Mugahed Amran

Mugahed Amran
Prince Sattam bin Abdulaziz University.

►B.Eng. (Civil); M.Eng. (Structure); and PhD in Structural Engineering. ►Research collaborators are always warmly welcome to initiate contact.
Listed in "The Stanford University list of world's top 2% scientists - 2020".

About

162
Publications
77,395
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
3,763
Citations
Introduction
I am currently working on several projects mainly focused on the following areas but not limited to; - Concrete Structures - UHPConcrete under Elevated Temperature and Fire - Geopolymer Composites - Green Cementitious Materials - Smart Materials & Structures - Housing - 3D-Printed Buildings.

Publications

Publications (162)
Article
Full-text available
Increasing the percentage of recycling of various industrial waste is an important step towards caring for the environment. Coal ash is one of the most large-tonnage wastes, which is formed as a result of the operation of thermal power plants. The aim of this work is to develop a technology for the complex processing of coal ash. The tasks to achie...
Article
Full-text available
In the study, experimental and theoretical studies were carried out to assess the influence of the vertical mounting joint zone of the tank on the stress-strain state of the defect zone. Thus, experimental tests of models of a tank wall fragment with an imperfection of the mounting joint evaluated the stress-strain state of the mounting joint zone...
Article
Ultra-high performance concrete (UHPC) combines advanced fibrous and cementitious material technologies to achieve high strength and exceptional durability. The material tends to have microscopic pores that prevent harmful substances such as water, gas, and chlorides from entering. UHPC can also achieve compressive strengths above 200 MPa and tensi...
Article
Full-text available
Due to renovation and fighting in the world, a huge accumulation of construction and demolition waste is formed. These materials are effectively used as aggregates, but there is very little information about the use of scrap concrete to create cementless binders. The purpose of the work is to be a comprehensive study of the composition and properti...
Article
Full-text available
The modern energy-saving vector of development in building materials science is being implemented in a complex way through the development of new heat-insulating materials with the simultaneous exclusion of low-ecological cement from them. This article presents the results of the development of resource-saving technology for a heat-insulating compo...
Article
Full-text available
In the study, experimental and theoretical studies were carried out to assess the influence of the shapes of dents in the tank wall on the stress-strain state of the defect zone. By testing fragments of a cylindrical tank, it was found that the most appropriate expression is (5), which could take into account the leaching of the tank wall, resultin...
Article
Concrete is the most extensively utilized and cheapest building material. The cracking and fracturing of concrete may cause catastrophic harm to the structures. Advancements in fibrous concretes have recently been emerged to mitigate these issues. Two-Stage Fibrous Concrete (TSFC) is a new cement composite made of fibres with surpassing mechanical...
Article
Full-text available
Erection of buildings using 3D printing has great potential. However, its mass use for high-rise buildings is hampered by the lack of cement mortars with the required technical characteristics, the most important of which is high plastic strength (in the first minutes after pouring). The significance of the work (novelty) lies in the creation of a...
Article
This study aimed at examining the impact of concrete curing methods in hot-weather regions on the properties of high-strength green concrete (HSC), which is made from a local industrial waste by-product from the manufacture of light volcanic aggregates called volcanic pumice dust (VPD). The HSC properties are significantly affected by the curing me...
Article
Full-text available
Recent developments in lightweight concrete (LWC) have led to a renewed interest in incorporating fibers in concrete. However, research on the specific application of rock wool fiber in LWC is scarce. Hence, the present study aims to investigate the physical and mechanical characteristics of LWC with the inclusion of rock wool fibers (0%–15%) in di...
Article
Achieving net-zero emissions requires rapid decarbonization and improved strategies implemented at the global level. In response to increasing demand for better structures and foundations, the concrete industry now relies on heating furnaces to over 1400 °C by burning fossil fuels and other cementitious materials, accounting for about 7–8% of carbo...
Article
Full-text available
Sandwich beams are preferable for aerostructure and marine structures due to their high mechanical strength, durability, stiffness, and fatigue resistance. This paper presents a study on the flexural behavior of sandwich beams made of self-compacting concrete comprising a polystyrene inner core with wire mesh reinforcement. The effect of the design...
Article
Full-text available
Autoclaved aerated concrete (AAC) is one of the most common types of lightweight cellular concrete, having a density of approximately one-fourth of that of conventional plain cement concrete. The use of industrial waste materials in concrete as a replacement for cement has garnered a lot of attention in recent years as a way to reduce the environme...
Article
Full-text available
A promising method of obtaining mineral fiber fillers for dry building mixtures is the processing of waste that comes from the production of technogenic fibrous materials (TFM). The novelty of the work lies in the fact that, for the first time, basalt production wastes were studied not only as reinforcing components, but also as binder ones involve...
Article
Full-text available
Finding new ways of recycling production waste to improve the characteristics of various building materials is an urgent scientific task. This article substantiates the possibility of the disposal of fly ash in the composition of soil concrete, which is used in the construction of the structural layers of road pavements, foundations of buildings an...
Article
Full-text available
Nuclear energy offers a wide range of applications, which include power generation, X-ray imaging, and non-destructive tests, in many economic sectors. However, such applications come with the risk of harmful radiation, thereby requiring shielding to prevent harmful effects on the surrounding environment and users. Concrete has long been used as pa...
Article
Full-text available
Wind-induced loads and motions play a critical role in designing tall buildings and their lateral structural systems. Building configuration represented by its outer shape is a key parameter in determining these loads and structural responses. However, contemporary architecture trends towards creating taller buildings with more complex geometrical...
Article
Concrete is a quasi-brittle material whose basic mechanical properties are size-dependent. Due to simple substitution in profoundly congested support structures without experiencing any consolidation, non-segregation property, and smooth finishing, it could be an exceptionally great choice in the concrete industry. The research object is the size e...
Article
Full-text available
Concrete technology is adopted worldwide in construction due to its effectiveness, performance, and price benefits. Subsequently, it needs to be an eco-friendly, sustainable, and energy-efficient material. This is achieved by replacing or adding energy-efficient concrete materials from industries, such as ground granulated blast furnace slag, steel...
Article
Full-text available
The construction industry relies heavily on concrete as a building material. The coarse aggregate makes up a substantial portion of the volume of concrete. However, the continued exploitation of granite rock for coarse aggregate results in an increase in the future generations’ demand for natural resources. In this investigation, coconut shell was...
Article
Full-text available
The production and utilization of concrete and concrete-based products have drastically increased with the surge of construction activities over the last decade, especially in countries such as China and India. Consequently, this has resulted in a corresponding increase in the energy used for the production of ready-mixed concrete. One approach to...
Article
Full-text available
Demolition of existing deteriorated structures and construction of the new structures is a costly, time-consuming, and resource-intensive process. Repair of concrete beams and strengthening techniques for existing reinforced concrete elements is a resource-saving exercise that is time-saving also. In this work, a repair material using metakaolin-ba...
Article
Building and infrastructure damages, such as tunnels, have become a more important issue because of the continuous expansion of rural and urban constructions. It is well-known that when high-strength concretes (HSCs) are exposed to high temperatures; it is more likely to experience explosive fire-induced spalling than conventional strength concrete...
Article
Full-text available
People need durable shelters for living safely due to devastation caused by flooding in some areas, and it is not easy to mitigate the frequency and intensity of the flooding. Therefore, in this research, an industrialized building system (IBS) has been proposed as one of the best solutions. However, most of the existing IBSs were not designed and...
Experiment Findings
Full-text available
People need durable shelters for living safely due to devastation caused by flooding in some areas, and it is not easy to mitigate the frequency and intensity of the flooding. Therefore, in this research, an industrialized building system (IBS) has been proposed as one of the best solutions. However, most of the existing IBSs were not designed and...
Article
Full-text available
The production and consequential waste of carbon fiber reinforced polymers (CFRP) is increasing owing to its utilization in various industries like automotive, aviation, electronics, military, sporting goods, etc. Likewise, the production of cementitious composites and related environ- mental concerns are also increasing. Therefore, research instit...
Article
A R T I C L E I N F O Keywords: 3D printing Calcium silicate hydrates Modification Mortar A B S T R A C T The trend of concrete science is aimed at reducing the consumption of cement and the use of 3D printing technologies. Based on non-traditional technical silica, 3D printed mortars were designed with a saving of 70% of cement. The binder compone...
Article
Full-text available
Sustainable design methods aim to obtain architectural solutions that assure the coexistence and welfare of human beings, inorganic structures, and living things that constitute ecosystems. The novel coronavirus emergence, inadequate vaccines against the present severe acute respiratory syndrome-coronavirus-(SARS-CoV-2), and increases in microbial...
Article
Full-text available
Concrete is a material that is widely used in the construction market due to its availability and cost, although it is prone to fracture formation. Therefore, there has been a surge in interest in self-healing materials, particularly self-healing capabilities in green and sustainable concrete materials, with a focus on different techniques offered...
Article
Full-text available
In recent years, prepacked aggregate fibrous concrete (PAFC) is a new composite that has earned immense popularity and attracted researchers globally. The preparation procedure consists of two steps: the coarse aggregate is initially piled into a mold to create a natural skeleton and then filled with flowable grout. In this instance, the skeleton w...
Article
Full-text available
A predictive model correlating the properties of a catalyst with its performance would be beneficial for the development, from biomass waste, of new, carbon-supported and Earth-abundant metal oxide catalysts. In this work, the effects of copper and iron oxide crystallite size on the performance of the catalysts in reducing nitrogen oxides, in terms...
Article
Full-text available
For decades, lightweight concrete has been used in various civil engineering applications. Cellular concrete is a type of lighweight concrete that is an emerging composite in materials engineering still. However, due to its low weight, it can be integrated with industrial by-products to develop more advanced composites such as ultra-lightweight cel...
Article
Full-text available
This paper presents studies on the possibility of utilization of technogenic waste from the metallurgical industry by the method of complex processing in order to reduce the anthropogenic load on the environment of the region with the example of the zinc silicate-magnetite-carbon system. The selected sample of clinker dump from welting was subjecte...
Article
Full-text available
Lime materials are in great demand for the restoration of the walls of historical buildings. However, lime coatings have insufficient resistance during operation. The purpose of this work was the modification of lime mortars with silicic acid sol in order to obtain more durable crystalline materials for construction purposes. A technology has been...
Article
Although a novel inorganic family of geopolymer concrete (GPC) is a promising building material. The need for understanding its resistance against fire at high temperatures is considered essential to ensure its long-term durability. Physical examinations of the degree of cracking, spalling, brittleness, and loss of strength in GPC upon exposure to...
Article
The construction sector has embraced digitalization and industrialization to boost production, reduce material consumption, and improve workmanship. The 3D-printed concrete technology (3DPCT), more broadly recognized as the design of a 3D object via a computer-aided design (CAD) model or a digital 3D model, has accelerated considerable progress in...
Article
Full-text available
The fabrication of bricks commonly consumes relatively high natural resources. To reduce the carbon footprint in the brick production industry, repurposing industrial wastes in the making of sustainable bricks is a recent trend in research and application. Local wastes, such as oil palm shell (OPS), palm oil fuel ash (POFA), and quarry dust (QD), a...
Article
Full-text available
The practice of utilizing cold-drawn steel for structural and non-structural elements has expanded nowadays due to it being lighter in weight, economic section, desirable in fabrication, and its preferred post-buckling behavior over hot rolled sections. The cold-drawn steel section back to the back-lipped channel section has a wide application as a...
Article
Full-text available
Soft clay is categorized as problematic due to its weak and dispersive properties which requires stabilization. In Malaysia, there is another challenge, the increment of palm oil waste productions to meet the global demand for food oil. These two concerns motivate engineers to develop novel strategies for exploiting palm oil waste in soil stabiliza...
Article
Full-text available
The article presents the mixed finite element formulation for examining the biomagnetic fluid dynamics as governed by the Navier–Stokes equation, coupled with energy and magnetic expressions. Both ferrohydrodynamics and magnetohydrodynamics describe the additional magnetic effects. For model discretization, the Galerkin weighted residual method was...
Article
Full-text available
Past historical earthquake events from neighbouring countries have been proven to be disastrous. Building in the aftermath of an earthquake may reduce structural reliability, posing risk upon re-occupation of the building. Shock absorber viscous dampers were installed on a specific structure storey that could reduce the spectral acceleration and st...
Article
Full-text available
Conventional reinforced concrete (RC) structures are commonly associated with the corrosion of steel reinforcement. The application of carbon fiber reinforced polymer (CFRP) bars as flexural reinforcement has become a new promising option. This paper presents a state-of-the art flexural strength on concrete beams reinforced with CFRP bars. Concrete...
Article
Full-text available
Vehicular collision is one of the leading causes of structural failure and the large impact loading leads to failure of the bridge structure. Therefore, the structural behavior of bridge substructure including the piles is the chief topic in this paper. Numerical finite element analysis (FEA) software ANSYS was used for simulating the FE model. Thi...
Article
Full-text available
The utilization of ordinary Portland cement (OPC) in conventional concretes is synonymous with high carbon emissions. To remedy this, an environmentally friendly concrete, alkaline-activated slag concrete (AASC), where OPC is completely replaced by ground granulated blast-furnace slag (GGBFS) industrial waste, is one of the currently pursued resear...
Article
Full-text available
Due to man-made and natural anomalies occurring on planet Earth, there are a lot of destroyed cities, settlements and houses. The issue is how to rebuild these cities and how to use parts of the destroyed buildings and structures in making greener concrete. This paper aims to study the efficiency and effect of using concrete demolition wastes on th...
Article
Full-text available
Generally, the concrete with higher strength appears to produce brittle failure more easily. However, the use of mineral admixture can help in enhancing the ductility, energy dissipation, and seismic energy in the designed concrete. This paper presents energy absorption capacity, stiffness degradation, and ductility of the copper slag (CS) admixed...
Article
Two-stage concrete (TSC) is known by various names such as colcrete, Polcrete, preplaced aggregate concrete and prepacked concrete. It is different from traditional concrete in two fundamental ways, namely method of construction and mix proportion. Two-stage concrete (TSC) is defined as firstly, coarse aggregates are placed into the formwork and gr...
Article
The use of composite binders instead of cement with the use of highly effective types of mineral raw materials, which has gone through the path of multi-stage natural activation due to deep geological processes, is a promising direction of modern construction materials science. The paper is devoted to the development of a resource-saving technology...
Article
Full-text available
For the first time, a comprehensive review of the literature data on the use of apricot (Prunus armeniaca) biomass components as a sorption material for the treatment of wastewater and environmental water from various pollutants is carried out in the present study. In addition to a comprehensive analysis of contemporary studies, the current work ca...
Article
Alkali-activated materials (AAMs) received broad recognition from numerous researchers worldwide and may have potential applications in modern construction. The combined use of AAM and steel fibers are superior to typical binder systems because the matrix and fibers exhibit superior bond strength. The results obtained by various authors have shown...
Article
Alkali-activated materials (AAMs) received broad recognition from numerous researchers worldwide and may have potential applications in modern construction. The combined use of AAM and steel fibers are superior to typical binder systems because the matrix and fibers exhibit superior bond strength. The results obtained by various authors have shown...
Chapter
The cement production process is one of the most energy-consuming processes and has a strong environmental impact. The main impact on the energy consumption of cement production is the burning process of cement clinker in a rotary kiln, and the energy costs associated with burning cement clinker constitute 50-75% of cement production costs. Therefo...
Article
Full-text available
Geomimetic (nature-like) principles are proposed for optimizing the strength properties of cement mortar, consisting in the integrated effect of wollastonite on the processes of structure formation of cement paste. At the same time, wollastonite (2, 4, 6 and 8 % of the weight of cement) in the composition of mortar has a double function: it serves...
Article
Full-text available
The impact resistance of functionally layered two-stage fibrous concrete (FLTSFC) prepared using the cement grout injection technique was examined in this study. The impact resistance of turtle shells served as the inspiration for the development of FLTSFC. Steel and polypropylene fibres are used in more significant quantities than usual in the out...
Article
Full-text available
Protective structures subjected to intensive loads that may benefit from the use of multilayer composite structures with excellent hardness and impact resistance represent an emerging research field in recent times. In this study, low-velocity projectile impact tests were performed on Functionally-graded Preplaced Aggregate Fibrous Concrete (FPAFC)...
Article
Full-text available
Copper slag (CS) is produced during the smelting process to separate copper from copper ore. The object of the experimental research is to find the optimum percentage of CS and PPF volume fraction when CS replaces fine aggregate, and PPF volume fraction when subjected to impact loading. Copper slag was incorporated as 20%, 40%, 60%, 80% and 100% wi...
Article
Full-text available
The aim of this research was to find the best alternative for river sand in concrete. In both geopolymer concrete (GPC) and cement concrete (CC), the fine aggregates are replaced with various sustainable mineral ashes, and mechanical and durability tests are conducted. Specimens for tests were made of M40 grade GPC and CC, with five different soil...
Article
Full-text available
Fibers of various origins are of great importance for the manufacture of new generation cement composites. The use of modified composite binders allows these highly efficient building materials to be used for 3D-printing of structures for various functional purposes. In this article, changes in building codes are proposed, in particular, the concep...
Article
Full-text available
Concrete has served an essential role in many infrastructural projects. Factors including pore percentage, pore distribution, and cracking affect concrete durability. This research aims to better understand pore size distribution in cement-based materials. Micro-computed tomography (micro-CT) pictures were utilised to characterise the interior stru...
Article
Full-text available
The article is devoted to the development of resource-saving technology of porous granular materials for energy-efficient construction. The relevance of the work for international research is to emphasize expanding the raw material base of porous lightweight concrete aggregates at the expense of technogenic and substandard materials. The work aims...
Article
Full-text available
Rapid global infrastructural developments and advanced material science, amongst other factors, have escalated the demand for concrete. Cement, which is an integral part of concrete, binds the various individual solid materials to form a cohesive mass. Its production to a large extent emits many tons of greenhouse gases, with nearly 10% of global c...
Article
Full-text available
Incorporating superabsorbent polymer (SAP), which has the abilities of absorption and desorption in cement mortar, can achieve the effect of internal curing. It is expected that the incorporation of nano-silica will improve the workability and strength in cement mortar/concrete. Hence, this study aims to examine the effect of SAP and nano-silica on...
Article
Full-text available
Due to man-made and natural anomalies occurring on planet Earth, there are a lot of destroyed cities, settlements and houses. The issue is how to rebuild these cities and how to use parts of the destroyed buildings and structures in making greener concrete. This paper aims to study the efficiency and effect of using concrete demolition wastes on th...