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Abstract—Vehicular networks are an indispensable component
of future autonomous and intelligent transport systems. Today,
many vehicular networking applications are emerging, and there-
fore, efficient data computation, storage, and retrieval solutions
are needed. Vehicular Edge Computing (VEC) is a promising
technique that uses Road Side Units (RSUs) to act as edge
servers for caching and task offloading purposes. We present a
task-based architecture of content caching in VEC, where three
major tasks are identified namely, content popularity prediction,
content placement in the cache, and content retrieval from the
cache. We present an overview of how Artificial Intelligence (AI)
techniques such as regression and Deep Q-learning can improve
the efficiency of these tasks. We also highlight related future
research opportunities in the areas such as collaborative data
sharing for improved caching, efficient sub-channel allocation
for content retrieval in C-V2X, and secure caching.

Index Terms—Internet of Vehicles, vehicular networks, artifi-
cial intelligence, caching, edge computing.

I. INTRODUCTION

Internet of Vehicles (IoV) is a key technology that enables
several applications for future traffic management. With re-
liable wireless communications among vehicles themselves
along with the infrastructure Road Side Units (RSUs), au-
tonomous driving and intelligent traffic congestion control can
be realized [1]. Moreover, several infotainment and entertain-
ment applications such as advertisements by companies, con-
tent sharing by service providers, and multimedia streaming
can be developed using an IoV communication architecture.

As innovative vehicular applications continue to emerge, big
data will be generated and it will need to be disseminated
among various IoV nodes (vehicles and RSUs). Similarly,
several tasks such as vehicle safety decisions, traffic route
calculation, content downloading and so on will need to
be performed by the IoV nodes. All these new tasks will
need more computation and storage. Cloud computing is one
possible solution for caching popular and urgent data, and for
offloading computationally intensive tasks. Since cloud servers
are located far away from the vehicles, storage and computa-
tion may not be efficient due to the long geographical distance
which results in higher latency (to retrieve contents from the
cloud cache or sending task offloading requests) and wastes
communication resources (for long distance communication
between the vehicles and the cloud) [2].

In this context, Vehicle Edge Computing (VEC) is a promis-
ing technique wherein RSUs act as edge servers providing
computing and storage services closer to the vehicles. Using

VEC, data can be processed quicker which is key for IoV
applications and as a result decisions can be made faster
and the latency can be reduced [3]. Higher processing delays
can result in expiration of the data which can lead to wrong
inferences. For instance, if a vehicle offloads a safety task to
a server (by sending neighborhood data) which takes a long
time to process the data, the safety data may no longer be
relevant at that time and could issue the wrong instruction to
the vehicle.

Other advantages of VEC include reduced communication
bandwidth because data is disseminated to servers near to the
vehicles for processing. It is critical to reserve a vehicular
channel for application data sharing rather than using it for
sharing computing and storage messages. Distributed edge
servers can also provide reliable computation and storage as
compared to central cloud computing. Moreover, edge servers
along with cloud servers, provide a scalable solution when
the number of vehicular applications increases. Based on the
application type and delay requirements, data can be offloaded
to either the edge or the cloud servers [4].

This work focuses on the caching service provided by VEC.
Efficient caching and RSU storage management are major
challenges in dynamic vehicular networks. Fast mobility and
short-lived connectivity in vehicular network make it harder
to rank the contents in terms of their popularity, and therefore,
storage needs to be periodically updated with the relevant
contents, and in this case, an optimal resource allocation
strategy is needed to enable download of contents from the
cache.

Although a technique such as matching theory [5] has
been used for effective content caching in VEC, Artificial
Intelligence (AI) techniques can collect and analyze different
types of data to help make better informed decisions regard-
ing caching. Data in vehicular networks has temporal and
location variability. Hence, static algorithms may not work
well in vehicular networks. Learning techniques can help gain
useful insights into the data and use data caching to reduce
application latency and improve application reliability.

Research contributions of this work
We summarize the research contributions of this work as

follows:
• We present an overview of a task-based architecture for

content caching in VEC.
• We describe how AI techniques such as regression, rein-

forcement learning and deep Q-learning can improve the
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Fig. 1: Task-based caching in VEC architecture.

caching process in VEC.
• We discuss several open challenges and future opportu-

nities for using AI for efficient caching in VEC.

II. CACHING IN VEHICULAR EDGE COMPUTING

Fig. 1 presents a vehicular edge computing architecture
where vehicles communicate with RSUs for storage and
computation services. Each RSU has a limited storage space
for caching contents. Vehicle can send content requests to the
RSUs using cellular V2X communications. If the content is in
the cache of the RSU, it can send the content to the vehicles,
otherwise, vehicles have to download the content from the
cloud server.

Content caching in IoV places popular contents into the
storage of the RSU. We divide content caching into three
major tasks. The first task is the content popularity prediction
where RSUs estimate and rank the contents in terms of their
demand. As the RSUs have finite storage space and contents
compete to be placed in the cache, an intelligent allocation
is required. RSUs can evaluate the content popularity based
on the requests generated by the vehicles or forecast it using
learning techniques.

The second task for caching in VEC is the content place-
ment in the cache. Once the data is ranked in terms of popu-
larity, it can be placed in the RSUs storage blocks. However,
decisions such as whether to cache the content or which RSU
to choose for placing the content are critical. For this purpose,
optimization algorithms such as knapsack and matching theory
have traditionally been used [6]. However, the time-varying
nature of vehicular data makes learning algorithms well-suited
to perform this task.

Content retrieval from the cache is the last task for caching
in VEC. Since most contents will be placed in the cache and
vehicles will download them directly from the RSUs, such
an approach puts a burden on the RSU to vehicles link. The
communication resources need to be intelligently allocated
because safety data is also shared over the same channel. Two

major wireless technologies could be used to retrieve contents
from the cache, namely, IEEE 802.11p and Cellular V2X (C-
V2X) [1]. IEEE 802.11p is a variant of Wi-Fi technology and
C-V2X uses 5G cellular communications.

Content retrieval can be a challenging task as the network is
normally shared with many types of data traffic. Issues such as
data rate reduction, higher packet inter-arrival times and packet
losses may occur when the network load increases. Efficient
resource allocation techniques are needed to address channel
overloading. In IEEE 802.11p, a multi-channel operation may
be used in this context, isolating safety and non-safety data
and placing them on different channels. In this case, content
retrieval can be assigned one particular non-safety channel.
Other possible solutions include medium access control tech-
niques which focus on providing delay guarantees, load bal-
ancing, and fairness. In contrast, C-V2X divides the resources
into frequency and time units known as sub-channels. Here
efficient scheduling techniques are needed which can provide
low content retrieval times while not affecting the safety data
transmissions. Traditional resource allocation techniques such
as maximum throughput or fairness based scheduling may
not work well in this scenario because they do not consider
different types of data traffic. Therefore, learning techniques
are useful in scheduling the data adaptively and intelligently.

Several types of IoV data can be placed into cache. This
includes safety data such as a scenario where a group of
vehicles detect an accident or emergency situation and data
(such as information about the accident, image of the accident
and video of the accident situation) can be stored in the nearby
RSU cache. This data is then disseminated to the vehicles
moving toward the accident place and also shared with the
nearby RSUs. However, most of the safety data and safety
tasks are stored and computed at the vehicles due to time delay
requirements. Vehicles have to periodically share cooperative
awareness messages within a time delay of 100 milliseconds.
Based on these periodic messages, vehicles develop a Local
Dynamic Map (LDM) and make driving decisions such as lane
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TABLE I: Overview of learning techniques used for tasks in VEC

MEC Task Problem Learning technique used Key idea

Content

popularity

prediction

Time varying content popularity prediction [7] Autoregression Forecast future content popularity based on past values

Location-aware content popularity prediction [8] Ridge regression Consider location attributes while predicting content pop-
ularity. Add a penalty to overcome the noise in the con-
tent demand information and provide stable estimation

Location-aware and preference-based content
popularity prediction [9]

Logistic regression Capture user preference and region-based content popu-
larity

Time varying content popularity prediction [10] Regression using
Constrained Non-Negative
Least Squares (CNNLS)
approach and Follow
the Leader (FTL) online
learning technique

Use online optimization and online learning to predict
the content in a computationally efficient manner

Content

placement

Reduce latency of content caching [3] Heuristic Q-learning Use Long Short-Term Memory (LSTM) network to pre-
dict mobility of vehicles. Q-learning with greedy search
is used to optimally select caching strategy

Efficient content placement and task computa-
tion [4]

Deep Q-learning with
multi-timescale

Two Deep Q-learning models at two different time scales
and mobility-aware reward estimation to reduce complex-
ity when a large action space exists

Collaborative data scheduling to reduce cost and
meet delay constraints [11]

Deep Q-learning Data scheduling decision based on whether to cache data
at the RSU or other vehicles

Joint content caching and computation for con-
tinuous action space [2]

Deep Deterministic Policy
Gradient (DDPG)

Actor-critic algorithm that uses actor network for policy
learning and critic network for policy evaluation

Content

retrieval

Low content access latency and improve trans-
mission fairness [12]

Q-learning Use Q-learning for adaptive contention window based
Medium Access Control (MAC) protocol

Improve content throughput and reduce the
packet loss [13]

Q-learning Use network parameters to find optimal Uplink
(UL)/Downlink (DL) ratio in Time Division Duplexing
(TDD) based 5G vehicular networks

Maximize resource utilization in network slicing
based content retrieval [14]

Off-line Q-learning Optimally allocate radio resources on each network slice

changing and applying sudden brakes.

Infotainment data will be a major part of cache storage as
such data will be in demand and be requested by many vehicle
users. Moreover, content providers will also be interested in
hosting their data in the cache storage for user convenience.
This data will include large multimedia files such as movies
and advertisements. With the movement of vehicles, the loca-
tion of caching such data may need to be changed periodically.
One solution is to cache only certain chunks of infotainment
data in a RSU and store the other chunks on the neighboring
RSUs depending on vehicles speed and direction it is moving.

Another type of data that can be placed in the cache is the
information related to the communication protocol parameters.
Vehicular networks different types of protocols at the network,
link, and physical layers. Some of these protocols have specific
location and time dependent parameters or variables that need
to be disseminated to all the vehicles for optimal operation
of the protocols. For example, transmission power control
protocols may require knowledge of current channel load or
network density data. RSUs can store the data relevant to its
geographical region, periodically update it and send it to all
incoming vehicles so that transmission power control protocol
can provide optimal throughput. Similarly, other physical layer
protocols such as congestion control, data rate adaptation, and
sub-channel selection can also cache their important control
parameters.

Similarly, at the link layer, several medium access protocols

rely on clustering techniques. This requires the selection of
cluster size and cluster head vehicle. Other variables for
link layer protocols may include information about time slots
and sensing time. At the network layer, information about
routing algorithms can be stored in the cache. So, instead of
distributing the collection of protocol data (parameters and
variables) by the vehicles, RSUs can better collect and share
this information.

III. AI EMPOWERED CACHING IN VEC

In this section, we describe how AI can be helpful for
caching in VEC. As described in the last section, caching in
VEC can be divided into three major tasks. Table I presents
how AI can be used to efficiently perform each of these tasks.

A. Content popularity prediction

Content popularity is a key metric for placing contents into
the cache storage in edge servers. Content popularity directly
relates to the content in demand which will be frequently
requested for download by several vehicles. Placing popular
content into the cache yields several advantages such as
optimal use of limited cache storage, quick retrieval of content
at the vehicles with a higher data rate, and reduced load on
the communication channel between the RSU and the vehicle.

Content popularity is generally calculated based on the
number of requests by the vehicles for a particular content.
Moreover, content popularity is often assumed to follow the
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TABLE II: States, actions and reward in reinforcement learning techniques used for content placement

RL technique States Actions Reward

Heuristic Q-learning [3] RSU cache occupation Cache or not to Cache, selection of RSU
based on LSTM network

Content retrieval time

Deep Q-learning [4] Signal-to-Noise Ratio (SNR) be-
tween vehicle and RSU, contact
frequency, and contact time be-
tween vehicles and RSUs

Cache or not to cache, number of coded
packets to be cached, computation task to
be offloaded or not

Cost of communication, computa-
tion and caching

Deep Q-learning [11] Amount of data cached in the
queue

Data scheduling Data scheduling loss

Deep Deterministic Policy
Gradient (DDPG) [2]

State of vehicle, computation re-
sources, caching resources, band-
width of server

Amount of caching and computation re-
sources, bandwidth allocated by RSU to
vehicles

Computing utility, caching utility,
energy consumption cost

Zipf distribution [6]. A major challenge in modeling content
popularity in IoV is that it varies with time and location. As
vehicular network is highly dynamic with vehicles constantly
moving at a high speed, evaluating content popularity in real
time is a cumbersome task. Even within a time span of few
minutes, the content popularity within the coverage range of an
edge server (placed in the RSU) may change. Similarly, each
edge server may have a different content popularity within its
geographical range.

It is vital to accurately predict the content popularity for
efficiently performing the caching in MEC based IoV. This
prediction may use past history of requests for a particular
content as well as the current demand for the content. Online
learning techniques are mostly used for content popularity
prediction because they do not require a training phase and
are suitable in predicting the time-varying nature of content
popularity. Moreover, online learning techniques require less
data storage and are computationally less intensive as com-
pared to offline learning.

Regression is a key learning technique that is efficiently
used to predict the content popularity. For example, in [7],
an autoregressive model is used to forecast the future content
popularity based on past content demand. The popularity is
based on the contents popularity history of the past 15 cycles.
In [8], content popularity is predicted by taking into account
the content and the location attributes. Using the content de-
mand information in the previous time slot, a ridge regression
algorithm is proposed to evaluate the content popularity in the
current time slot. The rationale behind using ridge regression
is to mitigate the random noise in the required information.
This is achieved by adding a suitable penalty which results in
a stable estimation.

In [9], the authors propose a logistic regression based
algorithm to predict content popularity (value between 0 and 1)
based on the location and the user preferences. Another online
learning and content popularity prediction is proposed in [10]
which predicts the popularity of contents at a given time
based on past content popularities. The regression problem
is solved using the Constrained Non-Negative Least Squares
(CNNLS) approach. To reduce the computational complexity
of the algorithm by the authors of [10], the authors further
propose the use of an online learning technique such as Follow
The Leader (FTL).

B. Content placement in the cache

Content placement in the cache storage is the second task to
be performed for caching in VEC. As the amount of storage
space available at the edge servers for caching is limited,
it is critical to optimally utilize it. AI can play a vital role
in intelligently placing contents in the cache by collecting,
predicting, and processing data such as content popularity,
content expiry time, vehicle mobility, cost of storage and link
conditions.

Reinforcement Learning (RL) is a promising AI technique
that has been frequently used in the literature to optimize
content caching. RL is a branch of machine learning wherein
an agent learns to take optimal actions when interacting with
an environment. The agent improves its learning experience
based on repeated observations of taking actions in a given
state and computing rewards. The goal of RL technique is to
find an optimal strategy that maximizes the reward. There are
two types of RL, model-based and model-free. In model-based
RL, an agent aims to use or learn the model (a model here
refers to a reward function and state transition probabilities).
On the other hand, in model free RL, an agent makes decision
based on experience through repeated observations without
learning the model. While model-based RL techniques are
more efficient because agent strategies can be planned based
on the model, developing an accurate model in a dynamic
environment is a challenging task. Therefore, model-free RL
techniques such as Q-learning, are more suitable for VEC.
Table II presents states, actions, and rewards for different RL
techniques in the literature.

In [3], the authors used a heuristic Q-learning technique
with greedy search for content placement in the cache. Long-
Short Term Memory (LSTM) based neural network is used
to predict the mobility of vehicles from the traffic data. Here,
the RSU cache occupation (number of units of cache that are
occupied) is taken as the state, the decision to cache (if yes,
at which RSU) or not to cache is the action. LSTM based
mobility prediction is used to find the best action. Moreover,
the reward used by the authors [3] is the time required by the
vehicles to get the required content.

While simple RL techniques are useful when state space and
action space are small, they fail to provide an optimal solution
otherwise. Therefore, Deep RL techniques such Deep Q-
Learning (DQL) are more useful for VEC. In DQL algorithms,
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TABLE III: States, Actions and Reward in Reinforcement learning techniques used for content retrieval

RL technique States Actions Rewards

Q-learning [12] Contention Window (CW) value Packet transmission +1 if vehicle chooses most com-
monly used CW within first hop
neighbors. Reduced reward if ve-
hicle chooses a different CW

Q-learning [13] Percentage of UL/DL data rate
against channel capacity

UL/DL ratio UL and DL data rates

Off-line reinforcement
learning [14]

Single state Slicing ratios Resource utilization

the agent stores its experiences (i.e., states, action, rewards) in
a replay memory which can be used to train a Deep Neural
Network (DNN). As compared to Q-learning, DQL uses both
past and current experiences to efficiently train the DNN.
Moreover, DQL algorithms are more stable due to less frequent
updates of the weights in the DNN.

The authors of [4] use Deep Q-learning technique to reduce
the system cost (that includes the cost of communication, com-
putation, and caching storage) in the presence of finite cache
storage. The authors propose a deep Q-learning technique with
two different models at two different time scales, a large time
scale corresponding to several time slots whereas a small time
scale for single time slot. In the proposed algorithm, states
depend on SNR, contact frequency, and contact time between
the vehicles and the edge servers. Actions are the caching
decision, number of coded packets (using Fountain code) to be
cached, and making the task offloading decision. The reward is
evaluated based on the cost of communication, computation,
and caching. In [11], the authors propose another low cost
and delay tolerant technique based on deep Q-learning which
makes decision on whether to cache data at the edge servers or
at vehicles (used as cache storage). The states in the algorithm
include the amount of data cached in the queue whereas
the action is the data scheduling decision. They evaluate the
reward function based on data scheduling loss (which includes
the size of data that does not satisfy the delay constraints
and cost of energy consumption to cache the data) which is
minimized by the proposed deep Q-learning algorithm.

Deep Deterministic Policy Gradient (DDPG) is another
model-free Deep RL technique useful for continuous action
space. DDPG is an actor-critic algorithm, where the actor
network learns the optimal policy by taking actions based
on the given state of the agent. The critic network evaluates
the performance of the action taken and provides feedback to
the actor network. In [2], the authors propose a DDPG based
joint caching and computing algorithm that works well for an
action space with several continuous random variables such
as the amount of caching resources, computation resources,
and bandwidth allocated to vehicles. Here the state depends
on the state of the vehicle (mobility parameters), available
computation and caching resources, and bandwidth of the
server. For reward, the authors proposed utility functions for
computing, caching, and energy consumption. Specifically, the
caching utility depends on the time taken by the server to cache
the content, price paid by vehicle to request the content from
the cache, and the popularity of the content.

C. Content retrieval

Content retrieval is the last major task for the successful
operation of the caching application in VEC. Vehicles can
benefit from caching contents in VEC only if the content is
reliably and correctly received at the receiver. Challenges such
as the design of MAC protocol, efficient resource allocation,
and robust interference management should be properly ad-
dressed to optimize the content retrieval at the vehicles.

As discussed in Section II, IEEE 802.11p and C-V2X
technologies will be used for content retrieval in VEC. For
IEEE802.11p, AI can help in time slot allocations in Time
Division Multiple Access (TDMA) based MAC protocols,
selection of Contention Window (CW) for Carrier Sense
Multiple Access with Collision Avoidance (CSMA/CA) based
MAC protocols, multi-hop transmissions, and efficient cluster
selection (such as the size of the cluster and the cluster head).
In C-V2X, AI techniques can be useful for optimal resource
block allocation, scheduling decisions, and relay selection.

In [12], the authors propose a Q-learning based MAC
protocol for adaptive CW selection in IEEE 802.11p network.
The goal of the technique is to reduce content access latency
and improve transmission fairness among vehicles. Here, the
CW value is taken as the state, packet transmission is the
action, and the reward is chosen to select similar CW values
within a neighborhood for fairness as Table III shows.

The work in [13] uses Q-learning to find the optimal
ratio of time for UpLink (UL) transmissions and DownLink
(DL) transmissions in a Time Division Duplex (TDD) based
5G vehicular network. This proposal improves the content
throughput and reduces the packet loss. To maximize resource
utilization in network slicing based vehicular networks, the
authors of [14] propose an offline Q-learning technique. The
uplink and downlink slicing ratios in each slice is defined as
number of resources allocated to the uplink and the downlink
respectively divided by the total number of resources. The
resource utilization is computed based on the ratio of used
resources to the total allocated resources. Here the actions are
the slicing ratios and reward is the resource utilization. While
online Q-learning uses real-time data for making caching
decisions, offline Q-learning is applied on large amounts
of stored data. A major disadvantage of offline Q-learning
algorithm in context of content caching is that it needs to be
re-evaluated every time the data changes, and it is therefore
not suitable for dynamic vehicular networks.
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Fig. 2: AI techniques used in caching tasks in VEC.

D. Discussion

Fig. 2 presents a summary of AI techniques used in VEC
based caching. For content popularity prediction, regression
and online learning are the suitable AI techniques where
inputs to the regression algorithm include location, mobility of
vehicles, and past popularity data. For content placement and
content retrieval, the optimal AI technique is deep Q-learning.
Here states include CW value, UL/DL ratio and slicing ratio
depending on the defined problem and scenario. Actions are
making decisions about caching data in the RSU, caching data
in the cloud or not to cache. For content retrieval, the action is
to find optimal packet transmission parameters. Finally, reward
is evaluated based on system utility and cost. The goal is to
maximize the system utility (including caching utility, comput-
ing utility and communication utility) and reduce the system
cost (including communication cost and energy consumption
cost). In case of content retrieval, the reward is a function of
data rate.

IV. FUTURE OPPORTUNITIES

In this section, we discuss some future opportunities and
open challenges related to caching in VEC. Table IV presents
a summary of these opportunities and challenges in.

A. Collaborative data sharing using Federated learning

Federated learning is a technique in which each distributed
edge server runs machine learning models based on collected
localized data and collaborate to train a robust centralized
machine learning model [15]. It has advantages such as
maintaining the data privacy of edge servers and it is also
a global improved learning model that can make robust deci-
sions. Federated learning can be useful for further improving
the caching decisions based on collaborative data sharing

of content popularities, vehicle mobility and the amount of
free storage space in the cache. For a highly dynamic IoV
network, such collaboration of machine learning models can
help implement caching on the fly, where contents can be kept
into the cache irrespective of vehicle mobility (by moving the
content into the cache of a neighboring edge server if the
vehicle moves away from the current edge server) and can be
continuously downloaded. Intelligent handover schemes can be
implemented using federated learning. The future challenges
in this area include protocols for collaborative model sharing
and making decisions based on different models trained on
different datasets.

B. Improving the sensing-based semi-persistent scheduling
protocol for content retrieval

In C-V2X, mode 4 is defined for autonomous resource
allocation which is particularly useful for direct communi-
cation among the vehicles. The 3rd Generation Partnership
Project (3GPP) has proposed a Sensing-Based Semi-Persistent
Scheduling (SB-SPS) protocol for autonomous resource allo-
cation [1]. From the perspective of content retrieval from edge
servers, C-V2X mode 4 communications among vehicles can
play an important role. Vehicles can act as relays to transmit
the content from the edge servers to the vehicle requesting
the content. A learning technique such as Q-learning can
help improve the operation of the SB-SPS protocol. The
sensing procedure in SB-SPS requires a selection window
parameter which refers to the window of resource blocks
from which to select a resource. Furthermore, it requires an
estimation of available resources within the selection window
and using that estimate, it selects a random available resource
for transmitting the packet. Similarly, in the semi-persistent
scheduling procedure, a reselection counter value is selected
which corresponds to the number of packets that can be sent
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TABLE IV: Future opportunities and open challenges

Future opportunity Application Open challenges

Collaborative data sharing
using federated learning

Collaborative data sharing, development of robust
machine learning model, intelligent handover

Protocols for model sharing, decision making is
based on different models

Improving the sensing-
based semi-persistent
scheduling protocol for
content retrieval

Vehicle to vehicle communication with autonomous
resource allocation, content retrieval from RSUs us-
ing vehicles as relay nodes

Q-learning to select optimal selection window and
reselection counter value

Secure caching Protection against security threats such as jamming,
man-in-the-middle and fake edge servers

Feature learning to analyze attacks, reputation-based
content placement using deep Q-learning

by a vehicle consecutively. With Q-learning, the best action, in
terms of these parameter values, can be selected to maximize
the reward function (which depends on the packet success rate
and packet delay).

C. Secure caching

Security is a key concern for caching in VEC. Malicious
vehicles can send fake content requests to influence the content
popularity prediction. For instance, they can send jamming sig-
nals to disrupt the communication link between edge servers
and vehicles and broadcast itself as fake edge server. Feature
learning techniques such as K-means clustering and support
vector machine can be useful in detecting and analyzing the
attacks attributes. For example, the frequency of fake content
requests can be analyzed and the location of the malicious
vehicle can be identified using the transmission power of the
jamming signals. Similarly, a deep Q-learning technique can
be used to make decisions on whether to place a certain
content in the cache or not, and allocating resources for content
retrieval based on the reputation of vehicles.

V. CONCLUSION

In this paper, we discuss how AI techniques can support
efficient caching in VEC. We present a task-based architecture
of caching in the context of IoV, which relies on three main
tasks namely, content popularity prediction, content placement
and content retrieval. We describe how various AI techniques
such as regression and deep Q-learning can provide efficient
solutions to perform these three tasks. Finally, we highlight a
few future opportunities for efficient caching in VEC.
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