Erratum

M. Nesibe Kesicioğlu a,⇑, Radko Mesiar b,c

a Department of Mathematics, Recep Tayyip Erdoğan University, 53100 Rize, Turkey
b Centre of Excellence IT4Innovations, Division University of Ostrava, IRAFM, 30, dubna 22, 70103 Ostrava, Czech Republic
c Department of Mathematics and Descriptive Geometry, Faculty of Civil Engineering, Slovak University of Technology, Radlinského 11, 81 368 Bratislava, Slovakia

Article history:
Available online 9 June 2014

Keywords:
Implication
Bounded lattice
Partial order

In this paper, the study of ordering based on implications, given in (Information Sciences, 276 (2014) 377–386) is revised. The implication given in Example 1 is corrected and its right version is shown.

In [2], in Example 1 on page 384, we have introduced a function \(I : [0, 1]^2 \rightarrow [0, 1] \) given by

\[
I(x, y) = \begin{cases}
1 & x = 0 \text{ or } y = 1, \\
1/2 & x < 1/2 \text{ and } y > 1/2, \\
\max(1 - x, y) & \text{otherwise}.
\end{cases}
\]

claiming that \(I \) is an implication. However, the correct version of \(I \) for this example should be now this new formula

\[
I(x, y) = \begin{cases}
1 & x < 1/2 \text{ and } y > 1/2, \\
\max(1 - x, y) & \text{otherwise}.
\end{cases}
\]

The assertion mentioned by Example 1 is valid. According to the new formula for implication, the corrected version of Example 1 is as follows.

Example 1. Consider the t-norm \(T : [0, 1]^2 \rightarrow [0, 1] \) defined as

\[
T(x, y) = \begin{cases}
0 & (x, y) \in (0, 1/2)^2, \\
\min(x, y) & \text{otherwise},
\end{cases}
\]

on \([0, 1]\). Let \(S \) be the dual t-conorm of \(T \) and take \(N(x) = N_c(x) = 1 - x \). Then, \(I(x, y) = S(N(x), y) \) is an implication satisfying the exchange principle (EP) and the contrapositive symmetry (CP) with respect to the strong natural negation \(N_i = N \) ([1], Prop. 2.4.3). The implication \(I : [0, 1]^2 \rightarrow [0, 1] \) is defined as follows:
Let us prove that $I(x, y) = y$. Assume that $I(x, y) = x$ for some $x < 1/2$ and $y > 1/2$, otherwise it would be $y = 1$, contradiction. Then, $x \geq 1/2$. Since $y = I(x, x) = \max(1 - x, x)$ and $x \neq y$, we obtain that $y = 1 - x$. According to our assumption $y > 1/2$, it must be $\ell < 1/2$, a contradiction again. This shows that x and y are not comparable w.r.t. \leq_1. If $1/2 < y < x$, then by similar way, it can be shown that x and y are not comparable w.r.t. \leq_1. Thus, if x and y are not comparable elements w.r.t. \leq_1, it must be $x, y > 1/2, x, y \neq 0.1$ and $x \neq y$. The elements not comparable with respect to \leq_1 can be depicted in Fig. 1.

Now, let us show that $x \wedge_1 y = 1/2$ if x and y are not comparable w.r.t. \leq_1. Since $x, y > 1/2$, $I(1 - x, 1/2) = \max(x, 1/2) = x$ and $I(1 - y, 1/2) = \max(y, 1/2) = y$ hold. So, $x \leq_1 1/2$ and $y \leq_1 1/2$, that is, $1/2 \in [x, y]_1$. Let $k \in [x, y]_1$ be arbitrary. Then, $x \leq_1 k$ and $y \leq_1 k$.

Then, there exist two element $\ell_1, \ell_2 \in [0, 1]$ such that $I(\ell_1, k) = x \neq 1$ and $I(\ell_2, k) = y \neq 1$.

Thus, it must be either $\ell_1 \geq 1/2$ or $\ell_2 \leq 1/2$, otherwise it is obtained that $x = 1$ which is a contradiction. Let $\ell_1 \geq 1/2$. Since $I(\ell_1, k) = \max(1 - \ell_1, k) = x$, either $x = k$ or $1 - \ell_1 = x$. If $x = k$, it would be $y \leq_1 x$ since $I(\ell_2, x) = I(\ell_2, k) = y$, which is a contradiction. So, it must be $1 - \ell_1 = x$. Since $x > 1/2$, it is obtained that $\ell_1 < 1/2$, this is a contradiction. Then, it must be $k \leq 1/2$. Since $I(1/2, k) = \max(1/2, k) = 1/2$, we obtain that $1/2 \leq_1 k$, that is, $1/2$ is the least of the upper bounds of the elements x, y w.r.t. \leq_1, whence $x \wedge_1 y = 1/2$.

Let us prove that $x \wedge_1 y = k$. Suppose that $x \wedge_1 y = k$ and $k \neq 1$. Then, $k \leq_1 x$ and $k \leq_1 y$. By the definition of the order \leq_1, there exist two elements $\ell_1, \ell_2 \in [0, 1]$ such that $I(\ell_1, x) = k$ and $I(\ell_2, y) = k$.

By Proposition 2, it is clear that $1/2 < x \leq k$ since $k \leq_1 x$ and $x > 1/2$. Since $x > 1/2$, it is not possible $\ell_1 < 1/2$, otherwise we obtain that $k = 1$, a contradiction. So, $\ell_1 \geq 1/2$. Since $k = I(\ell_1, x) = \max(1 - \ell_1, x) = x$, we have that $x = k = I(\ell_2, y)$, contradicts that x and y are not comparable with respect to \leq_1. So, we have that $k = 1$, i.e., $x \wedge_1 y = 1$.

Acknowledgements

This work was done when the first author was visiting researcher at the Department of Mathematics and Descriptive Geometry, Faculty of Civil Engineering, Slovak University of Technology, Bratislava. She gratefully acknowledges the grant obtained from SAIA under the National Scholarship Programme (NSP) for the mobility of Teacher and Researchers that made her visit possible. The second author was supported by grants VEGA 1/0171/12 and by the European Regional Development Fund in IT4 Innovations Centre of Excellence Project (CZ.1.05/1.1.00/02.0070).

References