight Clustering Change Detection Online Yes Online Light-weight
Algorithms

Light-weight Data
Mining

Jayaraman et
al. (2014a)

Online SL/UL Light-weight Clustering and
Classification

Local Analytics Online Yes NA Light-weight
Algorithms

Light-weight Algorithms

Lin et al.
(2013)

NA NA NA NA online No NA K-means Clustering of GPS Data

Yuan and
Herbert
(2014)

Both SL/UL NB, DT, Nearest Neighbor,
Neural Network

Universal and
Personalized Model
Development

Online/Offline Yes Both NB, DT, Nearest
Neighbor, Neural
Network

Personalized Activity
Classification

Hassan et al.
(2015)

Online SL MLP, Linear Regression, SVM,
Decision tree

Model Training for
Predicting Offload-able
Computations

Online Yes Online MLP, LR, SVM, DT Compute/Resource-
intensive Methods
Classification

Talia and
Trunfio
(2010)

Offline NA Numerous NA Offline NA Offline Numerous Multiple

Kargupta et
al. (2010)

NA NA NA NA Online No NA Correlation and
Distance Matrices
Computations

Change Detection

Yoon (2013) NA NA NA NA Online No Online Multi-level
Deployment of
ARM Algorithms

ARM

Gu et al.
(2011)

Offline UL Emerging Patterns Prediction of Emerging
Patterns

Online Yes Offline Emerging Patterns ARM
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Table 5
Knowledge management heterogeneity.

Reference Local DM Remote DM On-screen Visualization Remote Visualization Knowledge Management

Pasricha et al. (2015) Y N Y N Online
Abdallah et al. (2015) Y N Y N Online
Boukhechba et al. (2015) Y N N N N
Haghighi et al. (2013) Y Y N N Online
Gomes et al. (2012b) Y N Y N Online
Mukherji et al. (2014) Y N N N N
Abdallah et al. (2012) Y N N N N
Srinivasan et al (2014) Y N N N N
Yang et al. (2014) Y N Y N Online
Gaber et al. (2014b) Y N Y N Online
Min and Cho (2011) Y N N N N
Stahl et al. (2012) Y N Y N Online
Jayaraman et al. (2014b) Y Y N Y Both
Dou et al. (2011) N N Y N N
Wu et al. (2013) N Y N Y Offline
Sherchan et al. (2012) Y Y Y Y Offline
Jayaraman et al. (2014a) Y Y Y Y Offline
Lin et al. (2013) N N N NA Online
Yuan and Herbert (2014) Y N N NA Both
Talia and Trunfio (2010) N Y Y N Offline
Kargupta et al. (2010) Y Y Y Y Online
Yoon (2013) Y Y NA NA Online

based adaptive strategies work by monitoring the velocity of incoming
and outgoing data streams. These adaptive data stream mining algo-
rithms adjust the execution behavior according to data rates. The mem-
ory and CPU based adaptation strategies work by profiling the compu-
tational requirements of data stream mining algorithms and adjusting
the execution behavior accordingly. The context-aware adaptive strate-
gies models different situations and adjust the execution behavior of
data stream mining systems when a relevant situation is inferred. The
learning model based strategies consider the execution history of data
stream mining applications, learn the execution patterns, and alter the
execution behavior according to predicted settings. Event based strate-
gies work by adopting the execution behavior of data stream mining al-
gorithms accordingly when a specific event occurs. Table 6 presents a
detailed literature review of adaptation strategies in MDSM platforms.

6.2. Application partitioning

Distributed MDSM applications are partitioned to run on multiple
devices and systems. The application partitioning strategies are con-
trolled by either far-edge devices, cloud servers, or edge servers. MDSM
applications are either partitioned dynamically at runtime after assess-
ing the resource requirements of the running processes or the applica

tion is partitioned in fixed form where specific application components
run at designated devices and systems.

The applications are partitioned either on the basis of data or com-
putations. The data based application partitioning is performed by exe-
cuting data parallel strategies where partial data streams are offloaded
and executed in various devices and systems. The computation based
partitioning is performed by measuring the computational requirement
and granularity of data stream mining algorithms. In computation based
partitioning partial tasks such as methods, classes, programs, and ap-
plications are executed in various device and systems. Application par-
titioning is performed either offline or online. The offline partitioning
is performed before or after the application execution however the on-
line partitioning is performed during the application execution process.
Table 7 presents the detailed literature review of application partition-
ing methods in MDSM platforms.

6.3. Computation offloading

Existing computation offloading schemes are based on different com-
munication models that vary in terms of client-server settings, vir-
tual machine migration, and mobile agent configurations (Khan, 2015).
In client-server based settings, offloading components reside on the

Table 6
Adaptation heterogeneity.

Reference System Level Algorithm Level
Data
Rate CPU Memory Context Learning Model Event

Pasricha et al. (2015) Y N N Y N N Y Y
Abdallah et al. (2015) N Y N N N N Y N
Boukhechba et al. (2015) N N N N N N Y N
Haghighi et al. (2013) Y Y Y Y Y Y N N
Gomes et al. (2012b) N Y N N N N Y N
Lu et al (2012) N N N N N N Y N
Gaber et al. (2014b) N Y Y Y Y N N N
Stahl et al. (2012) N Y Y Y Y N N N
Jayaraman et al. (2014b) Y Y Y Y Y N N N
Eom et al. (2015) N N N N N N Y N
Sherchan et al. (2012) Y Y Y Y Y Y Y N
Jayaraman et al. (2014a) Y Y Y Y Y Y Y N
Yuan and Herbert (2014) Y N N N N N Y N
Kargupta et al. (2010) N Y N N N N N N
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Table 7
Application partitioning heterogeneity.

Reference Device Cloud Server Edge Type
Partitioning
Mode Model Granularity Form

Wang et al. (2012) Y NA NA NA Offline Data-based Static Data Fixed
Gaber et al. (2014b) Y N N N Offline Data-based Static Data Fixed
Ortiz et al. (2015) Y N NA NA Offline Data-based Static Data Fixed
Braojos et al. (2014) Y N N N Offline Computation-

based
Static Learning

Model
Fixed

Min and Cho (2011) Y N N N Offline Data-based Static Data Fixed
Stahl et al. (2012) Y N N N Offline Data-based Static Data Fixed
Jayaraman et al.
(2014b)

Y Y Y Y Offline Data-based Dynamic Data Fixed

Dou et al. (2011) Y N N N NA Data-based Static Data Fixed
Sherchan et al. (2012) Y Y N N Offline Computation-

based
Static Application Fixed

Jayaraman et al.
(2014a)

Y Y N N Offline Computation-
based

Static Application Fixed

Lin et al. (2013) N N Y N Offline Data-based Static Data Fixed
Yuan and Herbert
(2014)

Y Y Y NA Offline Data-based Static Data Fixed

Hassan et al. (2015) Y No No No Online Method-based Dynamic Method Dynamic
Talia and Trunfio
(2010)

N N Y N Offline Data-based N N N

Yoon (2013) Y Y NA NA Offline Data-based Static Method NA

mobile device that offloads the computations after performing collab-
orative cost-benefit analysis for computation offloading favorability.
Cost-benefit analysis is performed to label the local and remote compu-
tations for application partitioning (Liu et al., 2013) and resource-hun-
gry computational tasks are offloaded to the nearest or designated sur-
rogates (servers) in the cloud. The main concern with server-based com-
putation offloading is the requirement for pre-installed cloud services in
ad-hoc cloud environments. In virtual machine migration-based commu-
nication models, the memory image of a central cloud server is migrated
in cloudlets, which lowers the communication cost as well as overall
bandwidth utilization in highly-dense mobile cloud computing environ-
ments (Satyanarayanan et al., 2009). However, live virtual machine mi-
gration introduces latency in service provisioning (Ahmad et al., 2015).
In addition, the preservation and resumption of application states dur-
ing migration is also a major challenge (Satyanarayanan et al., 2009).
In mobile agent communication models, the application clones are mi-
grated in cloud environments to augment the mobile devices with cloud
resources. However, mobile agent management and clone security are
the main issues in mobile agent-based mobile cloud computing environ-
ments (Khan, 2015).

Computation offloading schemes function with single-site and mul-
tiple-site surrogate settings (Abolfazli et al., 2014). In the case of sin-
gle-site surrogates, the application components are offloaded to the
same server in the mobile cloud computing architecture. However, this
setting develops a tightly bounded relationship between mobile appli-
cations and their corresponding surrogates. Therefore, the dynamic mo-
bility increases the latency in distant mobile devices (Abolfazli et al.,
2014). On the other hand, multiple-site surrogates work in two ways.
Either application clones are provided at multiple sites using live vir-
tual machine migration methods or different program components are
executed at various surrogates. In addition, the virtual machine migra-
tion problem also brings the parallelization challenge, which needs to
be addressed in multiple-site surrogates (Abolfazli et al., 2014). The pro-
grams should be effectively partitioned and mapped into graph data
structures that are further optimized for seamless application execu-
tion in mobile cloud computing environments. In addition, adaptive
computation offloading schemes consider program execution contexts
and previous program instances and devise optimal execution strategies
accordingly. Adaptive computation offloading schemes consider vari-
ous parameters, including network connections and bandwidths, work

loads, architectural heterogeneity and task deadlines. However, the fa-
vorable offloading decision becomes complex due to varying band-
width, resource availability and network dynamics (Abolfazli et al.,
2014).

Computation offloading schemes in mobile cloud computing envi-
ronments are categorized as either static or dynamic (Kumar et al.,
2013). In static schemes, one-time cost-benefit analysis is performed and
offloading-favorable computations are offloaded in mobile cloud com-
puting environments. Dynamic computation offloading schemes initially
perform a cost-benefit analysis, implement online profiling, tag the of-
floadable program components during application execution, perform
application partitioning for local and remote execution, and offload
the computation offloading favorable components in mobile cloud com-
puting environments. Computation offloading is performed at different
granularity levels. At the coarse-grained level, entire applications are of-
floaded in mobile cloud computing environments. The coarse-grained
level computation offloading is well-suited when cloud resources are
available at one-hop distances from mobile devices. However, in the
case of cloudlets, live virtual machine migration may incur higher cost
in terms of latency. On the other hand, the complete migration of en-
tire application states in edge servers increases local computation costs.
At fine-grained levels, computation offloading is performed at various
application code levels, including method, task, object, thread, class
and program levels. These different granularity levels increase the de-
cision complexity of computation offloading. Optimal computation of-
floading strategies involve multiple offloading objectives, including per-
formance enhancement, energy gain, reduced execution time, minimum
bandwidth utilization cost, and data reduction, among others. Table 8
presents the detailed literature review of existing computation offload-
ing methodologies for MDSM platforms.

6.4. Data transfer

MDSM applications transfer data streams among devices and sys-
tems in multiple ways. The simplest data stream transfer strategies are
based on transferring raw data streams. The raw data streams are either
stored on-board or directly collected from data sources. Sometimes the
MDSM applications perform initial data processing and transfer the in-
termediate data to other systems and sometimes the data stream min-
ing algorithms are executed onboard in light-weight processing modes
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Table 8
Computation offloading heterogeneity.

Ref. Mode Type Parameters Offloading Devices Servers Objective

Wang et al. (2012) Offline Static NA Single Single Pattern Mining
Gaber et al. (2014b) Offline Static NA Single Multiple Collaborative Mining
Ortiz et al. (2015) Online Static Execution Time Multiple Multiple Collaborative Clustering
Stahl et al. (2012) Offline Static NA Single Multiple Collaborative Mining
Jayaraman et al. (2014b) Both Dynamic Connectivity Multiple Multiple Multi-objective
Eom et al. (2015) Online Dynamic Classifier Single Multiple Dynamic Scheduling
Sherchan et al. (2012) Offline Static NA Multiple Single Reduced Data Collection
Jayaraman et al. (2014a) Offline Static NA Multiple Single Reduced Data Collection
Hassan et al. (2015) Online Dynamic Multiple Single Multiple Reduced Latency and Energy Gain
Talia and Trunfio (2010) N N NA Multiple Multiple Offline Remote Data Analysis
Yoon (2013) Offline Static NA Multiple Single Multi-layer Data Mining

and resultant knowledge patterns are transferred to other devices and
systems for aggregation and global knowledge view.

The data streams are transferred in push-based, pull-based, on-de-
mand, or opportunistic settings. In push based strategies, the mobile de-
vices simply transfer the data stream to connected devices and systems.
In pull based strategies, remote systems like cloud servers monitor the
connections and periodically collect the data stream from mobile de-
vices. The on-demand strategies work when the remote servers issue a
query for data processing or sensing to connected mobile devices which
in turn perform the required operations and communicate the results
back to requesting server. On-demand data transfer strategies are use-
ful for mobile crowd sensing applications. The opportunistic data trans-
fer strategies monitor the connected devices and systems and find the
feasible environment for pushing or pulling data streams among con-
nected devices and systems. Smart data reduction is another approach
for data transfer where mobile devices perform the data stream mining
operations and the results are communicated only if there is a signifi-
cant change in the data stream. Table 9 presents the summary of data
transfer strategies in MDSM platforms.

In this section, we presented a thorough literature review of meth-
ods that are used to handle the heterogeneity in MDSM platforms.

7. Literature summary

This section presents the summarized view of major contributions
relevant to MDSM platforms. Table 10 presents the comparison of these
contributions.

7.1. MineFleet

Minefleet is a distributed data stream mining platform for vehicular
data stream analysis (Kargupta et al., 2010). The data stream mining
components reside in an onboard computing system that continuously
mine the data streams which is acquired from on-board vehicle sensors.

Minefleet is based on five components: (a) Onboard hardware compo-
nent enables data acquisition form multiple onboard sensors and pro-
vides the communication interface for data transfer, (b) onboard data
stream mining and management module enables the execution of vari-
ous data stream mining and statistical data analysis algorithms and in
case of unusual behaviors in vehicle data the module enables to con-
nect with remote MineFleet servers located in centralized data center,
(c) MineFleet server collects the analytics results from vehicles to per-
form further analysis, (d) MineFleet web services provide application
programming interface (API) to access and view the analyzed data from
MineFleet servers and (e) privacy module manages the end-to-end pri-
vacy in MineFleet system.

Minefleet uses light-weight algorithms to handle online data streams
and performs in-memory computations for finding the distance met-
rics, invariance, correlation, and inner product between data stream el-
ements. In addition, MineFleet performs change detection using cor-
relation matrix to uncover the unusual behavior from vehicular data
streams. Overall, MineFleet is designed to reduce the onboard data stor-
age cost and data communication cost in wireless networks. In addition,
the system processes the high-volume data streams on resource con-
strained onboard computing system. However, it is purposefully built
for vehicular data stream mining applications and still lacks the gener-
ality for execution of heterogeneous data stream mining applications.

7.2. OMM

Open Mobile Miner (OMM) is a situation aware and adaptive data
stream mining system for mobile devices (Haghighi et al., 2013). OMM
architecture enables six main components: (a) data source component
generates data stream from four different sources which include on-
board sensors, controlled data streams generated by OMM applications,
recording and replaying data stream using CSV files, and web services,
(b) data stream capture component acquires data stream from different

Table 9
Data transfer heterogeneity.

Reference Push-based Pull-based On-demand Opportunistic Smart Data Reduction

Wang et al. (2012) Yes N N N N
Gaber et al. (2014b) Yes N N N N
Ortiz et al. (2015) Yes N N N N
Stahl et al. (2012) Yes N N N N
Jayaraman et al. (2014b) Yes Yes Yes N N
Eom et al. (2015) Yes N N N N
Sherchan et al. (2012) Yes N N N N
Jayaraman et al. (2014a) Yes N Yes N Yes
Lin et al. (2013) Yes N N N N
Hassan et al. (2015) Yes N N Yes N
Talia and Trunfio (2010) Yes N N N N
Yoon (2013) Yes N N N N
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Table 10
Strengths and weaknesses of existing MDSM platforms.

Platform Model Strengths Weaknesses

MineFleet MCC - Distributed - Difficult to
generalize

- Onboard data
mining

- Supports only
vehicular onboard
applications

- Data reduction
at mobile end

- Highly coupled
applications

- Reduced
bandwidth
utilization

- Dependency over
Internet connections

OMM Far-edge - Mobile-based - Compromises on
knowledge quality

- Adaptive data
processing

- Does not supports
heavy-weight data
processing

- Light-weight
algorithms

- Privacy concerns

- Component-
based
architecture

CARDAP MCC - Distributed - Does not performs
runtime load-
balancing

- Onboard data
processing
- Data reduction
- Light-weight
data mining
algorithms

MOSDEN MCC - Distributed - Lacks general
heavy-weight
components

- Data filtration - Only focuses on
data acquisition and
data processing
heterogeneity

- On-demand
access to data

MARS Far-edge - Mobile-based - Lacks generality
- Adaptive - Does not handles

heterogeneity
- Specific to
activity
recognition
applications

STAR Far-edge - Mobile-based - Lacks generality
- Adaptive - Does not supports

heavy-weight data
processing

- Specific to
activity
recognition

- Does not handles
heterogeneity

PDM F2F - Mobile-based - Lacks heavy-weight
data processing

- Distributed - Does not uses
cloud services

- Agent-oriented - Does not handles
heterogeneity at
application level

- Light-weight
data processing
- Scalable

CARA MCC - Distributed - Lacks in generality
- Context-aware
data analysis

- Lacks load-
balancing

- Specific to
activity
recognition

- Does not handles
heterogeneity at
platform level

- Provides
universal
learning models

Table 10 (Continued)

Platform Model Strengths Weaknesses

SOA MCC - Cloud-based
data analytics
services

- Does not handles
heterogeneity in
MDSM applications

MobiSens MCC - Distributed - Does not handles
heterogeneity at
platform level

- Generic
sensing
architecture
- Specific to
activity
recognition
applications
- Thin Clients
- Two-tier back-
end architecture

MSM Far-edge - Mobile-based - Lacks support from
cloud servers and
other devices

- Enables
general
components for
association rule
mining

Mobile
Miner

Far-edge - Mobile-based - Lacks support from
cloud servers and
other devices

- Supports
wearable and
IoT devices
- Mines co-
occurrence
patterns

Three-
tier

Hierarchical - Multi-layer
architecture

- High Coupling

- Offers data
mining services
at multiple
levels

- Lacks in handling
heterogeneity

data sources and input either directly into light-weight data mining al-
gorithms or redirects through adaptation engine if OMM is operating
in adaptive mode, (c) resource monitor component tracks the memory,
CPU, and battery power in mobile devices for seamless execution and
adaptations, (d) a library of light-weight data stream mining algorithms,
(e) a library to enable visualization facilities in mobile devices, and (f)
adaptation engine to execute resource and situation aware adaptation
strategies. OMM provides light-weight classification, clustering, and as-
sociation rule mining algorithms however the adaptation strategies are
occasionally required to handle the resource constraints in mobile de-
vices. Situation-aware adaptation strategies maintain a set of predefined
situations which are inferred from periodically collected contextual in-
formation. Alternately, resource-aware adaptation strategies control the
data rate and execution behaviors of data stream mining algorithms
on the basis of incoming/outgoing data rates, and memory and CPU
availability. OMM is a first general purpose mobile based adaptive data
stream mining system but the light-weight execution of data mining al-
gorithms enforces the compromises over the quality of knowledge pat-
terns such as level of accuracy of classifiers, the number of clusters pro-
duced by clustering algorithms or association rules found by association
rule mining algorithms.

7.3. CARDAP

Context aware real time data analytics platform (CARDAP) is a dis-
tributed data stream mining system for mobile crowd sensing applica-
tions (Jayaraman et al., 2014a). CARDAP architecture offers five key
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components: (a) data stream capture component facilitate in data ac-
quisition from range of on-board and off-board, physical and virtual,
and sensory and non-sensory data sources, (b) analytic component facil-
itates in deploying application specific data stream mining algorithms
such as activity recognition components, (c) open mobile miner to facil-
itate generic execution of light-weight data stream mining algorithms,
(d) data sink component to push data to external data stores such as
cloud based data storage services, and (e) storage and query component
to store results of local analytics for lateral on-demand querying. CAR-
DAP uses three data transfer strategies from mobile devices to cloud
data stores. First, it uses naive approach to uploading raw data stream in
the cloud environments. Second, it uses local analytics approach where
locally stored analytics results can be acquired by cloud data stores us-
ing on-demand querying. The Third approach enables smart data reduc-
tion where analytics results are transferred in case of significant change.

7.4. MOSDEN

Mobile sensor data engine (MOSDEN) is a component based platform
to facilitate opportunistic sensing applications in mobile crowd sensing
environments (Jayaraman et al., 2014b). MOSDEN architecture is based
on seven components: (a) plugins are the software applications that in-
dependently facilitate in interfacing with different data sources, (b) vir-
tual sensors represent the abstraction layer of physical data sources,
(c) processors components facilitate in development of learning models
and mining algorithms, (d) storage components facilitate in data stor-
age from virtual sensors and processors components, (e) query manager
component answers and resolves queries from external sources, (f) ser-
vice manager establishes the persistent and non-persistent data transfer
strategies from MOSDEN clients to external data sources and (g) API
components provide application programming interfaces to external ap-
plications for data access from MOSDEN clients. The component based
design of MOSDEN offers generality and programmability of the pro-
posed architecture. In addition, local data processing and interaction
with plethora of physical and virtual data sources helps in the deploying
a wide range of mobile opportunistic sensing applications.

7.5. MARS

Mobile activity recognition system (MARS) process the data stream
acquired from onboard mobile phone accelerometer (Gomes et al.,
2012b). MARS extracts statistical features and labels the data stream
with certain physical activities such as walking, running, and standing.
MARS builds learning model from the training data and uses it for fu-
ture activity recognition. The system facilitates in model personalization
using dynamic model adaptation for personal data streams. The incre-
mental learning method is adapted and models are regenerated to ac-
commodate changes in the data stream.

7.6. Star

Stream learning for mobile activity recognition framework, named
as star, addresses the issue of change detection from streaming data
for accurate activity classification (Abdallah et al., 2015). The frame-
work uses incremental learning approach to handling concept drift
over evolving streaming data. The star framework offers three compo-
nents to build learning models, perform activity recognition, and to
adapt with evolving data streams. First, the modeling component builds
the initial sets of clusters using supervised learning approach. Later-on
fine-grained clusters are obtained using unsupervised learning models.
Second, the recognition components perform activity recognition over

sliding windows data using modeling components. Third, adaptation
component performs active online learning if the recognition compo-
nent outputs a new activity. The star handles concept drift effectively
however its functionality is limited to mobile activity recognition appli-
cations.

7.7. PDM

Pocket data mining (PDM) is an agent-oriented distributed data
stream mining system for mobile devices (Gaber et al., 2014b). PDM ar-
chitecture is based on three generic software agents. First, mobile agent
miners (AM) are used to implement the data stream mining algorithms
in mobile devices. The AMs also facilitate in batch learning models to
handle the historical data. Second, mobile agent resource discoverers
(MRD) perform resource and task discovery operations throughout the
ad-hoc network. MRD matches the data sources with stream mining al-
gorithms controlled by AMs and it makes a decision about which AMs
should run in given mobile devices. Third, mobile agent decision mak-
ers (MADM) travel through the ad-hoc network, collect the results of
processed data streams, and perform on-the-fly knowledge integration.
PDM applications work in following steps. First, a mobile device initi-
ates a data mining task by establishing an ad-hoc network and activating
the MRDs. The MRD discovers resources, matches the data sources, de-
cides which AMs should be executed on connected devices, and runs the
data mining tasks. Finally, the MADM travels through ad-hoc network
and integrates the acquired results. PDM offers seamless distributed data
stream mining, however, continuous executions of mobile agents in-
crease energy and resource consumption in mobile devices.

7.8. CARA

Context aware real-time assistant (CARA) provides a cloud based
data analytics tool for mobile activity recognition applications (Yuan
and Herbert, 2014). CARA works by downloading a global learning
model for activity recognition from cloud to mobile device. The mobile
device collects raw data stream, performs segmentation with 50% over-
lapping sliding windows and computes features from each sliding win-
dow. CARA distinguishes the static and dynamic activities using thresh-
old-based method wherein threshold is defined on the intensity of ac-
celerometer signals. CARA recognizes static activities through threshold
based method however it implies classification algorithms such as deci-
sion trees, Bayesian networks, nearest neighbors, and neural networks
to predict dynamic activities. CARA components run on both mobile
devices and cloud servers. The mobile devices download the universal
model and perform classification operations. The new unclassified data
streams are stored temporarily in local storage and uploaded to cloud
servers when a Wi-Fi connection is available. The cloud servers provide
blob storage, enables queuing mechanism, and utilize multiple nodes to
produce best classification models for each user.

CARA implements five types of queues: (a) data queue for client-con-
troller communication, (b) result queue to select suitable model for each
individual user, (c) register queue to register new users, (d) task queue
to control the task execution in universal node, and (e) model queue to
retrain the classification models and update the relevant information.
CARA designates four types of nodes in the cloud environments: (a) con-
troller node controls the flow of incoming data, (b) machine learning
node facilitates the model training process, (c) universal node aggre-
gates the data from all users and builds a universal classifier and (d)
evaluation node selects the most suitable classifier for individual user.
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7.9. SOA

Service oriented architecture (SOA) is based on client-server com-
munication model where mobile devices request for specific data min-
ing services and cloud servers provide relevant web services (Talia and
Trunfio, 2010). The proposed SOA architecture provides three types
of components: (a) data providers, (b) mobile clients, and (c) mining
servers. The data providers are the applications that generate the data
streams and mobile clients are the requesting applications that require
some specific mining tasks to be performed at mining servers.

7.10. MobiSens

MobiSens provides a generic sensing architecture for large-scale ac-
tivity recognition (Wu et al., 2013). MobiSens architecture is based
on client server communication model where mobile devices work as
clients and back-end server architecture works at two tiers. Major com-
ponents at mobile client include data widgets to sense raw data streams,
data aggregators to buffer and store data streams until the availability of
Internet connections, and sensing profile pulling component that pulls
the sensing profiles of MobiSens applications to configure list of sensors,
sampling data rates, strategy for data sampling, interval between data
push operations and many others. On the server side, MobiSens compo-
nents perform data storage, indexing, and heavy weight data processing
at the first tier. On the second tier, MobiSens server facilitates in remote
applications such as life logging, community sensing etc.

7.11. Mobile WEKA

Mobile WEKA is a general purpose tool developed to show the mo-
bile implementation of WEKA data mining library (Liu et al., 2012).
The mobile application facilitates in performing classification, cluster-
ing, and association rule mining operations. Mobile WEKA shows the
proof of concept for mobile devices as data mining platforms, however,
it lacks the generality and addressing heterogeneity at the application
level.

7.12. MSM

Mobile Sequence Miner (MSM) provides a general purpose tool for
mining association rules from frequent activity sequences (Mukherji et
al., 2014). MSM collects the data stream for application usage, location,
and call logs to infer the context and sequence of activities. MSM runs
as a back-end service in android mobile phones to continuously monitor
context and find frequent sequences. MSM application execute in three
steps: (a) preprocessing operations on incoming data streams are per-
formed to find the interleaved context items, (b) sequence databases of
interleaved context events is generated, and (c) frequent sequences are
generated from sequence databases.

7.13. MobileMiner

MobileMiner facilitates in mining co-occurrence patterns from GPS
locations, call logs, and application logs to infer the contextual infor-
mation (Srinivasan et al., 2014). MobileMiner runs as a back-end ser-
vice in Tizen applications which run in multiple platforms such as
wearable devices, home appliances, and mobile IoTs. MobileMiner ex-
tracts the time-stamped baskets (chunks of the data stream) using the
base basket extractor component whereby co-occurring contexts are
stored in each basket. MobileMiner uses base rule miner component
which mines stream of extracted baskets and uncovers underlying co-oc-
currence patterns. MobileMiner enables some other components such

as app usage filter and app rule miner to retrieve application usage
relevant context baskets and find co-occurring patterns. MobileMiner
communicates with external devices and systems using pattern retriever
component that retrieves overall and detailed patterns. The predic-
tion engine component in MobileMiner retrieves prediction information
from overall patterns.

7.14. Three-tier data mining architecture

Researchers proposed MDSM architecture that works at three lay-
ers (Yoon, 2013). The small-scale micro-controller devices at the lowest
layer enable the sensing operations, perform row-level instance based
learning, and execute data filtration methods. The filtered data streams
are transferred to user smartphones which find the local patterns using
onboard computational resources. In addition, the smartphones corre-
late local patterns to form regional patterns. The cloud servers at the
highest layer integrate the regional patterns from multiple smartphones
to generate the global patterns. The proposed layered architecture is
suitable for many application area such as patient health monitoring
systems, community sensing, and mobile crowd sensing applications.

In this section, we presented the summary literature of few recently
proposed MDSM platforms. In the next section, we present the detailed
gap analysis of existing research work in order to articulate the future
research directions for data stream mining in mobile edge cloud com-
puting systems.

8. Gap analysis and future research directions

The heterogeneity needs to be controlled at both application and
platform level.

8.1. Controlling heterogeneity at application level

Ideally, MDSM applications should collect and process data stream
using on-board memory to minimize the efforts in data storage and re-
duce the latency which occurs due to I/O operations. However, com-
plexities introduced by data acquisition strategies and resource con-
straints in mobile devices are the main bottlenecks in performing
in-memory application execution. For high volume and high speed data
streams, the chunking and segmentation operations are performed using
fixed size sliding windowing methods. The settlement of windows size is
challenging because of varying complexities and operational behaviors
(e.g. nature of data structures such as arrays, trees, graphs, data storage
in random, sorted, unsorted, compressed arrangements, traversal behav-
iors such as search strategies) of data preprocessing and mining algo-
rithms. In addition, fixed size windows may create latency when data
streams enter with variable data rates. In addition, MDSM applications
need to handle the heterogeneity for the acquisition of data stream from
authentic data sources, in known data formats, however, the existing lit-
erature lack to address these issues.

The data fusion strategies increase/decrease the lateral complexities
in stream execution process. Existing literature mainly presents early
data fusion strategies which increase the complexity in the system. The
raw data collection from multiple data source induces noise, outliers,
and missing values which increase the level of sparsity in high-dimen-
sional data streams. Therefore, dimension reduction, anomalies and out-
liers detection, and sketching operations are used to preprocess and im-
prove the quality of data streams. Late data fusion helps in reducing
the complexities by performing initial data preprocessing and fusing re-
duced, noise free, and complete data points. Discriminatory data fusion
strategies help in improving the performance of the system by select-
ing useful attributes of the data stream that help in uncovering quality
knowledge patterns. However discriminatory data fusion may result in
compromises over the quality of knowledge patterns such as accuracy
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of classifiers, the number of itemsets produced by frequent pattern min-
ing algorithms, and the number of clusters in data clustering algorithms.
Therefore more research is needed for late and discriminatory data fu-
sion by keeping a balance between quality of knowledge patterns and
resource consumption of MDSM applications.

Although data preprocessing operations vary according to applica-
tion requirements and objectives of data mining algorithms however ex-
isting literature mainly considered feature extraction and noise filtra-
tion as preprocessing methods. Existing literature still lacks in prepro-
cessing methods for dimensionality reduction, outliers, and anomalies
detection methods. The dimension reduction methods could help in re-
ducing the computational complexities of MDSM applications by pro-
jecting high dimensional complex data streams in low dimensional fea-
ture vectors. In addition, dimension reduction methods help in reducing
the sparsity which increase the computational complexity in MDSM ap-
plications. Highly sparse data streams need to construct large learning
models and consume more computational resources, therefore, effective
reduction of high dimensional data reduce the resource consumption.

MDSM applications should perform all data mining operations
in-memory. However, most of the existing studies first preprocess and
store the data stream before training the learning models. Few stud-
ies performed in-memory training in batch mode or updated model
from generalized to personalized models, however, existing literature
still lacks in the online (re-)training of learning models in mobile de-
vices. Aside from this, the prediction by data stream mining algorithms
is made online by keeping the learning models in memory, evaluating
the attributes of incoming data streams and uncovering new knowledge
patterns. However existing studies used same data stream for training
and prediction, therefore, lacks in generality to adapt new data streams.

Existing studies lack in knowledge management features and none
of the studies focuses knowledge management as a core issue. How-
ever, there exists a need to handle knowledge management issue effec-
tively. Distributed application logic in MDSM platforms generate knowl-
edge patterns in different computing environments, therefore, integra-
tion and summarization of relevant knowledge patterns requires further
attention.

8.1.1. Critical factors of complexity in MDSM applications
Numerous factors affect the complexity of MDSM applications. Since

the mobile applications execute in resource constrained environments
therefore high volume of incoming data stream becomes a critical fac-
tor to handle the complexity in mobile devices. Although existing meth-
ods use light-weight algorithms which do not consider the whole data
stream and reduce the quality of knowledge patterns. However high
data size severely impacts the heavy weight MDSM algorithms. Likewise
high data rate in MDSM applications increases the computational com-
plexity. Exiting MDSM applications work online by performing in-mem-
ory operations with time constraints. The algorithms are executed as
one-pass algorithms with the condition that current data stream must be
processed before the arrival of next data stream.

The choice of data fusion strategy helps in increasing or decreas-
ing the computational complexity of MDSM applications. Early data fu-
sion strategies produce redundant, noisy, and anomalous data streams
because MDSM applications collect data streams without any filtering
and/or preprocessing methods. On the other hand, late and discrimina-
tory data fusion strategies produce high quality data streams hence re-
quires fewer computations at later stages.

The operational behaviors such as populating data structures, the
traversal methods, and nature of computational operations affect the
computational complexity of data preprocessing and data mining algo-
rithms. The computational complexity increases when the data stream

mining algorithms are bounded to perform all operations using
on-board computational resources. Existing systems use light-weight al-
gorithms, that use shallow data structures and linear traversal behav-
iors, to handle the computational complexity of data preprocessing and
mining algorithms.

The complexity of MDSM applications also increases during the
learning phase. Online learning over large streaming data becomes com-
putationally infeasible due to resource limitations and constraint of
keeping whole data stream in memory. The behavior of learning model
such as supervised, unsupervised, and semi-supervised settings also af-
fect the computational complexity of the MDSM applications. The su-
pervised and semi-supervised learning model initially uses labeled data
stream hence learning algorithms are trained with-in a confined fea-
ture space. On the other hand, during unsupervised learning the leaning
models need to be trained with high-dimensional complex data streams
which quickly hamper the computational resources especially in mobile
devices.

The high complexity in aforementioned critical factors impacts the
MDSM applications as a whole as shown in Fig. 10. The large size of
data stream impacts the complexity of data rates, preprocessing algo-
rithms, learning behaviors, and data mining operations. Likewise, the
increase in computational complexity at any stage impacts the subse-
quent operations in MDSM applications.

8.2. Controlling complexity at platform level

Ideally, MDSM applications should perform maximum computa-
tional operations near the data sources without latency. However, the
resource limitations in mobile devices enforce to acquire computational
support from other mobile devices and large scale computing infrastruc-
tures such as clouds, grids, and Internet enabled servers. Existing sys-
tems for MDSM works adaptively in mobile environments. Alternately,
the systems enable distributed data stream mining in mobile cloud set-
tings. However existing literature still lacks the systems which fully uti-
lize the capabilities of far-edge mobile devices, edge servers, and cloud
computing architectures. In addition, the execution models of exist-
ing systems are designed as standalone, distributed, collaborative, and
parallel settings. However existing literature still lacks the device-cen-
tric systems based on collaborative and distributed execution model for
MDSM applications.

Due to variations in computational complexities of MDSM applica-
tions and required quality of knowledge patterns, MDSM applications
enable light-weight processing for efficient resource utilization in mo-
bile devices. Alternately, the algorithms are made adaptive by adjust-
ing the processing behaviors according to incoming data rates, required
quality of knowledge patterns, resource availability, and outgoing data
rates. Although algorithm level adaptations efficiently handle the re-
source limitations, however, customization of each algorithm impacts
generality. System level adaptation strategies can help in achieving the
generality however existing literature still lacks relevant methods.

Fig. 10. Factors affecting computational complexity.
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Since MDSM applications execute using multiple computing plat-
forms, therefore, application logic is distributed among different de-
vices and systems. For static applications, the data acquisition, and
light-weight data stream mining components are used in mobile de-
vices however heavy weight data processing and knowledge aggrega-
tion components are installed in remote and resourceful environments.
In the case of dynamic application execution, application components
are mapped into graph data structures, some optimization operations
are performed before the distribution of application logic. However,
such techniques lack in MDSM relevant literature. The distribution of
application logic in MECC systems is a complex task because edge
servers are tightly coupled with infrastructure based clouds and appli-
cation components reside at all three levels i.e. mobile devices, edge
servers, and infrastructure based clouds. These tightly bounded applica-
tions are highly dependent over Internet connectivity, therefore, mobil-
ity of devices requires continuous virtual machine migrations and trac-
ings of application states. Existing literature still lacks a fully functional
MECC based system to facilitate MDSM applications. In addition, alter-
nate solutions are needed to handle the mobility and Internet depen-
dency and tight coupling issues in MECC systems.

Computation offloading strategies help in the partial execution of
MDSM applications in distributed computing settings such as F2F,
far-edge to the edge, MCC, and MECC communication models. Although
there exists numerous computation offloading schemes for general ap-
plications, however, existing literature still lacks in data stream min-
ing application specific strategies. Existing literature exhibits the static,
dynamic, and adaptive computation offloading strategies which work
at method, thread, program, component, and application levels, how-
ever, these techniques do not consider the speed and volume of the data
stream. In addition, existing computation offloading schemes are either
device or cloud-centric, or work in collaboration between mobile and
cloud systems however new methods are required to offload data stream
mining tasks in MECC systems.

Since MDSM applications need to handle continuous data streams
in dynamically changing mobile environments, therefore, data manage-
ment strategies are needed for raw data and/or partially processed data.
Existing MDSM platforms either collect and store raw data streams us-
ing separate applications or process raw data streams immediately af-
ter collection. Offline data collection strategies increases the latency
and online data stream processing enforce the light-weight execution
of data mining algorithms. Therefore, new data management strategies
are needed which can handle maximum data stream online but use
heavy-weight algorithms for data processing. Alternately, strategies are
required to manage the partially processed transient data streams.

Finally, existing MDSM systems primarily manage the knowledge
patterns in cloud environments. In addition, a few systems exist which
manage the knowledge locally using on-board storage and performs
on-demand knowledge synchronization between mobile and cloud envi-
ronments. However, new knowledge management methods are required
for MECC based MDSM applications.

8.3. Technical research challenges

In addition with above mentioned challenges, next-generation
MDSM applications and platforms need to handle following technical re-
search challenges.

8.3.1. Multi-tier architectures
The computing technologies are growing rapidly and next-gener-

ation MDSM platforms needs to use these processing technologies in
order to accelerate the application performance. Despite of wide ac-
ceptance existing literature still lacks the multi-tier and heterogeneous
data processing platforms. Therefore, future MDSM platforms should

be designed with scalable topological settings using heterogeneous com-
puting architectures blended with CPUs, GPUs, FPGAs, and large scale
data centers. In addition, hierarchical memory architectures based on
Caches, RAMs, and internal and external storage should also considered
to design next-generation applications and platforms.

8.3.2. Load-balancing
Considering the advancements in computing technologies, future

MDSM platforms will span across resource-constrained IoTs, wearable,
and mobile devices at one end and resourceful servers, clusters, and
multi-cloud infrastructures on the other end. Future MDSM platforms
need to integrate efficient load-balancing strategies in order to minimize
the latency, efficient energy utilization, reduce bandwidth consumption
and in-network data movement across the platforms. The new load-bal-
ancing strategies may integrate fuzzy logic and soft set theory based
methods for improved efficiency. In addition, deep context models could
be used in order to improve the load-balancing strategies across the plat-
forms.

8.3.3. Optimization
The streaming data in mobile environments challenges the capacities

of MDSM platforms in terms of energy consumption, storage manage-
ment, bandwidth utilization, performance gain, privacy preservation,
scheduling, and workflow management. Considering the above men-
tioned challenges, the MDSM applications and platforms need to be op-
timized for data processing, task scheduling, privacy preservation, and
knowledge management. In addition with this the optimization algo-
rithms should ensure seamless application execution across multiple de-
vices and computing systems. The MDSM platforms should enable dy-
namic and adaptive application execution in MECC systems. TO further
the research, the optimization strategies should be devised to achieve
the maximum trade-off between data processing efforts and applica-
tion execution in multiple platforms. Considering the optimization ob-
jectives, new algorithms must ensure the reduced and optimal resource
consumption both for application execution and the resource required
to execute the optimization algorithms itself.

8.3.4. Data stream and knowledge management
MDSM applications need to handle the data streams in multiple for-

mats and need different data management strategies. The MDSM plat-
forms must provide the optimal data management schemes for raw data
streams. To this end, existing in-memory data management schemes
needs to be improved in order to efficiently handle the streaming data
considering its velocity, variety, volume, and variability characteristics.
MDSM applications convert raw data streams into different formats at
each stage of execution. These formats include raw data converted into
event data streams, feature vectors, structured formats such as tables,
to name a few. In addition, the intermediate data generated during
data processing, when the data populated in data structures (i.e. arrays,
trees, and graphs), challenge the computational capacities of resource
constrained devices and computing systems which have low amount of
available memory. New data management strategies are required to ef-
ficiently handle the intermediate data streams. Finally, the MDSM ap-
plications produce knowledge patterns which need to be integrated and
summarized for a holistic view of incoming data streams. Future MDSM
platforms must provide synchronized knowledge management schemes
across the MECC systems.

8.3.5. Programming models, design patterns, and development
environments

Considering the heterogeneity in next-generation MDSM applica-
tions and platforms, new programming models, design patterns, and
development environments are needed. Existing simulation tools and
programming models support application execution as either mobile-
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first or cloud-first approach, however, new programming models should
support the application execution across MECC systems. In addition,
new design patterns are required which could be reused to each the
application development process in MECC systems. Moreover, new in-
tegrated development environments (IDEs) are needed to integrate the
programming models and design patterns. The IDEs should provide sup-
port for drop and drop component based visual workflow management
across MECC systems. Further, the IDEs should provide reusable compo-
nents for rapid application development in MECC systems.

8.4. Future research areas

This section presents some future directions (see Fig. 11) in order to
accelerate the research work in MDSM applications and platforms. Due
to application and platform level heterogeneity, MDSM applications can
help in future and emerging research areas in multiple ways.

8.4.1. Privacy and security
The onboard data sources in far-edge devices produce personal data

streams, therefore, MDSM applications need to address the privacy and
security concerns of end users (Sokolova and Matwin, 2016). How-
ever, to this end, existing literature lacks in scalable end-to-end pri-
vacy preservation models for MDSM applications in mobile edge cloud
computing systems (Chang et al., 2016). The privacy preservation mod-
els are needed to be designed and embedded in existing MDSM appli-
cations without loosing the quality of uncovered knowledge patterns.
Moreover, the data stream mining applications should enable secure
data and knowledge transfer strategies for data movement inside MDSM
platforms. To this end, privacy and security challenges need serious at-
tentions in order to prevail this important research area.

8.4.2. Big data reduction
The continuous evolution in mobile data streams eventually results

in big data. However, analyzing the massive amount of data and un-
covering useful patterns for end users is a challenging task. The deploy-
ment of data stream mining applications at user-end can help in reduc-
ing big data wherein the users can uncover the knowledge patterns us-
ing personal far-edge devices. The resultant knowledge patterns could

Fig. 11. Future research areas.

be shared in order to reduce big data (Rehman and Batool, 2015). Exist-
ing literature lacks the pattern based data sharing strategies for big data
systems. Future research work should focus on the development and de-
ployment of learning models complying with the needs of big data sys-
tems. In addition, pattern sharing, knowledge summarization, and big
data aggregation models are needed in order to deal with reduced big
data. In essence pattern based big data reduction can benefit to users
and big data system providers in many ways including, (a) reduced
data communication cost, (b) minimum bandwidth utilization, (c) re-
duced in-network data movement, (d) fewer efforts in data cleaning and
preprocessing for conversion of unstructured big data in to structured
datasets, and last but not the least, (e) big data system providers can of-
fer personalized services to end users.

8.4.3. Value creation
MDSM applications in MECC systems can help in value creation for

customers and enterprises in multiple ways. At one end, the customers
can use the personal far-edge devices, edge servers, and cloud comput-
ing systems to find the personal knowledge patterns. At the other end,
enterprises can acquire the customers' data in order to develop and opti-
mize their business process models and meet their needs (Chang, 2014).
MDSM applications can benefit in value creation for a wide spectrum
of user-centered business models such as that used for e-commerce, per-
sonalized health and insurance, tourism, Telecom, amongst others.

8.4.4. Machine analytics
MDSM applications can benefit in machine analytics in order to un-

cover the operating and performance behaviors of machines. The em-
bedded data stream mining components in machines can help in on-
board and off-board data collection and uncovering machine behav-
iors in MECC systems. For example, in manufacturing industries, large
scale industrial production units can use embedded data stream mining
components to uncover knowledge patterns from machine log files and
monitor the machine's performance. Similarly, local and collective in-
telligence in robotics can be embedded using MDSM applications. Few
more example applications include smart cars, vehicular ad-hoc net-
works, machine to machine communication systems, and cyber-physical
systems.

8.4.5. Personal analytics
Mobile users generate personal data from a plethora of sensory and

non-sensory data sources (Rehman et al., 2015). These data sources col-
lect data streams of mobile users from onboard and off-board sensors as
well as the data generated in the result of user interactions with mobile
devices, physical activities performed by users, and the behavioral data
of users on social networks and World Wide Web. MDSM applications
in MECC system can help in uncovering personal knowledge patterns
from above mentioned personal data. The knowledge patterns are useful
for lifestyle and wellness management applications, behavioral analytic
driven systems, mobile health applications, mobile social networks, and
mobile commerce, to name a few.

8.4.6. IoT analytics
MDSM applications can be embedded in IoT systems in order to

uncover the device-centric and collective knowledge patterns
(Satyanarayanan et al., 2015). The applications can be deployed in a
single device and multi-device settings. In single device settings, the un-
covered knowledge patterns could be used for improving single device
usage experiences however in the case of multi-device settings, the pat-
terns could be used for the overall improvement of IoT systems. In ad-
dition, the application logic could be distributed across multiple IoT de-
vices in order to find the collective behavior.
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8.4.7. Mobile crowd sensing
The MDSM applications in MECC systems can facilitate in mobile

crowd sensing systems (Jayaraman et al., 2014a). For example, the
data streams collected by smart city management applications for traf-
fic management, commuters facilitation, crowd management in sporting
arenas, and facilitating pilgrims and peoples gatherings at holy places.
Similarly, MDSM applications can facilitate in management crowds of
animals, vehicles, IoTs and many more similar applications.

8.4.8. Participatory sensing
Participatory sensing is another application area for MDSM applica-

tions and platform. The knowledge patterns generated by mobile users
can help governments, business, enterprises, corporations, and third
party public data stream collectors in order to develop user-driven ap-
plications and systems. However, participatory sensing systems must en-
sure user privacy and security of shared data. In addition, new incentive
mechanisms are needed in order to lure mobile users for participatory
data sharing.

In this section, we discussed a few future research areas for the in-
tervention of MDSM applications and platforms. However, the tremen-
dous growth in IoTs, big data, cloud computing, and mobile edge com-
puting has risen many new application areas and research opportunities
for MDSM applications and platforms. Therefore, we perceive that using
MDSM in MECC system will quickly prevail in all sectors of the econ-
omy and humane lifestyle management.

9. Conclusion

MDSM applications execute in multiple topological settings in mul-
tiple phases. Each phase of MDSM applications need to handle hetero-
geneity which increases the computational complexity. MDSM appli-
cations are deployed in different computing devices and systems with
different form factors. Therefore MDSM systems need to enable multi-
ple functionalities such as application partitioning, computation offload-
ing, data management, light-weight and heavy-weight data processing,
knowledge management, and adaptation strategies to name a few. Exist-
ing literature review reveals that MDSM applications need to handle six
critical factors to handle complexity namely, (a) size of data stream, (b)
speed of data, (c) early data fusion, (d) selection of preprocessing meth-
ods, (e) learning model development strategies, and (f) selection of data
mining algorithms. Therefore future research work must focus these fac-
tors in order to optimize MDSM applications to achieve multiple ob-
jectives such as, (a) efficient energy utilization, (b) optimal bandwidth
utilization, (c) reduced data movement in MECC systems, (d) achieving
memory efficiency, and (e) performance enhancement in terms of la-
tency and CPU usage.
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