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Energy efficient fog computing for 6G enabled
massive IoT: Recent trends and future opportunities

Usman Mahmood Malik, Muhammad Awais Javed, Sherali Zeadally, and Saif ul Islam

Abstract—Fog computing is a promising technology that can
provide storage and computational services to future 6G net-
works. To support the massive Internet of Things (IoT) appli-
cations in 6G, fog computing will play a vital role. IoT devices
and fog nodes have energy limitations and hence, energy-efficient
techniques are needed for storage and computation services. We
present an overview of massive IoT and 6G enabling technologies.
We discuss different energy-related challenges that arise while
using fog computing in 6G enabled massive IoT. We categorize
different energy-efficient fog computing solutions for IoT and
describe the recent work done in these categories. Finally, we
discuss future opportunities and open challenges in designing
energy-efficient techniques for fog computing in the future 6G
massive IoT network.

Index Terms—Energy-efficiency; fog computing; massive IoT;
offloading; 6G

I. INTRODUCTION

Wireless communication systems have advanced at a re-
markable pace, revolutionizing the way humans and machines
communicate. The explosive growth in the number of con-
nected devices and the ever increasing demand for high data
rate have been the main driving force for such evolutionary de-
velopments in the past decade. Currently deployment of Fifth
Generation (5G) networks is under way, providing Gigahertz
(GHz) connectivity to the end devices. This will ease our daily
lives and will have significant impact on business efficiency
[1].

Traditionally, it takes around ten years or so, before a cellu-
lar generation is replaced by a new generation. It is expected
that 6G will be standardized and ready for deployment by
2030 for which the research focus has started to shift toward
6G communication systems [2], [3].

It is not yet clear what the advent of 6G will entail. However,
from today’s development pattern, it can be envisioned that the
future societies will be highly connected involving billions of
devices, increasingly digitized and data driven [4]–[28]. The
road to 6G will see revolution in smart devices, smart technolo-
gies, artificial intelligence, remote tele-presence, autonomous
vehicles and different types of data sources. Next generation
connectivity will explore novel wireless technologies and in-
novative network architectures with very high data rates, ultra-
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low latency, and completely new services. The communication
focus will evolve from ubiquitous connectivity to intelligent
and automated connectivity [29].

Advances in Internet of Things (IoT) technologies are
paving the way for the emergence of 5G communication
systems and will continue to shape the development of future
6G communication systems as well [30]. The number of
connected devices are predicted to reach around 50 billion by
2030 [3]. All these devices will generate huge volumes of data
traffic, transforming today’s IoT into massive IoT of future
[31]–[38]. Thus, future massive IoT networks will require high
communication capacity to meet the data sharing demands of
highly connected devices [39]–[45].

Massive IoT networks with 6G connectivity, employing
intelligent learning techniques will be able to perform complex
computations quickly, revolutionizing the user experience to
near real time response [46]. Massive IoT networks will
revolutionize our transportation, healthcare, agriculture and
enterprise systems. Cities will become smarter with smart grid
and inter connected electricity, water and gas connections [47],
[48]. The devices will become context-aware and will be able
to predict our needs. Vehicles will become autonomous and
wearable devices will be extensively used making our lives
safer and more comfortable [49]–[51].

With the increase in network capacity, network complexity
also increases. 6G massive IoT will face several challenges
which include heterogeneity, scalability, integration, inter-
operability, Quality of Service (QoS) provisioning, network
capacity, network congestion and battery lifetime [4], [5], [7],
[13], [26]. To meet these challenges, massive IoT will rely on
intelligent learning techniques and rigorous deployment of fog
and edge computing devices that are closer to the end devices
[52]–[56]. Fog and edge computing devices will take the load
off from cloud servers by performing computations closer
to the end devices, thereby, improving computation latency
[57]–[63]. Fog devices will intelligently incorporate idle/ spare
resources of all available devices to further improve network
efficiency [64], [65]. Computation resources of fog devices,
edge devices and other available devices will be key in meeting
requirements of highly demanding future applications.

6G devices will have high energy requirements because they
will operate in higher frequency bands [66] but they will be
made small in size to meet the versatile demands for future
deployments, and they will typically have limited computation
and power resources on board. Massive IoT networks will
depend on fog and edge devices to perform computation tasks
for edge devices, which are also constrained with limited
communication, computation, storage and power resources.
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TABLE I: Comparison of different applications and features provided by 5G and 6G

5G 6G

Applications
enhanced Mobile Broadband (eMBB)

Ultra-Reliable Low Latency Communications (URLLC)

massive Machine Type Communications (mMTC)

Augmented reality

Virtual reality

Autonomous and connected drones and vehicles

Intelligent and automated machines

Spectrum
sub-6 GHz

millimeter wave
Tera Hz

Data rate up to Giga bits per second up to Tera bits per second

Latency up to 1ms < 1ms

Reliability 99.9999% 99.99999%

Therefore, power consumption and energy efficiency will be
critical challenges for 6G massive IoT networks and efficient
resource utilization will be needed.

In this paper, we focus on recent trends on energy efficient
techniques for fog computing based IoT networks. We present
6G enabling technologies and massive IoT applications. We
highlight the energy challenges for 6G enabled massive IoT.
Next, we present a survey of recent works done to achieve
energy efficiency in fog computing empowered IoT. Finally,
we present future opportunities and challenges for developing
energy efficient solutions useful for 6G enabled massive IoT.

II. RELATED WORKS

In this section, we present an overview of 6G networks,
massive IoT and fog computing. We also present the motiva-
tions of this work.

A. 6G Networks

While 5G networks are still in the implementation phase,
researchers have envisioned the next generation of mobile
networks, namely 6G, that can support much higher data
rates and many future applications [4], [5], [9], [12], [16].
Table I shows different applications and features of 5G and
6G communications. 5G communication focuses on delivering
three main application services, namely, enhanced Mobile
Broadband (eMBB), Ultra-Reliable Low Latency Communi-
cations (URLLC), and massive Machine Type Communica-
tions (mMTC). In contrast, 6G networks support applications
such as augmented reality, virtual reality, autonomous and
connected drones and vehicles, and intelligent and automated
machines. All these applications require data rate of up to
Terabits per second as compared to the data rate of Gigabits
per second provided by 5G networks.

A key feature of 6G networks is the use of the Tera Hz
spectrum. 5G networks are currently using sub-6GHz and
millimeter wave spectrum. 6G networks will provide a latency
of less than 1ms and a reliability of 99.99999% which will
support pervasive connectivity and many future applications.

We present enabling technologies of 6G networks in Fig. 1.
6G will use physical layer technologies such as full duplex
communication to enhance the communication capacity, and
provide advanced channel estimation for efficient signal trans-
mission and large intelligent surfaces to enable reliable data

dissemination [8], [14], [20]. Moreover, 6G will use artificial
intelligence to enable autonomous systems, distributed learn-
ing models to improve model accuracy, big data analytic for
prediction and smart decision making, and realize intelligent
edge, fog and cloud nodes [10], [11], [15], [21], [22], [24],
[25].

Energy efficiency will be a key challenge for 6G networks
[67]. One of the main reasons behind the need for enhanced
energy requirements is the support for massive IoT applica-
tions [68]. Future network nodes including IoT devices and fog
nodes will need to handle many tasks which will increase the
energy consumption. Another energy related challenge for 6G
networks is the use of Tera Hz communication which is a short
range communication technology. While Tera Hz communi-
cation may provide higher data rates, it suffers from severe
attenuation due to spreading loss and molecular absorption
loss [69], [70].

6G networks will focus on energy efficient systems by
providing low power communications, novel energy harvesting
techniques, and energy efficient computing strategies. Massive
IoT applications will also be supported by 6G networks
by improving the accuracy of sensing and localization, and
enhancing connectivity and computing capabilities. With all of
the above features and technologies, 6G will be able to provide
ubiquitous connectivity, Tera Hz communications, very high
data rates, and ultra-low latency.

B. Massive IoT

Massive IoT refers to large scale connectivity of a large
number of devices, sensors and machines [31], [32], [47], [48].
This classification of IoT is based on the number of connected
devices and the amount of traffic generated by them. In the
past decade, the number of devices connected to the Internet
has significantly increased. In the next few years, this number
will increase enormously requiring a robust network to support
their connectivity [33], [34].

In massive IoT, the network density is very high, up to
around 1 million devices per square kilometer [35], [36], [46].
This will result in a huge amount of data to be disseminated
among devices, a large number of tasks to be performed, and
massive amounts of information will need to be stored and big
data analyzed [37], [38]. Thus, 6G and fog computing will be
key enablers to support massive IoT applications.
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Fig. 1: Enabling technologies of 6G

C. Fog computing

Fog computing is a technology that enables edge devices
to perform computation and storage operations closer to the
edge [52]–[54]. By installing several fog nodes at various
locations, devices are able to offload their tasks and cache
data onto these nodes [55], [56], [71]. A major benefit of
fog computing includes decentralized computing service as
compared to the centralized computing offered by the cloud.
Moreover, improved latency is achieved as data and tasks are
accessed and analyzed near to the end devices [57], [58]. Fog
computing also improves the usage of frequency spectrum and
enhances the network capacity. It also has positive impact on
application reliability as computation and storage capabilities
are strengthened by the placement of fog nodes [59]–[61].

Fog computing will be a vital component of 6G enabled
massive IoT. With the huge number of devices sharing data
with each other along with a large number of applications, the
assistance provided by fog nodes to the end devices in terms
of computation and storage will be critical. Moreover, 6G
communications will mostly utilize these fog nodes to enable

ubiquitous connectivity and achieve very low latency. Several
challenges pertaining to resource allocation, task offloading,
energy efficiency, latency reduction, fairness and security will
arise in this new paradigm of fog computing based 6G enabled
massive IoT.

D. Motivation of our work

Research work on 6G massive IoT network has already
started and future developments in this area is going to have
a major impact on all aspects of our lives over the next few
years. Future networks will be complex and will require energy
that can provide power to billions of connected devices and
it will not be feasible to change/recharge the batteries of so
many devices on a regular basis. Thus, future networks and
devices will have to be energy efficient.

Considering the importance of energy efficiency in future
6G networks, we focus on providing a survey of recent works
in the field of energy efficient fog computing for IoT networks.
We also present major challenges for achieving energy effi-
ciency in fog computing based 6G enabled massive IoT. This
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paper attempts to provide recommendations to researchers
working in the area of energy efficient fog computing.

Energy efficiency in IoT networks has been a popular re-
search area and extensive research works have been undertaken
in the areas of algorithms and techniques focusing on different
levels and components of the network.

Various survey papers have been published on the topic
of energy efficiency. Topics such as energy efficiency in IoT
networks [72]–[77], cloud related aspects [78]–[83], certain
level or component of the network [84]–[91], applications
[92], [93], and techniques such as energy harvesting (EH)
[94]–[102] have been extensively reviewed and summarized.
However, to the best of our knowledge, we are the first to
review the techniques for energy efficient fog computing in
IoT networks.

Since a fog node is managing the resource allocation for end
devices, therefore, we believe that resorting to energy efficient
fog computing is one of the effective ways to make networks
energy efficient. It will optimize energy consumption of the
fog node along with the connected end devices that will help
achieve energy efficiency. To the best of our knowledge, a
survey paper on achieving energy efficiency by managing fog
node operations has not yet been done. Therefore, in this paper,
we focus on a survey of recent works done to achieve energy
efficiency through fog nodes in the IoT networks.

Contributions of this work
We summarize the main contributions of this work as

follows:
• To provide recommendations for future work, we focus

on research works published after 2018.
• We consider only the techniques that use a fog node as

the main contributor towards energy efficiency.
• We present a taxonomy and summary of energy aware

fog computing techniques for IoT networks.
• We discuss Quality of Service (QoS) techniques for

energy efficient fog computing in IoT.
• Finally, we identify and discuss future research directions

for energy efficient fog computing in 6G enabled massive
IoT.

III. ENERGY AWARE TECHNIQUES FOR ENERGY EFFICIENT
FOG COMPUTING IN IOT

In this section, we present a survey of recent trends and
work done in the field of energy aware techniques for energy
efficient fog computing in IoT. We classify the current tech-
niques in this area into four (4) categories as Fig. 2 shows.

A. Energy aware task offloading

Most devices in the IoT network are battery powered with
limited computational and communication resources. These
devices can thus serve a limited number of tasks at a limited
speed. Applications on the other hand are becoming increas-
ingly computationally extensive, requiring low latencies and
real-time responses. These applications can quickly deplete
the power resources of the devices, rendering them unavailable
in the network for further use. Extending the lifetime of IoT
devices by conserving/ boosting device energy to make full use

Fog to fog 
offloading

Fog to cloud 
offlading

Device to device 
offloading

Device to fog 
offloading

Where to 
Offload?

Local computation 
or task offloading?

Which application 
to offload?

Energy aware task 
offloading

Distributed 
architecture

Fog node location 
and resource 

planning

Clustered 
architecture

Centralized 
architecture

Energy aware fog 
node placement

Dynamic voltage 
and frequency 

scaling

Dynamic 
modulation 

scaling

Switching on/off 
of devices

Dynamic voltage 
scaling

Energy aware 
device control

Energy aware 
energy harvesting

Energy 
efficiency 

techniques

Transmission 
power 

optimization

Fig. 2: Energy aware techniques for energy efficient fog
computing in IoT

of their finite energy supplies remains a significant challenge
[103].

One effective way to conserve the power supply of any de-
vice (we call these devices as local devices) is to get assistance
from other devices (we call these devices as task helper nodes
such as fog nodes) to perform tasks on behalf of that local
device. This process of resource sharing among devices to
carry out tasks is called the process of task offloading. When
a device offloads a task, it conserves its computational energy
at the cost of energy required to communicate data between the
local device and the task helper nodes. The tasks are broken
down into local and offloaded components, where local tasks
are performed by the local device itself and offloaded tasks
are performed by the task helper nodes. The task offloading
decision is managed by various types of resource allocation
techniques.

Time constraint or maximum time limit for task comple-
tion is the main consideration when making task offloading
decisions. Task offloading has contradictory effects on latency
and task execution time. On one side, it improves the latency
through parallel processing of the task by both the local
devices and the task helper nodes, while on the other side, it
adds communication latency through up-link transmission of
the task to the task helper nodes and down-link transmission
of the result to the local device. The total latency of the task
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depends on the following factors [104]:
• Pre-task offloading time: Data processing time in the local

device.
• Task uplink time: Time required to send the task infor-

mation from the local device to the task helper node.
• Wait time at the task helper node: The difference between

the time when the task computation is started at the task
helper node and the time when the task reached the task
helper node.

• Task computation time: Time taken by the task helper
node to compute the task.

• Task result communication time: Time taken to commu-
nicate the results of the task from the task helper node
to the local device.

• Post-processing time: Time taken by the local device to
make decisions based on post processing of the task.

In the context of fog computing, energy efficiency can be
best achieved through energy aware task offloading which opti-
mally transfers the computation tasks to the idle/ underutilized
task helper nodes in order to achieve energy efficiency at
the network level. To achieve energy aware task offloading,
the following three decisions need to be carefully made: (1)
local computing or task offloading?, (2) which application to
offload?, and (3) where to offload?

1) Local computing or task offloading?: When a computa-
tion task is offloaded from a local device to another task helper
device, it significantly reduces its energy consumption. But
since task offloading requires data communication between
the local device and the task helper device, it results in
additional energy consumption and communication latency.
Consequently, a task shall be offloaded to the task helper
device only when the energy consumption and latency can
be reduced.

Local computing is generally preferred over task offloading
under the following conditions: (1) The latency of task offload-
ing exceeds the permissible threshold limit for task execution.
(2) The estimated energy conservation by task offloading is
lower than the transmission energy required to transmit the
offloaded task. (3) All the energy required for task execution
is provided through energy harvesting.

Local devices can partially or completely offload their task.
This division into local component and offloaded component
depends on latency requirements of the task and energy con-
sumed by the device in transmitting the offloaded component.

2) Which application to offload?: Applications may be
composed of multiple services and offloading may not benefit
all services equally. Therefore, the services that can benefit
from offloading need to be identified and only those services
should be offloaded [105].

In [106], the authors have recommended that applications
can be grouped according to their latency and computation
requirements to pre-determine the location where they should
be processed. This grouping assists in making quick and
energy aware task offloading decisions. Table II presents the
recommended classification of applications. Applications with
low computational and high latency requirements may be
offloaded near to the local devices i.e., on other IoT devices or
fog nodes. In contrast, tasks which have high computational

and low latency requirements may be offloaded to the fog
nodes or the cloud servers.

Application requirements Offload location

Low computational and high latency requirements Device/ fog

High computational and high latency requirements Fog only

High computational and low latency requirements Fog/ cloud

Varying computational and low latency require-
ments

Flexible (device/
fog/ cloud)

TABLE II: Recommended offload locations based on applica-
tion requirements

3) Where to offload?: A typical IoT network consists of ge-
ographically distributed heterogeneous devices with different
computation, communication, storage and power resources. A
device performs its own task first and participates in resource
sharing only if it has spare resources. The decision on which
task helper node to choose for task offloading is a critical
one because it has major implications on latency and energy
efficiency of the network. Current works in this area focus
on developing techniques that choose from the multiple geo-
graphically distributed task helper nodes available to achieve
energy efficiency while meeting the latency requirements of
applications.

IoT resources are arranged in a hierarchical order: cloud, fog
nodes and edge devices (maximum to minimum resources).
Different task offloading options that can be considered in-
clude [115]:-

• Device-to-device offloading.
• Device-to-fog offloading.
• Fog-to-fog offloading.
• Fog-to-cloud offloading.

Fig. 3 summarizes the objectives of these task offloading
options. We describe each of task offloading options in the
following subsections. Table III presents recent works related
to energy aware task offloading.

Where to offload?

Device to device
 Use spare resources of 

neighboring devices

Fog to fog
 Avoid overloading and 

energy starvation of certain 
fog  nodes

 Achieve low latency by 
avoiding transmission to 
the cloud

Fog to cloud
 Use  high  computational,  

storage  and  power 

resources of the cloud

Device to fog
 Use computational and 

energy resources of the fog 
node to save energy of the 
local devices

Fig. 3: Objectives of task offloading options
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TABLE III: Research work - Energy aware task offloading

Year Reference D
2D

D
ev

ic
e-

to
-fo

g

Fo
g-

to
-fo

g

Fo
g-

to
-c

lo
ud

Key idea Energy efficiency
target

Performance metric

2019 Sun et al.
[107]

Y Y - - Sensor nodes in a cluster cooperate with
each other in relaying their tasks to the fog
node to conserve transmission energy

Sensor nodes Node state distribution
Node remaining energy
Network life-time

2020 Wang et
al. [108]

Y Y - - Sensor nodes in a cluster cooperate with
each other in relaying their tasks to the fog
node to conserve transmission energy

Sensor nodes
Mobile fog node

Energy consumed
Delay
Network life-time

2020 Huang et
al. [109]

- Y - - Finds willing fog node to perform task for
local devices

IoT devices Energy consumed
Queue stability

2019 Zu et al.
[110]

- Y Y - Uses graph theory to pair a task fog node
with a helper fog node

Fog node Energy consumed

2019 Zhang et
al. [111]

- Y Y - Finds a suitable helper fog node for a task
node, employing fairness

Fog node Energy consumed
Fairness among fog nodes
Offloading service feasibility

2019 Kim et al.
[112]

- Y - Y Proposed task model based on occurrence
probability (popularity) of tasks

User equipment
Fog node

Energy consumed
Service time

2020 Hou et al.
[113]

- Y - Y Define strategies to employ/ utilize fog
node resources to achieve energy efficiency
and load balancing in data centers

Data center Energy efficiency
Queue length

2019 Jiang et
al. [104]

- Y Y Y Chooses offload device that has:
Minimal workload
Maximum remaining energy

Overall energy re-
duction

Energy consumed
Ratio of tasks completed on
time to the total number of
tasks generated

2020 Gai et al.
[114]

- Y Y Y Proposed optimization of pre-stored task al-
location table in fog servers to find optimal
device/ location for task offloading

Overall energy re-
duction

Energy consumed
Time taken to generate alloca-
tion plan

‘Y’: supported
‘-’: not supported

a) Device-to-device offloading. The basic idea of Device-to-
Device (D2D) task offloading is to utilize spare computational
and energy resources of other local devices in the proximity
instead of always uploading/ downloading data to/ from remote
nodes such as fog and cloud [116]. Since these devices are in
the neighborhood, therefore, data transmission between these
devices take place on direct communication link requiring little
transmission energy which conserves energy.

Only those computationally intensive tasks, which are be-
yond the capability of devices to complete within the delay
threshold, are offloaded to fog node or to the cloud. D2D
task offloading significantly reduces the routing overhead and
computing burden on the fog/ cloud layer. The policy to offer
some sort of an incentive against the sharing of resources can
be implemented to encourage D2D task offloading.

In [107], [108], the authors used a D2D task offloading
scheme to achieve energy efficiency in the sensor nodes that
are small in size and have limited power supply. These sensor
nodes do not have enough energy to transmit directly to the fog
node. Thus, they assist each other in conserving transmission
energy. These sensor nodes are arranged in clusters to better
manage the assignment of tasks and the flow of information.
The cooperative transmission scheme enables the sensor nodes
to collect data from each other and efficiently transmit this data

to the fog node.

b) Device-to-fog offloading. Local devices have to offload
their computation tasks to remote computing systems such as
fog or cloud to offset their limitations of restricted compu-
tational and power resources. This task offloading conserves
their energy resources and makes them available for longer
time in the network [117]. Cloud servers are located far away
and offloading tasks directly from the local device to the cloud
will not be feasible because it would consume a large amount
of transmission energy and it would also lead to unacceptable
task processing delay. On the other hand, fog nodes are located
in close proximity to the end devices and offloading tasks
to the fog nodes will conserve transmission energy and also
improve latency. Thus, for the local devices, task offloading to
the fog nodes is a better choice. For example, in [104], [109],
[112], [114], the authors have used a device-to-fog offloading
scheme to conserve energy resources of the devices.

c) Fog-to-fog offloading. When fog nodes have high work-
load such as computing a heavy task or when there is a need to
conserve their energy, tasks from fog nodes can be offloaded
either vertically to the cloud or horizontally to the neighboring
fog nodes [118].

As the distance between the fog nodes and the cloud is
typically large, vertical offloading consumes a high amount
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of transmission energy and also increases latency which may
not be feasible for time sensitive applications [119]. On the
contrary if the task is offloaded horizontally, there are many
available task helper fog nodes. However, their capability as
compared to the cloud, will be low. Their strength in numbers
make up for their deficiency in their capabilities and when
utilized properly, neighboring fog nodes can effectively relieve
each other and handle large tasks. Since neighboring fog
nodes are in close proximity compared to the cloud, such
task offloading will conserve transmission energy and will also
improve latency.

Zu et al. [110] used fog-to-fog offloading to conserve energy
resources of fog nodes. They used the many-to-one matching
technique of graph theory to choose a helper fog node that has
best channel conditions and least energy consumption. The
task fog node that has some task to offload broadcasts the
task’s information. The helper fog nodes that have spare/idle
resources, upon receiving multiple task requests, make their
priority list of task fog nodes to serve based on the best channel
conditions. They propose their services to the first task fog
node in the list. Based on the proposals received, the task fog
node selects the helper fog node that provides the best energy
conservation. The process continues until all matches are done.

Zhang et al. [111] utilizes fog-to-fog offloading to conserve
the energy resources of fog nodes. The task fog node also
considers the power source of the helper fog node during the
task offloading decision. A small amount of task is offloaded
to the battery powered fog nodes to ensure their availability
in the network for long time.

Selecting the right fog node to offload the task remains an
important challenge. Dynamic and context aware mechanisms
need to be developed to select the most appropriate fog node
for offloading without affecting other functionalities of the
fog node. Complex and sophisticated resource management is
needed to achieve energy efficiency. Vertical offloading could
be an option and the decision is made in real time to decide
where to offload the task. Fog-to-fog offloading not only takes
the load off from the cloud but also reduces the load on the
transmission links between the fog and the cloud.

d) Fog-to-cloud offloading. Cloud servers are equipped with
high computation, storage, and power resources. In traditional
IoT networks, cloud servers are designed to receive tasks from
all kinds of devices for processing. Intermediate processing
devices such as fog nodes and edge devices are placed to
assist cloud servers and overcome the disadvantage of the large
distance between the cloud servers and the local devices. Fog
nodes offload their tasks to the cloud and use the additional
computational, storage and energy resources of the cloud
[105].

Kim et al. [112] considered device-to-fog and fog-to-cloud
offloading options to conserve computation energy. The au-
thors used task popularity to decide where to offload the task.
The task popularity is determined using a probabilistic model
based on the frequency of initiated tasks. Popular tasks and
those with low latency requirements are offloaded to the fog
and rest are offloaded to the cloud.

Hou et al. [113] developed strategies to achieve energy
efficiency and load balancing in data centers. The authors

Base station/ fog nodeCluster members

Cluster head

Fig. 4: Clustered architecture

discussed different types of utilization strategies of fog nodes
wherein the fog node computation can take the load off the
data center. When the fog node assists data centers in task
computation, it makes data centers more energy efficient and
also alleviates the load on them.

Jiang et al. [104] also considered both task offloading
options, offload to fog or offload to cloud. However, when
doing fog-to-fog offloading, the authors selected the helper fog
node based on minimum workload and maximum remaining
energy.

Gai et al. [114] considered a heterogeneous network in
which task offloading tables are pre-stored in the fog server.
When a task comes, an initial sub-optimal task allocation
plan is formulated from these pre-stored tables using greedy
algorithms. The sub-optimal task allocation plan is optimized
using shifting algorithms. The shifting algorithm iteratively
replaces selected computation units with non-selected units
to find the optimal selection which conserves energy while
remaining within the time constraints.

B. Energy aware fog node placement

Fog based IoT network has no standard architecture to
date and is best represented using a layered representation.
Researchers have proposed three, four and six layers for the
fog architecture [125]. The most commonly used is the three-
layer architecture i.e., cloud layer, fog layer, and edge layer.
Resources in these layers are hierarchically distributed with
cloud servers having the most resources, fog nodes having
medium resources that act like an extension of cloud layer,
and edge devices having least resources.

For the purpose of energy conservation in fog based IoT
network, three types of node placement architectures can be
considered which are: (a) Clustered architecture, (b) Central-
ized architecture. and (c) Distributed architecture. We describe
these architectures in the following subsections. Table IV
summarizes the recent works related to fog node placement.
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TABLE IV: Research work - Energy aware fog node placement

Year Reference Fog node placement Key idea Energy efficiency
target

Performance metric

2019 Sun et al.
[107]

Clustered architecture Clustered architecture for transmission en-
ergy efficiency

Sensor nodes Node state distribution
Node remaining energy
Network lifetime

2020 Khalifeh et
al. [120]

Clustered architecture Finds the optimal location of cluster head
with respect to cluster members to reduce
transmission path loss

Sensor node (cluster
head)

Energy consumed by the net-
work
Path loss for all connections

2019 Rafi et al.
[121]

Clustered architecture Optimizes internal communication of a
cluster
Finds best relay for each sensor node using
Dijkstra’s algorithm

Sensor nodes Node remaining energy
Number of rounds

2020 Wang et al.
[108]

Clustered architecture Finds the shortest path for mobile fog node
using minimum spanning tree

Sensor nodes
Mobile fog nodes

Energy consumed
Delay
Network life-time

2019 Omoniwa et
al. [122]

Clustered architecture Uses mobile/ static fog node relay
Proposed an outage minimization tech-
nique to ensure longevity of relay fog
nodes

Relay fog nodes Outage probability
Convergence behavior
Optimal selection of fog relays

2019 Bozorgchenani,
[123]

Centralized and dis-
tributed architecture

Proposed a centralized and decentralized
architecture and compares them under dif-
ferent scenarios

Overall energy reduc-
tion

Task delay
Node energy consumed
Network life-time

2020 Silva et al.
[106]

Distributed
architecture

Finds optimal location and resource con-
figuration of fog node to provide maxi-
mum service to end users

User equipment Energy consumed
Proportion of applications pro-
cessed at fog node

2020 Wu et al.
[124]

Distributed
architecture

Forward deployment of computing servers Overall energy reduc-
tion

Latency
Load balance

1) Clustered architecture: Clustering is one of the most
popular techniques used in Wireless Sensor Networks (WSNs)
for energy efficient communications. In clustered WSN, sensor
nodes are grouped in clusters of different sizes. This size de-
pends upon sensor node’s location, density and distance from
the base station/ fog node. In each cluster, a resourceful sensor
node is elected as the cluster head that controls communication
flow within the cluster. All cluster member sensor nodes sense
their data and forward it to the cluster head which aggregates
the data and sends it to the base station/ fog node.

Fig. 4 shows a typical clustered WSN. Clustering reduces
transmission emissions in the cluster which helps in achieving
energy efficiency by saving the energy of power-constrained
sensor nodes. Clustering also offers benefits such as scalabil-
ity, improved network life, reduced routing delay, decreased
network traffic, and channel access management. The main
challenges in a clustered WSN environment include: (a) Se-
lection of the cluster head (b) and the routing scheme used to
collect data from the cluster head.

Sun et al. [107] distributes sensor nodes in clusters and
selects a cluster head in each cluster that has energy more
than the cluster’s average energy. The cluster head controls all
communication within the cluster and acts as an aggregation
point for all data generated in the cluster. To improve energy
efficiency, a communication hierarchy is established among
cluster heads based on their distance from the main fog node.
A few of the cluster heads are selected as relays to assist in
data transmission to the main fog node. The relay cluster head
closest to the main fog node is selected as the network relay
cluster head. The data passes from the sensor nodes, cluster

head, relay cluster head and network relay cluster head to the
main fog node. The cluster head is switched in each round to
balance the energy consumed among sensor nodes.

Khalifeh et al. [120] distributes sensor nodes in clusters and
selects a cluster head in each cluster based on its remaining
energy. In a cluster, sensor nodes take turns to become a
cluster head to have fair energy consumption among them.
Since sensor nodes are randomly distributed in a cluster,
therefore, they have different path losses among them. There
may be a case where the selected cluster head has bad channel
conditions with most of the cluster members, which result in
high transmission loss to the sensor nodes. To overcome this
problem, the fog node finds the optimal location of the cluster
head with respect to the other nodes location in the cluster,
such that the path loss between the cluster head and the nodes
is minimized. The selected cluster head moves to that location
to achieve energy efficiency in the cluster.

Rafi et al. [121] distributes sensors in clusters wherein
each sensor node has equal possibility of becoming a cluster
head. A sensor node is selected as a cluster head if it has
the lowest workload. Cluster members cannot communicate
outside the cluster directly and send their data to the cluster
head using other sensor nodes in the cluster as relay. The
authors optimized internal communications of a cluster using
the Dijkstra’s algorithm to select the best relay for each sensor
node to reach the cluster head. Dijkstra’s algorithm considers
the weights assigned to each link to choose relay sensor
node for each sensor node and establishes load balancing by
selecting the sensor node with low load, when the weights of
two sensor nodes are similar.
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Wang et al. [108] distributed sensor nodes in clusters and
used fog nodes to elect the node with the highest credibility
as the cluster head in each cluster. This credibility is based on
node’s residual energy and error free communication history.
All cluster members communicate only with the cluster head
which aggregates their data and communicates with the mobile
fog node. To further improve energy efficiency, the authors
used the Minimum Spanning Tree (MST) method to find the
shortest path to traverse all the cluster heads. The mobile fog
node traverses the MST path and collects data from all the
cluster head sensors, aggregates it and sends it to the cloud.

Omoniwa et al. [122] used fixed and mobile fog nodes in the
IoT network to act as relays between sensor nodes and main
fog node/ cloud servers. When a sensor node needs to transmit
data, a relay fog node is selected that best reduces its transmis-
sion energy. The mobile relay fog node adjusts its location to
further increase the transmission’s energy efficiency. The relay
fog nodes assist sensor nodes in conserving their transmission
energy but they also have power constraints for which the
authors developed the outage minimization technique. In this
technique, the relay fog nodes are selected according to their
remaining energy and workload. The relay fog nodes with less
remaining energy and high workload are given less tasks to
ensure availability of relay fog nodes in the network for long
time period. This also ensure fairness in their use.

2) Centralized and distributed architecture: Bozorgchenani
et al. [123] used clustered approach to propose a centralized
and a distributed architecture for task offloading among fog
nodes to optimize both energy and time. The proposed archi-
tectures are evaluated to find their advantages and disadvan-
tages under different scenarios.

All fog nodes are distributed into two layers based on their
power supplies. Battery operated fog nodes are considered in
the fog node layer, and fixed fog nodes having electric power
supply are considered in the Fog Access Point (F-AP) layer
as Fig. 5 shows.

Fog nodes in the fog node layer are further classified as
High Power Fog Nodes (HPFNs) and Low Power Fog Nodes
(LPFNs) based on their energy levels. This classification is up-
dated every time a new task is generated to consider the most
updated remaining energy level of fog nodes. LPFNs offload
their tasks to HPFNs and F-AP based on the architecture used:

a) Centralized architecture. The clustered architecture ap-
proach is used to develop the centralized architecture which
consists of a Fog Cluster Head (FCH) and Fog Cluster
Members (FCM). FCH is selected from the group of HPFNs
and FCMs are selected from the group of LPFNs, considering
their geographical locations and distances from the FCH. In
the proposed architecture, FCMs can only be served by its
FCH or associated F-AP under the following two policies:-

(i) Policy 1. In this policy, only the fog node layer is used
and all processing takes place within the cluster. FCMs are
served by their FCHs and the role of fog nodes keeps on
changing depending upon their remaining energy levels.
(ii) Policy 2. In this policy, both fog nodes and F-APs layers
are used for task offloading. FCMs can offload their tasks to
the associated FCH and to the associated F-APs. Likewise,

Fog cluster member

Fog cluster head
Fog access point

a. Centralized architecture
Policy 1

b. Centralized architecture
Policy 2

c. Distributed architecture
Policy 1

d. Distributed architecture
Policy 2

Low power fog node

High power fog node
Fog access point

Fig. 5: Centralized and distributed architecture

FCHs can also partially offload their tasks to the associated
F-AP.

b) Distributed architecture.
In this architecture, no clusters are formed and fog nodes

from the LPFN group can select any available fog node from
the HPFN group and from F-APs within their coverage area.
Two policies are used:

(i) Policy 1. In this policy, only fog node layer is used for
task offloading and LPFNs can partially offload their tasks to
HPFNs within their coverage area.
(ii) Policy 2. In this policy, both the fog node and F-APs layers
are used for task offloading. LPFNs can partially offload their
tasks to both HPFNs and F-APs.

Numerical results obtained in [123] show that (a) When
only the fog node layer is considered for task offloading,
then in the centralized architecture, the delay increases when
the number of fog nodes increases. In contrast, in the dis-
tributed architecture, the delay decreases when the number
of fog nodes increases as more options are available for task
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offloading. (b) When both the fog node layer and the F-AP
layer are considered for task offloading, then in the centralized
architecture, the delay decreases when the number of fog
nodes increases as more tasks are offloaded to the F-AP.
However, in the distributed architecture, the delay increases
when the number of fog nodes increases.

3) Fog node location and resource planning: Silva et al.
[106] solves the fog node location and resource planning
problem to improve QoS and energy efficiency of the network.
QoS is improved by reducing the outage time of time sensitive
applications caused by the non-availability of resources at
the fog node, and network energy efficiency is improved by
processing the maximum number of tasks and applications in
the fog node. The work evaluates the achieved gain to place
fog nodes at different locations. The gain is a function of the
proportion of fog-only applications accepted and the amount
of energy saved because of this placement. An acyclic directed
graph, where the edges are assigned weight in proportion
to the gain achieved if that vertex is selected as the fog
node, is used to find the optimal fog node location. Optimal
computation, power and storage resources required in a fog
node and location of the fog node are evaluated so that the
maximum number of users can be served.

Wu et al. [124] employs forward deployment of computing
servers to achieve optimized latency and load balance in the
network. When computing servers are in close proximity of
the fog nodes, the transmission latency and transmission power
required to offload task from fog node to computing servers
greatly reduces. This encourages fog nodes to offload max-
imum tasks to these forward computing servers to conserve
their energy and computation resources, thus achieving energy
efficiency.

C. Energy aware device control

Task offloading conserves energy. However, the amount of
energy saved can be further improved if task offloading is used
in conjunction with device control based energy conservation
techniques. These techniques control some functions or fea-
tures of devices to regulate them for better performance and
energy conservation. With device control, local devices and
task helper nodes can control parameters such as transmission
power, on/off switching time, battery supply voltage, battery
supply frequency, and modulation scheme.

1) Transmission power optimization: Task offloading saves
local computation energy at the cost of higher transmission
energy to offload portion of the task to the task helper node.
Transmission energy depends on factors such as the distance
between the local and task helper devices, atmospheric con-
ditions, path losses, interference and collision. These factors
can be managed through various techniques to save/optimize
transmission energy. We describe some of these approaches
that have been used in the latest research below and Table V
presents a summary of these recent works.

Yang et al. [126] used an adaptive modulation scheme to
optimize transmission energy. The modulation scheme and
the size of data offloaded are adjusted according to the
channel conditions to reduce transmission losses. They also

proposed a method to improve spectral efficiency by using
unused spectrum of busy nodes. To achieve this, the task node
senses for unused spectrum and then cognitively accesses it
by adapting its spectrum parameters.

Abkenar et al. [127] seeks the optimal transmission power
and transmission rate based on channel conditions and the out-
age probability of fog nodes. Selected power and transmission
rate ensure that at least one fog node successfully receives the
request so that additional energy is not be wasted during a
re-transmission.

Fu et al. [128] proposed energy harvesting of edge devices
from the base station according to the workload generated
at the edge devices. The proposed scheme provides sufficient
energy to the edge devices that enables them to compute
most of the generated tasks locally. This significantly reduces
the amount of uplink transmitted information from the edge
devices to the base station, thus minimizing the transmission
energy used.

2) Switching on/off of devices: When the devices are not
in continuous use and are needed for some specific operations
only, then, these devices can be switched off completely or
partly to save energy. Some of the methodologies include
[132]: (a) Duty cycle control in which on and off time of
the device transmitter is adjusted, (b) Passive wake up in
which on and off mechanism of the device is triggered by an
external event or signal (wake-up signal), (c) Topology control
protocols which exploit network redundancy to dynamically
adapt the network topology by reducing the number of active
nodes based on the application’s needs. These techniques
require a good regulatory procedure to ensure their availability
when needed. Since fog nodes play a pivotal role in the IoT
network and all devices are connected everywhere through
them, they can be used to control such functions.

Venanzi et al. [129] proposed to control the on/off mech-
anism of the device’s Bluetooth Low Energy (BLE) [133]
interface using fog nodes. The BLE interface is used by
the devices to connect and communicate with each other
as: (1) BLE-advertiser, that wants some service/ information
for which they advertise their information to be discovered
and, (2) BLE-scanner, that scans for BLE-advertisers to serve.
The continuous BLE advertisement and BLE scanning could
result in high energy consumption of the devices. In the
proposed scheme, the fog node turns off the BLE interfaces of
devices until a BLE-advertiser reaches the discover-able range
of a BLE-scanner. The fog node has geo-location capability
through which it keeps track of the device’s location and
movement.

In their work, the authors consider slow moving devices
(pedestrian) that are also connected with the fog node over
the Wi-Fi link. To improve energy efficiency of the devices,
the Wi-Fi link of the devices is turned off according to
a timer. The fog node estimates the optimal wake-up time
of the device’s Wi-Fi link using the speed and direction
of the devices. However, in a high density scenario where
devices move continuously, this mobility can create a situation
where BLE interfaces are kept ’on’ continuously. Under such
circumstances, the proposed scheme will fail because extra
energy will be spent on maintaining the Wi-Fi link with the
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TABLE V: Research work - Energy aware device control
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Key idea Energy efficiency
target

Performance metric

2018 Yang et
al. [126]

Y - - - - Uses adaptive modulation scheme
Improves spectral efficiency through
spectrum sharing

Transmission power Energy consumed
Spectrum bandwidth and
access probability effect
on energy consumed

2019 Abkenar
et al.
[127]

Y - Finds optimal transmission power and
transmission rate based on channel con-
ditions and outage probability of fog
nodes

Transmission power Energy consumed
Average delay
Energy balance (fairness)
among fog nodes

2020 Fu et al.
[128]

Y - - - - Reduces requirement for uplink trans-
mission by providing energy through en-
ergy harvesting

Uplink transmission
power
Mobile edge devices

Energy consumed
Uplink transmission
power

2019 Venanzi1
et al.
[129]

Y Y - - - Optimizes transmission power by using
fog node to switch on/off:
Device BLE interfaces
WiFi link of BLE devices

BLE devices Energy consumed

2020 Hou et
al. [113]

- - Y - - Applies DVFS on cloud servers to dy-
namically adjust their power consump-
tion according to workload and manage
number of active servers

Data center Average energy efficiency
Average queue length

2020 Chen et
al. [130]

Y - - Y - Applies DVS on fog nodes to opti-
mize transmission power and local Cen-
tral Processing Unit (CPU) computation
speed

Fog node Energy consumed
Task completion time
Algorithm convergence
time

2020 Karimiafshar
et al.
[131]

Y Y Y Applies DVS to control fog node’s CPU
energy consumption
Applies DMS to optimize fog node’s
transmission power

Fog node Service time
Number of deadline
misses

Bluetooth Low Energy (BLE), Dynamic Modulation Scaling (DMS), Dynamic Voltage and Frequency Scaling (DVFS), Dynamic Voltage Scaling (DVS)

devices.

3) Dynamic Voltage and Frequency Scaling (DVFS): DVFS
is a combination of hardware and software technologies to
achieve energy efficiency. The DVFS scheme is widely used in
most modern architectures to minimize power consumption by
dynamically adjusting the frequency and supply voltage to var-
ious processors, controller chips and particular components ac-
cording to the workload. Since frequency and voltage directly
affect the energy consumed, therefore, scaling them up with
increase in workload will result in more energy consumption
and, scaling them down with decrease in workload will result
in decrease in energy consumption. Scaling the frequency
and supply voltage up or down according to the workload,
results in optimal resource utilization and energy conservation.
The DVFS scheme is used in almost all modern computer
hardware to maximize power savings, battery life and increase
the longevity of the devices while still maintaining computing
availability.

S. Hou et al. [113] uses DVFS scheme on cloud servers to
enable them to dynamically adjust their voltage supply and
operating frequency. With DVFS, servers dynamically adjust
their voltage and operating frequency and control the number
of active servers for each data center as well thereby reducing
the overall energy consumption.

4) Dynamic Voltage Scaling (DVS): Unlike the DVFS
scheme, DVS only uses dynamic voltage to control the energy
consumption of the device. Chen et al. [130] makes task of-
floading decision at the fog node using Lagrangian dual theory
and then uses the DVS scheme to further improve energy
efficiency by jointly optimizing offloading ratio, transmission
power, local Central Processing Unit (CPU) computation speed
and transmission time.

5) Dynamic Modulation Scaling (DMS): DMS dynamically
scales the modulation level to optimize the transmission speed
to save transmission energy. The transmission speed is opti-
mized by adjusting the number of bits that get transmitted
according to the number of packets that need to be transmitted
at that particular time interval. In general, the DMS technique
finds a trade-off between transmission energy and transmission
delay. Karimiafshar et al. [131] have used DVFS along with
DMS. The authors assumed that the fog nodes are equipped
with DVFS capable CPUs and DMS capable radio peripherals.
DVFS optimizes the CPU energy consumption by dynamically
adjusting the CPU’s frequency and voltage, whereas DMS
optimizes the transmission energy consumption.

D. Energy aware Energy Harvesting (EH)

IoT devices are now designed as small and wireless portable
electronic devices which are often powered by an on-device
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TABLE VI: Research works on EH based on RF transmissions and efficient utilization of green energy from renewable energy
sources

Year Reference Key idea SWIPT
architecture

EH source EH target de-
vices

2019 Zheng et al.
[134]

EH over TDMA using fog assisted HAP Power splitting HAP Sensors

2020 Liu et al.
[135]

EH over OFDMA using fog assisted HAP
Employs fairness in EH by harvesting more energy for low power IoT
devices than high power devices

Time switching HAP End devices

2020 Fu et al.
[128]

EH from mobile edge computing assisted base station using full duplex
SWIPT system and MIMO antennas

Power splitting Base station End devices

2020 Cai et al.
[136]

Task fog node jointly offloads task and energy to the helper fog nodes
using SWIPT over TDMA

Time switching Task fog node Helper fog
node

2020 Tang et al.
[137]

EH of IoT devices in which batteries are charged using green energy
from renewable energy sources such as solar and wind, etc

Not supported Renewable
energy sources
(solar and
wind)

IoT devices

2020 Karimiafshar
et al. [131]

EH of fog nodes using green energy. No batteries are used at fog site
Fairness is achieved in green energy consumption by making task
offloading decisions based on available renewable energy and current
workload

Not supported Renewable
energy sources
(solar and
wind)

Fog nodes

Energy Harvesting (EH), Hybrid Access Point (HAP), Internet of Things (IoT), Multiple-Input Multiple-Output (MIMO), Orthogonal Frequency Division
Multiple Access (OFDMA), Simultaneous Wireless Information and Power Transfer (SWIPT), Time Division Multiple Access (TDMA)

power supply using various types and sizes of batteries de-
pending on the application requirements. These batteries can
store a finite amount of energy only, and therefore they need
to be recharged or replaced periodically, which becomes a big
issue in cases such as (a) large scale IoT deployments (b)
sensors placed inside the human body (c) and devices placed
inside the wall or in a toxic environment. Depletion of battery
power results in the non-availability of the devices which can
be detrimental to the network. This requires the development
of alternate means of charging of devices especially sensors,
which is now recognized as one of the grand challenges of the
IoT revolution [138].

To overcome this problem, EH has emerged as an efficient
solution which can offer a viable alternative to autonomously
power IoT devices [101]. EH is a process by which IoT devices
can increase their energy level by using any ambient sources
such as solar, wind, vibration or Radio Frequency (RF). EH
helps to extend the life cycle of devices for attaining self-
sustainability. We focus on RF based EH techniques in this
section.

1) Simultaneous Wireless Information and Power Transfer
(SWIPT): The concept of Wireless Energy Transfer (WET)
was first introduced by Tesla in 1891 but was considered
hazardous due to usage of high power transfer [95]. With the
advent of low power transfer (which is not hazardous) and
improvement of low power devices, the concept of WET has
gained importance and SWIPT is one of the latest research
trends in wireless communications where both information and
energy are carried by the same wireless signal. A SWIPT re-
ceiver randomly switches the communication mode to harvest
information or energy or both of them. SWIPT can ensure a
stable energy supply in all kinds of weathers, and therefore
ensures a longer lifespan of devices in energy constrained
systems.

2) SWIPT architecture: There are four SWIPT architec-
tures:
Time Switching (TS): The same antenna is used by the receiver
for information transfer and EH. Signal splitting is performed
in the time domain and the entire signal received in one time
slot is used either for information decoding or power transfer.
The TS architecture is simple to implement and requires a
switch before the receiver that switches incoming signal be-
tween charging circuit and signal receiver but requires accurate
time synchronization and information/energy scheduling.
Power Splitting (PS): PS is used to achieve information and
power transfer simultaneously. It is achieved by splitting the
received signal into two streams of different power levels,
one for the information transfer and other for EH. Since the
signal received in one time slot is simultaneously used for both
information decoding and power transfer, therefore, it is more
suitable for applications with critical information/ energy or
delay constraints requirements.
Integrated ID/EH receiver: This architecture uses a rectifier
to convert RF-to-baseband to generate a DC current. Then,
the DC current is divided by a power splitter into two power
streams. One is used for EH and another one for information
transfer.
Antenna Separated (AS): Separate antennas are used for infor-
mation transfer and EH through which simultaneous informa-
tion transfer and EH can take place. Separate frequencies can
be used for information transfer and EH. This system is also
known as separate receiver architecture.

When the power consumption of the circuit is low and more
EH is expected, the integrated ID/EH SWIPT architecture
outperforms PS, TS, and AS receiver architectures. But when
the power consumption of the circuit is high, PS, TS, and AS
performs better. It has also been found that PS performs better
than TS in terms of throughput at high SNR and TS performs
better than PS at low SNR [95].
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Table VI presents a comparison of different EH techniques
used in recent research works for fog enabled IoT networks.

Zheng et al. [134] used Hybrid Access Point (HAP) con-
trolled by the fog node to harvest energy in the sensor nodes
using Time Division Multiple Access (TDMA) and PS SWIPT
architecture. HAP provides harvesting energy to the sensor
nodes according to their workload. This harvesting energy is
sufficient for the sensor nodes to perform the generated task
locally or offload that task to the fog node for processing.

Liu et al. [135], used HAP to harvest energy in the end
devices over Orthogonal Frequency Division Multiple Access
(OFDMA) using TS SWIPT architecture. The energy harvest-
ing is done considering two factors: (1) The amount of work
generated at the end devices and, (2) The remaining energy
of the end devices. The proposed scheme ensures fairness in
terms of remaining energy of the devices. This is achieved by
providing more harvesting energy to the end devices with low
remaining energy and vice versa.

Fu et al. [128] used base station to harvest energy in the
end devices according to their workload. The base station used
full duplex SWIPT system employing Multiple Input Multiple
Output (MIMO) antennas. The end devices used PS SWIPT
architecture for EH. This harvested energy is used by the end
devices to perform generated tasks locally or offload them to
the base station for processing.

Cai et al. [136] considers the scenario wherein the task node
has sufficient power source and helper nodes have low power
resources. In this case the task node offloads both task and
energy to the helper node. The purpose of task offloading is
not save energy but rather to save computation resources.

Tang et al. [137] proposed the use of green energy sources
(solar and wind) with IoT devices to save their energy. In
contrast, Karimiafshar et al. [131] uses green energy sources
with fog nodes only. To reduce carbon emissions, the work
assumes that fog nodes have no batteries and operate on
green energy or electric power. Green energy production and
consumption is different at different fog nodes. Therefore,
the authors developed algorithms to perform task offloading
decisions based on available green energy and the current
workload of the fog nodes.

IV. QOS AWARE TECHNIQUES FOR ENERGY EFFICIENT
FOG COMPUTING IN IOT

Improving energy efficiency in the network has many
benefits such as reduced network operational cost, enhanced
network life and availability of computation critical devices.
However, there are many other techniques that focus on
other QoS features in addition to the energy efficiency. We
classify energy efficient techniques to improve QoS into seven
categories namely, latency reduction, fair offloading, fog node
cooperation, load balancing, fault tolerance, accuracy and
privacy assurance, and resource allocation as Fig. 6 shows.
Tables VII, VIII and IX summarize the recent works related
to these seven categories.

A. Latency reduction
Computation tasks are limited by the maximum latency,

which serves as the main constraint while making task of-

Fig. 6: QoS aware techniques for energy efficient fog comput-
ing in IoT

floading decisions. Failure to meet the latency requirements
result in data lag and application failure. On the contrary,
if latency is improved and the task is executed in a shorter
period of time, it greatly improves the user experience of an
application/ service, which is vital for applications’ survival
in a competitive environment.

Kim et al. [112] adopts the methodology to always process
frequently requested tasks in the fog node. Since frequently
requested tasks are always large in number, therefore, many
tasks get processed in the fog node, which results in an overall
improvement in service time/ latency of frequently requested
tasks.

Jiang et al. [104] has proposed an algorithm that selects the
offloading device using criteria such as minimum workload
(i.e., short task queues) and maximum remaining energy. When
a task is offloaded to a device with a short task queue, the wait
time, for executing of offloaded task will also be short. This
reduces the total time for task execution and also ensures load
balancing on the network.

B. Fair offloading

Fog IoT network consists of many heterogeneous devices
with varying computational, storage and power resources,
owned by various owners. Fair offloading among devices
while maintaining a satisfactory energy efficiency is of great
significance, not only for the sustainability of the network but
also for enabling the fog node owners to continue resource
sharing. Fairness, however, comes at the cost of increased
delay. Thus, a trade-off is needed between fairness and delay
to ensure task completion within given time constraints.

Abkenar et al. [127] achieves fairness and does energy
balancing among fog nodes by using fog node’s remaining
energy as weight in determining the utility function, used in
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TABLE VII: QoS aware techniques for energy efficient fog computing
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Kim et al. [112] Y - - - - - Tasks with high occurrence probability (popularity) are processed at the fog node
to improve energy efficiency and latency

Jiang et al.
[104]

Y - Y - - - Chooses offload device that has:-
Minimal workload
Maximum remaining energy

Abkenar et al.
[127]

Y Y - - - - Uses fog node’s remaining energy as weight in determining the utility function

Zhang et al.
[111]

- Y - - - - Makes task offloading decisions based on fog node’s power source and remaining
energy

Liu et al. [135] - Y - - - Achieves fairness in remaining energy of the end devices by providing harvesting
energy to the end devices according to their workload and remaining energy. The
end devices with low remaining energy are provided more harvesting energy and
vice versa to balance the overall remaining energy of the end devices

Dong et al.
[139]

Y Y - Y - - Proposes fairness cooperation policy based on a system of rewards and punishments.
The more resources a fog node contributes, the more help it will receive when it
has a high workload

Huang et al.
[109]

- - Y Y - - Finds fog node’s willingness to compute offloaded tasks of other fog nodes and
perform load balancing based on queue length, historical energy consumption and
current status

Li et al. [140] Y - Y - Y - Balances load among network layers to achieve energy efficiency
Unfinished tasks due to any fog node failure are offloaded to other devices

Saraswat et al.
[141]

Y - - - - Y Handles ubiquitous system application tasks that are very sensitive to data accuracy
and deadlines. The processed information may lose importance if delayed

Chen et al.
[142]

- - - - - Y Data is encrypted before offloading from one layer to the next.
Public and private keys are used for security.

‘Y’: supported
‘-’: not supported

making the task offloading decision. The fog node with the
least residual energy will be given less tasks and the one with
more residual energy will be assigned more tasks. To cater
for the time constraints, trade-off is done between fog node’s
remaining energy and delay to select the best fog node that has
the lowest processing delay and maximum remaining energy.

Zhang et al. [111] achieves fairness by considering the
power source of the devices. Battery powered devices are given
less tasks to ensure their long stay in the network, while work
is fairly distributed among electric powered devices. Fairness
is achieved through a scheduling metric (weight/ value used
in selection of a fog node), which will be high for a: (a)
fog node which provides lower overall task offloading energy
consumption, (b) fog node that has high a scheduling priority
(i.e., fog node that has electric power supply), (c) and fog node
that maintains a lower historical average energy consumption.

Liu et al. [135] uses energy harvesting to provide end
devices with the required power resource to perform local
computing or offload task to the fog node. The work performs
max-min energy balancing by providing harvesting energy to
the end devices according to their workload and remaining en-
ergy. The end devices with low remaining energy are provided
more harvesting energy and those with high remaining energy

are provided with less harvesting energy to balance the overall
remaining energy of the end devices Using this approach, the
authors achieve fairness in the remaining energy of the end
devices.

C. Fog node cooperation

It is widely accepted that fog nodes will process offloaded
tasks with all of their computation capabilities, and all fog
nodes would be willing to accept offloaded tasks from their
neighboring devices. However, a portion of fog nodes may
not be willing to share their resources and may want to apply
different resource allocation policies to control their compu-
tation, storage, and power resources. Some of the reasons for
this control may include: money, energy conservation, and
avoidance of traffic congestions/ long queues. For this reason,
some researchers have incorporated algorithms in their works
to seek the fog node’s willingness to participate before making
resource allocation decisions.

Dong et al. [139] has proposed a fairness cooperation policy
that incorporates both fairness in task distribution and the fog
node’s willingness to cooperate. Fog node owners decide the
amount of their resources to share in each task offloading
assignment. The focus of the work is to create a healthy
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cooperation environment among fog nodes, in which fog node
owners feel comfortable and are encouraged to cooperate and
commit their maximum resources by: (a) ensuring fairness
in task distribution, (b) employing a policy of reward and
punishment against the percentage of their resources shared.
The more resources a fog node contributes, the more help that
fog node receives from other fog nodes when it has a high
workload.

D. Load balancing

is an important QoS feature which ensures that no device
is overworked and it also stabilizes network operations. Load
balancing generally reduces task queues in the devices which
decreases tasks’ completion times.

Huang et al. [109] has incorporated both a fog node’s
willingness to cooperate and load balancing in their proposed
work. To receive a fog node’s willingness to participate,
devices broadcast their task information against which, will-
ing fog nodes calculate report based on historical average
energy consumption and the current task offloading energy
consumption. From this report, the fog node decides to offer
complete, some, or no resources to the device. Load balancing
is achieved by making a trade-off between the historical
average energy consumption status of the fog node and the
queue length at that fog node. A fog node with a high historical
status will be considered last for task allocation. However, if
it has smaller queue lengths, then it may be considered with
a higher probability.

E. Fault tolerance

is ability to provide the desired service despite the presence
of certain failures in the system. Li et al. [140] have used
both load balancing and fault tolerance in energy efficient
task offloading. A task can be offloaded to three layers,
namely, edge, fog, and cloud. Load balancing is achieved by
determining the minimum/optimum workload for the edge and
fog layers beyond which tasks are offloaded to the next higher
layer (fog layer for the edge devices and the cloud layer for
the fog devices). However, if the task arrival rate at a layer is
less than the service time, then task will be processed in the
same layer.

Fault tolerance is incorporated in fog nodes to ensure
the completion of all tasks offloaded to the fog nodes. The
offloaded tasks are traced and if one fog node leaves the system
when it runs out of power and has an unfinished task, then that
task will be offloaded to another fog node for execution.

F. Accuracy and privacy assurance

Some researchers have also incorporated data accuracy and
privacy while achieving energy efficiency. Saraswat et al. [141]
proposed a Ubicom system which consists of tiny, battery
powered devices called leaf devices that contain sensing units
for monitoring the environmental activities at periodic intervals
of time. These applications are very sensitive to data accuracy
and deadlines, as their information may lose importance if
delayed such as Amazon echo speaker and Apple watch. The

authors used queuing theory to distribute workload among
edge, fog, and cloud layers to ensure task completion within
deadlines while ensuring data accuracy.

Wang et al. [108] proposed a trust model for fog nodes
to evaluate the information generated by sensor nodes. The
sensor nodes may collect invalid or misleading data due
to noise and malicious attacks which cause faster energy
consumption through an increase in transmission activities,
thereby, reducing the life of the sensor node. Two methods are
used by fog nodes to determine their trust on sensor nodes:
a) Direct evaluation method. For each direct neighbor, direct
trust is calculated from: (1) Historical communication interac-
tions, (2) Node residual energy and (3) Node packet loss rate.
b) Indirect evaluation method. For all nodes that are not
directly connected with fog node, indirect trust is calculated
based on the direct trust value of its direct neighbor. Nodes
are divided into clusters and cluster heads are selected based
on the trust value.

Chen et al. [142] proposed a privacy and energy aware data
aggregation computation offloading scheme for fog assisted
IoT networks. The data communication between layers is
encrypted to protect against eavesdropping and compromising
attacks. A trusted authority is used to generate public and
private keys which are used by sensing layer and cloud layer.
After their computations, both the sensing layer and the fog
layer send their results to the cloud layer which uses its private
key to decrypt the received information and aggregate the
results obtained.

G. Resource allocation

Fog computing has no dedicated resources and relies on
computation resources of available devices (such as smart-
phones) in the network. The versatility of resources opens up
the challenge of availability and efficiency while developing
resource allocation and scheduling schemes in fog IoT net-
works. Furthermore, each fog device is primarily responsible
for its own computation tasks and performs other computation
activities after. If the fog device is fully utilized in own tasks,
then it will not do any processing for other devices. These
limitations make resource allocation and task scheduling a
key challenge in running IoT applications in a fog computing
environment [143].

For efficient resource allocation, resource schedulers have
to consider all available computing devices/ nodes, know their
resources and information about their ongoing computation
tasks. They have to balance various computations, commu-
nication and latency constraints to distribute the workload to
achieve energy efficiency while not overloading the computing
devices to deplete them of their resources. The process of
resource allocation in fog computing based IoT networks is
facilitated through: accurate network information and learning
algorithms.

1) Methods for obtaining network information: Having
accurate information about the network is a key requirement
for the devices to make efficient resource allocation decisions.
Edge devices lack network information and frequently offload
to the nearest fog node only. However, fog nodes act as the
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main resource manager and decision maker in the fog IoT
network, for which it is either provided with the network
information by some central controller (centralized method of
obtaining network information) or it learns the information
from its environment using various techniques (distributed
method of obtaining network information). Table VIII presents
some of the techniques used for collecting network informa-
tion for resource allocations.

TABLE VIII: Methods for obtaining network information

Network
information

Reference Network information learning process

Centralized

Yang et al.
[126]

Centralized controller makes offloading
decision for which it obtains network
information from base station

Gai et al.
[114]

Task offloading tables are pre-stored in
fog servers based on which the initial
sub-optimal task allocation plan is pre-
pared

Fu et al.
[128]

Mobile Edge Computing (MEC) server
is placed inside the base station and it
obtains all information from there

Zhang et al.
[111]

A virtual container that has complete
information of network resources is con-
sidered. It makes offloading decisions

Li et al.
[140]

Assumes that the monitoring center re-
sponsible for scheduling tasks is in the
cloud

Abkenar et
al. [127]

Assumes that task fog node knows loca-
tion of the helping fog nodes

Karimiafshar
et al. [131]

Central controller makes all offloading
decisions

Distributed
Zu et al.
[110]

Task fog node broadcasts task’s informa-
tion against which the helper fog node
proposes task node with the best channel

Huang et
al. [109]

End device broadcasts task information
which is used by the fog node that is
willing to participate in task offloading
process

2) Learning algorithms for obtaining network information:
Machine learning based algorithms are used for efficient
resource allocation in fog IoT networks. Table IX presents
a summary of recent works in this area and we provide the
details below.

Zhu et al. [144] uses the Deep Learning (DL) technique to
solve energy and delay constraints for fog node to fog node
offloading. The work jointly optimizes offloading ratio (ratio
of offloaded tasks to computation tasks processed for other
fog nodes), local Central Processing Unit (CPU) resource uti-
lization, bandwidth used and external CPU resource utilization
while meeting the constraints. A Deep Neural Network (DNN)
is trained on the labeled data to output the optimal offloading
action. Every layer in the constructed DNN is fully linked and
the gradient descent algorithm is used to minimize the cross
entropy loss for gaining the optimal parameter values.

While doing resource allocation, researchers assume that
IoT devices have complete state information about the system
whereas in practical situations, it may not be the case and IoT
devices may only have partial information about the system.
Tang et al. [137] explored the decentralized partially observ-
able offloading problem wherein energy harvesting enabled

IoT fog systems make offloading decisions based on their
local observations of the system. The authors formulated the
optimization problem as a decentralized partially observable
Markov Decision Process (MDP) and developed a learning-
based decentralized offloading algorithm to solve the problem.
The objective of the proposed MDP formulation is to maxi-
mize the reward of the system which is reduced electricity cost
while taking into account the current number of its remaining
tasks, the renewable battery energy level, and the availability
of the fog node’s resources.

The authors applied the Lagrangian multiplier function and
the policy gradient method to find the local optimal solution
for the problem. At the beginning of each time slot, the fog
node transmits its task queue state to all IoT devices. The IoT
devices make offloading decisions on the basis of queue state
information of fog node and local observation of its system
state (i.e., remaining tasks and renewable battery level). A
portion of the tasks are processed locally by the IoT devices,
whereas, others are offloaded to fog node for processing.

Mebrek et al. [145] proposed a reinforcement learning
based algorithm that allows users to learn the optimal policy
for service request distribution over the fog-cloud system
without a priori knowledge of the dynamic statistics of the
system. The optimization problem is formulated as a Nash
Equilibrium problem, which allows the trade-off between the
energy consumed by the system and the QoS. The user chooses
a fog node (from many fog nodes) or cloud while monitoring
the current state of its environment. The user keeps estimates
of the effect of its decision on the reward, and the combined
actions of all the agents that produced a transition to a new
state. These estimates constitute the Q-function, and are used
by users to make resource allocation decision. By observing
the actual incurred costs, the users update these estimates over
time, and by doing so, also improves its policy for service
request distribution over the fog-cloud system.

Sen et al. [146] formulated a deadline aware, energy effi-
cient task offloading problem to schedule tasks between the
three tiers, i.e., cloud, fog, and edge devices. The cloud server
gathers information regarding the incoming task and node
resource characteristics from all the edge nodes. Afterwards, it
performs reinforcement learning training by deriving the state
which corresponds to the task and node resource character-
istics, and calculates the reward associated with the actions.
The cloud server makes a Q-value table which is distributed
to each node. Nodes use this lookup table to decide where to
run the task, i.e., by itself, at the fog or the cloud. The edge
nodes report the task assignment activities to the cloud server
which keeps updating the Q-value table. This lookup operation
reduces the complexity of the task assignment problem and
reduces the solution time to near real-time.

Yang et al. [147] considered an industrial network archi-
tecture which uses heterogeneous Radio Frequency (RF) and
Visible Light Communication (VLC) to meet different QoS re-
quirements of devices. Devices were divided into two groups.
Group 1 contains devices with low latency and high reliability
requirements but do not have high data rate requirements.
These devices are served by the RF access point. Group 2 con-
tains devices that have high data rate requirements but are less
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TABLE IX: Resource allocation in fog IoT networks - Learning based techniques

Year Reference Problem Learning tech-
nique

States Actions Rewards

2019 Zhu
et al.
[144]

Energy and delay aware resource
allocation in fog computing

Deep learning with
gradient descent

- - Energy and time
optimization

2020 Tang et
al. [137]

Energy harvesting enabled IoT
devices do not have complete
system information and have to
make offloading decisions based
on partial global observation of
the system

Decentralized
Markov decision
process with policy
gradient algorithm

Data queue
Renewable energy queue

How much of the
task to offload to the
fog node

Reduced electricity
cost

2019 Mebrek
et al.
[145]

Distributed resource allocation
decision by users without having
prior knowledge of the system
dynamics

Q-learning based
reinforcement
learning scheme
with ascendant
gradient

Average request arrival
rate
Transmission rate
Task size
Request size distribution

Choose a fog node
from a set of fog
nodes ’OR’ choose
cloud

Energy efficient re-
source allocation

2019 Sen
et al.
[146]

Energy efficient task scheduling
among the three tiers i.e., cloud,
fog and edge devices

Q-learning based
reinforcement
learning scheme

CPU capacity
Available bandwidth

Edge node assigns
a task to itself, fog
within its region or
the cloud

Energy and time
optimization

2020 Yang et
al. [147]

Choose from heterogeneous radio
frequency/ visible light commu-
nication networks and select en-
ergy efficient access point to meet
QoS requirements of devices

Markov decision
process
Post decision state
based experience
replay and transfer
reinforcement
learning algorithm

Sub-channel usage status
Channel quality
Service application types
Service satisfaction

Communication
network selection
Sub channel
assignment
Transmit power
management

Maximize network
energy efficiency
while satisfying the
minimum data rate
constraints

‘-’: Not supported

interested in the latency and reliability requirements. These
devices are served by the VLC access point. Devices shift from
one group to the other with changes in the application service’s
requirements. The selection of the network and an access point
with the least energy consumption is formulated as a MDP
and a new deep Post Decision State (PDS) based Experience
Replay and Transfer (ERT) reinforcement learning algorithm is
proposed to achieve intelligent resource management. Instead
of directly using the selected native action strategy to update
the Q-function, PDS-ERT calculates the similarity level be-
tween the current agent and other agents (historical policy) to
generate an overall action. The experience learned with the
best reward is recorded in the relay memory for future use.

V. FUTURE OPPORTUNITIES AND OPEN CHALLENGES

There are several challenges that must to be addressed while
designing, modeling, and implementing fog-based energy-
aware 6G-enabled massive IoT architectures, policies, and
applications. We discuss some research opportunities and
challenges that need further attention for enabling 6G-based
energy-efficient solutions for massive IoT-fog environment.

A. Resource management

Resource management in a distributed system refers to
the management of computing and storage resources. It is a
challenging task to find out the available suitable fog nodes
in the vicinity of the IoT devices. In an IoT-enabled fog
network, resource allocation and task offloading play a central
role in energy-aware resource management. It is important
to utilize fog resources efficiently to avoid the wastage of

energy. In such networks, the utilization of resources is not
identical and there are frequent variations in the pattern of
IoT traffic. Hence, it is considered to be a highly dynamic
environment that makes resource management even more
challenging. Consequently, it requires sophisticated and smart
approaches that achieve a trade-off between the optimization
of resource utilization, energy consumption, and quality of
service requirements of the application and services. In this
context, load-balancing techniques can also be effective to
avoid the unnecessary delays, optimize the bandwidth, and
improve the utilization of resources. However, these techniques
should also ensure the energy-efficiency of the network. For
instance, at lower network load (of IoT jobs) conditions, load-
balancing techniques are not as effective because the jobs can
be easily processed by the nearby fog devices, and redirecting
the jobs to other fog devices can increase the communication
and management overheads. Additionally, it can be ineffective
to utilize and balance the load among all available fog devices
when the jobs can be handled by a few fog devices. To
achieve this, we need a scalable and cost-effective resource
management and load-balancing strategy to efficiently manage
the fog resources.

B. Heterogeneity
Heterogeneity refers to the differences in software and

hardware. This concept is also applied for the various types
of jobs that need to be processed by fog nodes. In an IoT-
enabled fog network, there are various types of IoT and fog
devices having different hardware and software. Moreover,
there are multiple IoT applications that execute in the IoT-
enabled fog network. These applications have different stor-
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age and computing requirements. In such a highly heteroge-
neous environment, it is challenging to apply energy-aware
mechanisms. Moreover, heterogeneous operating systems have
different power consumptions which can be optimized to
consume less power. This issue cannot be neglected because
different versions of the same operating systems may also
exhibit variations in the power that they consume. An op-
erating system can manage its operations to deal with energy
issues. In the case of fog devices with different hardware and
software specifications, the execution time and synchronization
issues need to be addressed for storing and computing the
different types of IoT requests. Hence, the traditional energy-
efficient policies are hard to apply because of the heterogeneity
of the IoT-enabled fog environment. Similarly, the various
generations of wireless technologies (from 1G to 6G) are also
expected to be compatible with the considered mechanisms
for smooth operations. From this perspective, efficient hand-
over mechanisms are required to assure acceptable QoS. To
address the heterogeneity issue in fog computing, semantic-
based approaches [148] can be useful. Moreover, developers
of IoT applications can also play a major role in addressing the
heterogeneity issue by introducing energy-aware procedures as
an essential part of the application. There is a need to define
policies that consider the energy and thermal constraints while
considering the matching criterion of resource capabilities and
the requirements of the IoT jobs.

C. Balancing energy-efficiency and QoS-awareness

It is observed that the majority of the energy-aware mecha-
nisms applied in the distributed computing environment have
a considerable impact on the QoS. One of the most popular
schemes used to save energy in fog networks is the consolida-
tion of devices where the idle or underutilized devices or their
components are turned-off or put into sleep mode to minimize
energy consumption. This strategy is effective because it
allows saving dynamic as well as static energy consumption of
the fog-based networks. However, this power-saving scheme
can affect QoS in different ways. For instance, when a device
is put into sleep mode or turned off, there is a need to
redirect the incoming IoT traffic in a timely manner to other
available and nearby fog devices. This process can increase
the latency because, in an IoT-based fog environment, the IoT
requests are sent to the nearby fog node. Hence, serving the
request by a fog device that is far from the IoT device (that
generated the request) will cause an increase in the delay.
Moreover, during the process of turning off a device, there
is a slight probability that some IoT requests can be dropped
which can significantly affect the performance of the network.
Additionally, a smooth and efficient migration of tasks is
required from one fog device to another before applying it
to the underutilized fog devices. When the traffic of the IoT
requests is increased, there is a need to dynamically turn-on
the additional fog devices; however, the process of turning-
on new devices can take time and can delay serving of IoT
requests. Moreover, many electronic devices consume more
energy when turned on. Hence, there is a need to find a balance
between turning-off and turning-on of the fog devices to avoid

unnecessary impact on the QoS. The frequent variations in
the state of the fog device may not only affect the QoS but
can also degrade the energy-efficiency. Another well-known
energy-aware technique is DVFS that deals with the frequency
of the processor. Although DVFS can play a role in energy
savings; however, it can also affect the performance of the
fog-based IoT environment. The processing delay can increase
if the frequency of the processor is not well synchronized
with the deadline requirements of an IoT job. Hence, we need
to develop energy-aware and performance-aware mechanisms
to reap energy savings without affecting the service level
agreements of application services.

D. Selection of energy-efficient approach

Different approaches are used to improve the utilization
of resources and save energy in IoT-enabled 6G fog en-
vironment such as energy-aware offloading, energy-aware
fog node placement, and energy-aware device control. The
selection of an appropriate approach is crucial to achieve
maximum energy savings without affecting the performance
of the fog network. There are mainly two types of energy
consumption in fog computing environment namely, static
and dynamic energy consumption. Some approaches target the
static energy consumption while others address the dynamic
energy consumption. When a device is turned on and it is
not processing any job, its energy consumption is termed as
static energy consumption. Dynamic energy consumption is
the energy consumed while processing IoT requests by a fog
device. Static energy consumption is usually higher than the
dynamic energy consumption. The selection of an energy-
efficiency technique and the decision to target the type of
energy consumption in a fog network remains a challenge
due to the highly heterogeneous environment and service
level agreements of IoT applications. Since dynamic energy
consumption is the major component of the total energy
consumption of fog nodes, novel techniques that focus on
dynamic energy consumption should be further explored.

E. Reconfigurable Intelligent Surface

Reconfigurable Intelligent Surface (RIS) is a key technology
used in 6G to improve throughput and reduce latency [14]. A
RIS consists of large number of passive elements whose phases
can be controlled and reconfigured. By controlling the phase,
the reflection characteristics of these surfaces can be altered,
thus facilitating the propagation of signal between two wireless
nodes.

RIS can significantly improve the throughput of the network
and increase the reliability of communications [149]. RIS
will also reduce the probability of outage, end-to-end delay
and number of transmissions. Thus, tasks from IoT nodes
can be efficiently delivered to the fog nodes, requiring lower
energy and fewer transmissions. Once the fog nodes have
processed the task, they can transmit it back to the IoT nodes
with reduced transmission power. Similarly, for data caching
applications in the presence of RIS, content can retrieved from
the fog nodes with lower energy [150]. A major challenge in
RIS assisted fog computing is to efficiently allocate RIS to the
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multiple IoT nodes. In this context, matching theory based
algorithms [151] can be used to find an optimal and stable
solution.

F. Federated Learning

To support the large the large amount of data generated from
6G enabled devices, massive computing will be required. Intel-
ligent learning algorithms will be needed to effectively utilize
the available computing resources. To reduce the complexity
of the learning algorithms for energy-aware task offloading,
each fog node can develop a model based on local data such
as number of incoming tasks, task sizes, arrival rate of tasks,
and energy consumption of the fog node [152].

Fog nodes can share the local learning models with a
centralized controller to find a more accurate global learning
model. This technique is called federated learning and provides
benefits such as security, collaborative data sharing, reduced
complexity and more accurate global models. Fog nodes will
efficiently save energy in this case by running less complex
algorithms and also making more accurate energy-aware task
offloading decisions. A key challenge in using federated learn-
ing for energy-aware task offloading is to find a global learning
model using local models trained on different data sets [153].

G. Energy cooperation

Energy cooperation will be a key component of 6G based
fog computing to conserve energy of fog and IoT nodes.
Future 6G devices will harvest energy from several sources
such as solar, radio frequency etc. Thus, energy cooperation
will be needed among IoT and fog nodes to enable massive
computation requirements. Nodes with higher available energy
can perform tasks on behalf of nodes with lower energy. In
addition, intelligent spectrum utilization techniques will also
be developed to enable 6G communication and computing
[154]. A vital challenge for energy cooperation is to develop
incentives mechanisms to motivate fair and honest cooperation
among devices [155].

VI. CONCLUSION

This paper provides an overview of massive IoT applica-
tions, 6G technology and energy challenges in fog computing.
We present a survey of recent works in the area of energy
efficient fog computing for IoT networks. We classify recently
proposed energy efficient solutions into various categories
and summarize their advantages and drawbacks. Finally, we
discuss open challenges and highlight future research oppor-
tunities for improving energy efficiency of fog computing in
6G enabled massive IoT.
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