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ABSTRACT The Fifth Generation(5G) communication network is envisioned to provide heterogeneous
services tailored to specific user demands. These services are diverse and can be generally categorized based
on latency, bandwidth, reliability, and connection density requirements. The 5G infrastructure providers are
expected to employ network function virtualization, software-defined networking, and network slicing for
cost-effective and efficient network resource allocation. In the 5G network, when an infrastructure provider
receives a slice request, a slice admission control scheme is applied and an optimization algorithm is used
to achieve predefined objectives. To this end, a number of slice admission control objectives, strategies
and algorithms have been proposed. However, there is a need to present a coherent review and bridge the
gap between many aspects of slice admission control. In this paper, we present the latest developments in
this research area. Thus, we begin by introducing slice admission control and discuss background concepts
associatedwith slicing.We then extend our discussion to slice admission objectives followed by the strategies
and optimization algorithms. Finally, we conclude with a summary of analysis containing the optimization
algorithms.

INDEX TERMS 5G, network slicing, slice admission control, resource allocation.

I. INTRODUCTION
The Fifth Generation (5G) wireless network will provide
non-monolithic services by incorporating the concept
of advanced resource management. Unlike the 4G net-
work, the 5G infrastructure comprises the following
important features: network function virtualization (NFV),
software-defined networking (SDN) and network slicing.
Furthermore, network slicing is a principal enabler of net-
work resource management and allocation [1]. It allows
multiple logical networks to be deployed on a common
physical infrastructure in order to provide the quality of
service (QoS) required for divergent applications [2], [3]. The
logical network provides resource flexibility and isolation
which can be easily customized. In the 5G network, efficient
resource allocation and reliable connectivity is achieved
using slice admission control algorithms which influence
slice admission decisions. In this regard, slice requests can
be efficiently processed and resources allocated for service
launching. The processed of launching network functions is
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called service orchestration [4]. An orchestrator is respon-
sible for instantiating, supervising and managing virtual
network functions(VNFs) [5].

Typically, the underlying objective in the 5G network is
to virtualize network functions thereby separating network
control and data forwarding planes. This is achieved through
network softwarization. SDN and its complementary NVF
are the main enablers of 5G network softwarization. Indeed,
most of the VNFs can be easily instantiated from off-the-shelf
commodity servers, which enable fast and efficient control;
thereby leaving data forwarding to the underlay physical
substrate and fulfill the test of reliability. For instances, some
researchers have proposed the use of aerial base stations
embedded on unmanned aerial vehicles (UAV) [6]. This is
aimed at providing high-quality connectivity in areas with
flash crowd problems; consequently, realizing reliable con-
nectivity through well-defined network slices.

A slice admission control algorithm is essential for effi-
cient management of network resources in the 5G network.
The slice tenants (STs) or virtual network operators (VNOs)
(who are the third-party service providers and own no phys-
ical network); control, manages and sell virtual services and
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the infrastructure network providers (InPs) (who owns and
operates the physical network), rely on slice admission con-
trol to achieve their predefined objectives [7].

The InP may decide to admit slices deemed to have the
best chance of meeting the pre-defined objectives. Slice
admission is also dictated by the available resources in the
network resource pool as illustrated in Figure 1. Slice requests
may be queued while the implemented admission algorithm
queries admissibility fitness considering available resources.
Slice admission is always succeeded by efficient service
chain embedding [8]. Service chain embedding is the map-
ping of VNFs to the physical network. Efficient embed-
ding promises to reduce operation cost and dynamically
create autonomous functions with high mobility and rapid
deployability.

FIGURE 1. Slice admission control illustration.

Network operators generally process a vast amount of
data from their customers. This data comprises informa-
tion regarding the customer network demands [9] which
can be translated into the type of slice requested. Con-
sidering this, the International Telecommunication Union
[ITU] has defined three broad categories of slices namely
ultra-reliable low latency communication (uRLLC), massive
machine type communication (mMTC) and enhanced mobile
broadband (eMBB) slices. Although a slice may belong to
any of the above categories, slice requests are yet to be
standardized and may not be discretely defined. Besides,
the admission control algorithm must intelligently consider
the slice request and determine its fitness to meet the pre-
defined objectives. Subsequently, the algorithm correlates a
slice request with an objective and then performs admission
control. The following subsection presents four main slice
admission control objectives in 5G network.

A. SLICE ADMISSION OBJECTIVES
Slice admission control algorithms are deployed to achieve
specific objectives. The four main objectives of slice
admission control algorithms are: revenue optimization, QoS

control, congestion control, and admission fairness. These
objectives are discussed as follows.

a. Revenue optimization: The primary goal of an ST and
InP is to generate revenue [8] [10]. Thus, any slice
provider can decide to apply admission control algo-
rithm to allocate network resources so as to maximize
revenue. A slice provider, for instance, may prioritize
latency and high bandwidth for high revenue.

b. QoS control [11]: QoS provisioning is the process of
providing and maintaining a level of service based on
customer service level agreements (SLAs). In order to
maintain the availability of resources for QoS-intensive
network slices, the slice provider may decide to deploy
slice admission control algorithm to admit requests
whose QoSs can be guaranteed [10], [12]. To fur-
ther this concept, consider an instance of a natu-
ral disaster such as massive earth quake, flood or
Tsunami, resulting in massive communication break-
down thus limiting service availability, consequently
creating a high demand for emergency communica-
tion services. The slice service provider may decide
to reject slice requests; except for mission-critical
services, thus, reserving more resources to ensure
intended adjustments are always available for admitted
slices, consequently, guaranteeing acceptable QoS and
quality of experience (QoE) for these mission-critical
services.

c. Inter-slice congestion control [13]: The 5G network
is expected to experience big data explosion. When
slice requests are directly channeled to the ochestra-
tor for virtual function instantiation without a slice
admission control, congestion may occur. When slice
admission control is applied, the slice provider pre-
vents the orchestrator from getting overwhelmed by
slice requests which would otherwise be rejected. Such
slice requests are deemed to have a high probability
of dropage as determined by the admission control
algorithm. This probability is defined as the inverse
of likeliness to meet the admission control objective.
For instance, in priority based admission control, only
high priority slicesmay be admitted to limit congestion.
This can significantly reduce the number of admitted
slices and subsequently de-congest the resource request
queue.

d. Slice fairness assurance [14]: In many instances,
the slice providers may organize slices based on the
type: i.e. eMBB, uRLLC and mMTC. These slices may
be placed on separate queues respectively. An admis-
sion control algorithms is applied for reasonably distri-
bution of slice requests such that no single slice type
is repeatedly admitted at the expenses of other slice
requests. Generally, a round-robin queue consideration
may be adopted to reduce unfairness during selection.
Multi-queue admission control works well when slice
priority is not the main consideration.
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B. SLICE ELASTICITY
Slice admission control algorithm can be designed to deal
with resource arbitration and to determine whether a slice is
elastic or inelastic. An elastic slice can be adjusted dynami-
cally depending on the demand for resources without affect-
ing the QoS provisioned. An inelastic slice requires rigid
resource allocation that can not be adjusted downward at
any moment in the duration of resource provisioning; such
slices can only be scaled up [15]. For instance, uRLLC slice
requires strict resource allocation to guarantee reliability and
low latency while eMMB resources may be scaled down once
the edge cloud buffering is complete. Some researchers have
attempted to propose algorithms that fit many admission con-
siderations. However, the designs are generally too complex
and require vast assumptions to implement. Notably, the radio
access network (RAN) resource allocation for uRLLC ser-
vices are mostly considered to be inelastic and more complex
to provision. The cloud resources are nonetheless considered
to be elastic and are much easier to provision. The combi-
nation of RAN, core and cloud logical resource allocation is
known as end-to-end slicing. Elastic resource slicing enables
providers to achieve flexibility in creating, adding and ter-
minating virtual functions [2]; consequently, minimizing the
capital cost while allowing the ST to accommodate more
users. Inelastic slices are more complex to manage and main-
tain because they are subjected to stringent SLAs [16]. The
QoS in an inelastic slice may be vastly affected with any
attempt to adjust provisioned resources thereby leading to
huge penalties proportionate to the degradation of a slice.
On the contrary, data loss in elastic slices can always be
accommodated as service degradation is not explicitly visi-
ble. Slice admission control plays a key role in reducing the
effects attributed to slice elasticity.

C. SLICE TENANCY
An ST can acquire heterogeneous virtual resources from the
InP as shown in Figure 2 and sell to any of the three user
classes i.e. (eMBB, uRLLC,mMTC). In the 5G network, slice
tenancy can be classified as single tenant or multiple tenant.
In single tenancy only one tenant is contracted by an InP
whereas in multi-tenancy, many tenants are contracted. The

FIGURE 2. An illustration of slice multi-tenancy.

simplest form of slice admission control is where only one
tenant is contracted. In Monti et al. [17], a single tenant is
assumed to generate multiple slice requests with varying pri-
orities and slices are admitted according to priority (highest
priority first and lowest priority last).

A tenant may send slice requests regularly, randomly
or follow some predetermined probability distribution. The
price paid by the tenant depends on the priority index of the
slice. High priority slices are more expensive than the low
priority slices and are much harder to provision and maintain.
Each tenant may provide specific slice requirements to bemet
by the slice provider, this is subject to the a set of predeter-
mined SLA. The following are the major considerations in
multi-tenant slice admission control schemes.

a. Fairness: Ensuring fairness inmulti-tenant slice admis-
sion control schemes is a major challenge for slice
service providers. If the choice of admission is biased,
tenants may choose to cancel the slice requests when
subjected to longer waiting duration [14]. An efficient
admission control algorithm, must therefore, ensure
some degree of fairness when dealing with multiple
tenants such that no request is dismissed without con-
sideration.

b. Resource competition: The 5G network, like other
wireless networks, does not have unlimited resources.
Competition for resources is thus envisaged to occur
among tenants. When more than one tenant request
for the same resources, a slice provider must employ
a request brokering scheme to deal with such com-
petition [18]. An artificial-intelligent (AI) based slice
admission algorithm may be applied in choosing a ten-
ant to serve and which to put on hold. The AI algorithm
may be trained to learn which tenant is more reliable
and has a high willingness to pay.

c. Revenue accumulation: The VNO associates slice
admission with revenue aggregation. An optimum slice
admission control strategy may directly translate to an
InP accumulating more revenue [19]. Hereof, multi-
ple tenants provide a chance for the slice provider to
sell variety of slices. Undoubtedly, when InPs classify
tenants according to their willingness to pay, the slice
provider may be forced to maintain a greedy policy.
This is because greedy algorithms may seem profitable
albeit in short term. Research has shown that a com-
bination of greedy and semi-greedy policy performs
better in the long-term [20].

A well-designed slice admission control algorithm is can
maintain the right balance among the aforementioned con-
siderations while achieving the overall design goals.

D. SLICE ADMISSION DOMAIN: INTER-SLICE VERSUS
INTRA-SLICE
Slice admission domain can be classified in two categories
namely: inter-slice admission and intra-slice admission
domain. In inter-slice admission domain, two or more hetero-
geneous tenants are involved. The tenants send independent
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slice requests for isolated and distinct logical resources while
in intra-slice different end-users send their request to a ten-
ant so as to be admitted into a common slice with shared
resources [12], [21]. Figure 3 is an illustration of this con-
cept. The InP deals directly with tenants and can only admit
their slice requests. The tenant in turn admits end-users into
the acquired slice for a period of time. The challenges of
inter-slice interference must be solved by the InP, while user
isolation problems in a common slice must also be addressed
by the tenant.

FIGURE 3. An illustration of inter-slice and intra-slice admission.

In intra-slice domain, resource limitation is the main cause
of user request rejection. For instance, a virtual gamer may
request to be admitted into an eMBB slice, while band-
width demands may be guaranteed, low latency constraints
are difficult to guarantee here, hence, such request may be
automatically rejected by an admission control algorithm.
On the other hand, in inter-slice admission control, each slice

request is evaluated independently and only admitted when
the InP can guarantee resource allocation, SLA and QoS [7].

E. SLICING DOMAIN:END-TO-END, RAN, CORE AND
CLOUD SLICING
Network slice orchestration can be undertaken at different
domains in the 5G network namely: RAN, transport, cloud
or end-to-end. In Figure 4, the RAN slicing involves virtual
radio resource allocation in the access network and is affected
the number of subscribed users [22]. Moreover, grouping
users according to slices they are subscribed to, may reduce
intra-slice interference [23]. The RAN users are allocated
access bandwidth, shared radio frequency (RF) antennas,
media access address (MAC), RAN signaling, etc. RAN
slices is enabled by radio resource controller (RRC) and
radio link controller (RLC). RAN slicing, however, poses
challenges such as maintaining fairness, slice isolation, and
SLA monitoring [23].

The transport network consist of high bandwidth optical
cores [24], and can be physically sliced or virtually sliced.
Physical slicing involves allocating each fiber core to a single
tenant while virtual slicing is where more than one tenant
share the same core. Tenant isolation within the core is
achieved through end-to-end encryption.

The core cloud resources are high-end general processing
units (GPUs), high capacity storage and random access mem-
ory (RAM). Cloud slicing refers to allocating these shared
resources among tenants and allowing separate VNFs to be
instantiated and run independently.

An end-to-end slicing involves a virtual resource allocation
in the RAN, transport and core cloud. The work in [4] is
an illustration of this concept where an mMTC slice for

FIGURE 4. End-to-end, RAN, and cloud slicing.
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FIGURE 5. Slice requests in multiqueue environment.

fourth industrial revolution (4IR) is proposed. The slice is
expected to provide real-time production information, mon-
itoring, actuation, sensing, and advanced remote control to
both industrial production company (IPC) offices and indus-
trial equipment vendor (IEV). In this setup, all the end-to-
end resources must be sliced with regard to the user demand.
Admitting such a slice by an InP is more challenging because
an end-to-end resource availability must be guaranteed every
time a request is received. Moreover, the InP has to secure
connectivity, bandwidth and required latency throughout the
slice duration. Problems associated with multi-domain access
must also be addressed. Cloud slicing is however simpler
since many of the resources can be discretized and allocated
optimaly [25].

F. SLICE REQUEST QUEUING
The InP may receive a vast amount of heterogeneous slice
requests simultaneously. A proper queue management is
therefore necessary [14].Many of the slice request arrivals are
non-deterministic, where the average waiting time (τ ) must
be short enough such that no request is canceled before it is
attended to.

A generic queue management strategy is shown in
Figure 5. A request population is a stochastic distribution of
slice requests and have an arrival rate (λ) determined by a
known probability distribution (Poissonian). The queue pool
is managed and controlled by a queue management algorithm
generally influenced by the slice admission control policy.
Intuitively, the slice admission control algorithm employed
may incorporate any of the existing admission strategies
for slice request evaluation. An efficiently managed queue
reduces the cost of slice provisioning and improves tenant
satisfaction. Several queuing approaches exist and can be
employed in slice admission control. We discuss them as
follows.

a. M/M/1 Model: This is a Poissonian model with
a single queue management server, suggested by
Dharmaraja et al. [26]. The requests are processed on
first in first out (FIFO) basis. The model name is
written in Kendall’s notation where the first M in the
notation represents the arrival rate, the second M rep-
resents the service rate and 1 represents the number
of queue management servers [25]. Explicitly, in slice
admission control, this strategy is the most applicable
model because multi-server model introduces further
complexity and is difficult to coordinate. If λ is the
request arrival rate, and µ is the request service rate,

FIGURE 6. Markov chain with a birth and death process or admission
requests.

FIGURE 7. Request arrival and exit.

then the traffic intensity or occupancy of the model is
an exponential term ρ = λ/µ. Moreover, the model
can be described as a continuous Markov chain with a
birth-death process over a state space diagram shown
in Figure 6. Figure 7 demonstrates the arrival and exit
of a request according to [27]. Nonetheless, queue is
of infinite length where the management server can
only process a limited window w for a duration δt .
Indeed, the slice request residency within the man-
agement server is longer compared to the multi-queue
multi-server environment.

b. M/M/1/N Model: This is a finite queue model where
N denotes the queue size. This model shares similar
characteristics as M/M/1. It is appropriate to define the
queue size because the slice admission control algo-
rithm may be hard-coded with a fixed set of requests
for processing at a particular time.

c. M/M/c Model: This is a multi-server model applied
in [14] for admission control, where c denotes the
number of servers in the system [28]. The servers may
be identical with similar processing power or heteroge-
neous with varying speeds and efficiency [26]. While
the request arrival rate λ maintains Poisson’s distri-
bution, the processing rate µ increases by a factor c
[29] such that the traffic intensity ρ = λ/cµ. In the
event any of the queues are empty, some servers may
be rendered idle. However, the request processing effi-
ciency improves while the traffic intensity is reduced
by the same factor c. The transition probabilities in the
Markov process becomes more complex to obtain for
thismodel [30]. TheM/M/cmodel solvesmainly three
problems. 1. Balking: This is when the request leaves
as a result of long queues. 2. Renege: This is where the
ST cancels a request after being in the queue for too
long and lastly. 3. Jockey: A slice request may bemoved
from one queue to another based on any of the reasons
mentioned or when a server is idle. Other queuingmod-
els do exist albeit not relevant to our discussion, they
include M/M/c/K/K where each server is allocated
only a limited number of requests to service. M/D/1
is a finite time service server while D/M/1 is a model
with a deterministic request arrival, and M/Ek/1 is a
model that follows Erlang distribution.
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II. SLICE ADMISSION STRATEGIES
The design of any slice admission algorithm is based on
a specific strategy. A strategy may be random, greedy,
semi-greedy, priority-based or simply first-come-first-served.
Whichever is the method used, the ultimate goal is to achieve
an objectives defined by the slice operator. Figure 8 is a
graphical representation of these classifications.

FIGURE 8. Slice admission strategies.

A. FIRST-COME-FIRST-SERVED
The simplest form of slice requests consideration is to admit
them as they arrive. This first-come-first-served strategy is
suggested by Han et al. [14]. Certainly, the scheme does not
consider non-trivial constraints such as latency, and band-
width. Any request arriving when there are no resources
will automatically be rejected as such admissions may cause
severe network degradation. Moreover, the admitted slice
requests must lie within the admissibility region derived by
Bega et al [15], thereby obeying resource constraints limits.
Despite its simplicity, first-in-first-out is not popular because
of lack of optimization method applied during slice request
admission.

B. PRIORITY BASED SLICE ADMISSION CONTROL
When optimizing slice admission control, the slice providers
may choose to give preference to a certain category of slice
requests. These requests may have strict latency require-
ments (uRLLC slices). Such slices are considered to be of
high-priority and thus more expensive [31]–[33]. Cumula-
tively, consistent admission of high priority slices results
in higher revenue. For instance, in [17], a priority-based
slice admission control is suggested. The author proposes an
Reinforcement Learning (RL) method for revenue optimiza-
tion considering latency requirements in the RAN. Indeed,
this approach may improve revenue compared to random
and first-come-first-served schemes. STs buying high prior-
ity slices enjoy superior QoE and network utilization [12].
Such slice admission strategies use meticulously designed
optimization algorithms.While high priority slices are known
to contribute higher revenue, short-term contracts may be
less profitable. For instance, a slice provider may consider
admitting slices for autonomous driving while rejecting other
requests. Such contracts may be scarce and limited only to
certain regions. On the contrary, slices designed for enter-
tainment are always on high demand and are contracted for a
longer duration thereby generating more revenue.

C. GREEDY BASED ADMISSION CONTROL
Priority-based slice admission strategy may improve over-
all admission objective, but it is highly dependent on the

frequency of such contracts and the total slice duration. Its
performance is highly affected when such contracts are lim-
ited and only last for short duration. A greedy policy proposed
by Challa et al. [34] deploys a partial adaptive greedy (PAGE)
algorithm to maximize revenue while minimizing SLA viola-
tion for customers with different willingness to pay indices.

As an illustration, a greedy based algorithm exploits a
policy π that always meet a slice admission objective. This
policy is determined after several iterations or learning pro-
cess. It is used to tune a well defined objective function to
exploit the evaluated policy without consistent exploration.
An example of this strategy is discussed in [19]. The slice
provider iteratively adds slice request to a temporary set S+

if its probability of generating high revenue is considered
to be higher. Conversely, another temporary set S− holds
slice requests with a low probability of generating higher
revenue. A binary variable γ ∈ {0, 1} is considered such
that γ = 0,∀s ∈ S− when a slice request is rejected and
γ = 1,∀s ∈ S+ when a slice is admitted. Intuitively,
a greedy-based strategy may not be optimal always [35].
A semi-greedy method allows the learning agent to explore
other requests occasionally with a small probability ε, such
that 1 − ε = greedy. An example of a greedy policy is the
multi-armed bandit model. The reader is referred to [20] for
more insight into the greedy policy and multi-armed bandit
model.

D. RANDOM ADMISSION CONTROL
Random slice request admission may be adopted in order
to reduce unfairness during admission control [7], [21].
It achieves a fairly normal distribution over a long period.
Nonetheless, random admission control is not popular
because no optimization is involved. Also, there is a lack of
policy. Modern intelligent algorithms may be adopted to deal
with unfairness in slice admission control.

E. OPTIMAL ADMISSION CONTROL
An optimal policy is adopted in order to achieve the best slice
admission strategy by employing a well-tuned slice admis-
sion control algorithm. The idea is to define admission con-
trol objective and perform a complete optimization. Machine
learning techniques such as in [10], and [36], have been used
to obtain optimal slice admission control based on revenue
maximization. Congestion control is another objective dis-
cussed in [13]; the authors have adopted a Q-learning method
to learn an optimal strategy for slice admission control.
Although machine learning methods may occupy extended
duration during training and occasionally require retraining,
good results are still achievable. Successive convex approx-
imation (SCA) and alternating direct method of multipliers
(ADMM) have also been applied for optimal slice admission
control [7], [16]. Optimal algorithms are more complex to
design, and ample tuning is required in order to achieve better
results.

Table1 provides a summary of slice admission strategies
and their corresponding strengths and weaknesses.
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TABLE 1. A summary of slice admission strategies: Strengths and
weakness.

III. SLICE ADMISSION CONTROL OPTIMIZATION
A number of optimization techniques have been proposed in
many literature for enhancing the performance of slice admis-
sion control algorithms in the 5G network. In the following
subsection, these algorithms are discussed.

A. SUCCESSIVE CONVEX APPROXIMATION (SCA)
Many optimization problems in a 5G slice management are
formulated as either integer linear or mixed-integer linear or
non-linear integer programming. Such techniques are math-
ematical models where some constraints are restricted to
integers or non-integer. The objective function is formulated
as a linear or nonlinear problem integer programming. These
formulations tend to be N-P hard and demand consider-
able relaxation to solve. SCA is one of the most popular
methods used in solving such problems. In general, SCA
involves iteratively optimizing the objective function f (x),
where x is closed form set of vectors, under strict convex
constraints [8], [37].

For instance, consider

max
x
f (x) , g (x)+ w (x) (1)

s.t f (x + 1) , g (x + 1)+ w (x + 1) ≤ 1 ∀ x (2)

where the functions g (x) and w (x) are linear and nonlinear
respectively or vice versa. The loss function x ← x − 1x
is iteratively reduced until convergence occurs. A simplified
SCA algorithm based on (1) and (2) is given in Algorithm 1

Algorithm 1 An Illustration of SCA Algorithm
1: find feasible point for x = 0
2: set the step size 1 ∈ [0, 1]
3: set the loop counter r = 0
4: while f (x) 6= MAX do
5: set xr = solution
6: max f (x, xr )
7: check f (x + 1) , g (x + 1)+ w (x + 1) ≤ 1∀x
8: r = r + 1
9: xr+1← xr −1x
10: end whilef (x) = MAX

In slice admission control the functions g (x) and w (x)
may be considered as resource blocks in the RAN and core
networks respectively, and must not exceed certain limits for
different slice requests. Thework in [8] employs SCA in order
to optimize slice admission control problem with SCA. Inter-
estingly, while SCA strives to realize global optimization the
mathematical complexity involved is quite intense. SCA can
be combined with techniques such as semidefinite relaxation
to solve combinatorial problems as suggested in [19].

1) COMPLEXITY ANALYSIS
The mathematical complexity of integer linear or integer
non-linear programming problems depend on the number of
variables, the number of constraints in each block, the entries
in the objective functions, the entries in the constraints matrix
and the constrains limit [38]. Consider the following opti-
mization problem according to [37]

min
x
f (x) =

n∑
i=1

gi(xi)+
n∑
i=1

wi(xi)

s.t xi ∈ Xi (3)

the function f (x) is treated as smooth and convex and assum-
ing that f (x) ∀ r = 0 to R satisfy the following conditions

• f (x) is continuous in x
• f (x) is convex in x
• f (x + 1) , g (x + 1)+ w (x + 1) ≤ 1∀x
• Function value consistency: f (x, x) = f (x),∀x
• Gradient consistency:1f (x)(x) = 1f (x),∀x
• Upper-bound: f (x) ≥ f (x),∀x

the complexity analysis can be stated as: Assuming that f ∗(x)
is the optimal objective value and x|f (x) ≤ f (x0) is compact.
Then f (xr ) − f (x) = f ∗(x) = O( 1r ) [37] is the rate of
convergence. By improving r the rate of convergence can be
improved as well.

B. ALTERNATING DIRECTION METHOD OF MULTIPLIERS
(ADMM)
Problems that require decomposition and distribution such
as dynamic resource allocation can be solved using
ADMM [39]. However, ADMM is suited for continuous
problems and may not be applicable to discrete problems.
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Nonetheless, ADMM is highly adaptive in large scale dis-
tribution problems [40]. A variant of ADMM known as
alternating direction dual decomposition (ADDD or AD3)
is adopted by the authors in [40] to improve stability and
convergence for VNF admission control and function chain
embedding (FCE). To illustrate the working of ADMM we
adopt a simplified example. Assuming we want to optimize
a convex function such that minx,y v (x) + h (y) subject to
Mx + Ny = b, we have two sets of functions with separable
objectives. Where x and y represents two types of resources
considered in minimizing the objective function, M and N
are coefficients determining the ratio of usage while b is
the maximum usage of x and y. The loss function can be
formulated using Lagrangian approximation L (x, y, z, ) =
v (x) + h (y) + zT (Mx + Ny − b). We successively update
x, y, z such that x (t + 1)← argminx L (x, y, z), y (t + 1)←
argmaxy L (x, y, z) and z (t+1)← z+Mx+Ny−b which is
a dual update. In slice admission control, the objective func-
tion may represent the objective for admitting a slice, while
the closed form constrains indicate the limited resource and
the loss function is minimized for optimality. A simplified
version of ADMM is given in Algorithm 2

Algorithm 2 An Illustration of ADDM Algorithm for Slice
Admission
1: find feasible point for x(0) ∈ X1 × . . .× Xk ;
2: find feasible point for y(0) ∈ Y1 × . . .× Yk ;
3: repeat
4: for for i = 0 to k do
5: x (r + 1)← argminx L (x, y, z)
6: y (r + 1)← argmaxy L (x, y, z)
7: end for
8: update z (t + 1)← z+1r (

∑k
i=1Mx

r+1
i +Nyr+1i − b)

9: r = r + 1
10: until convergence

1) COMPLEXITY ANALYSIS
When an optimization problem is a dual block, ADMM can
be adopted to solve it. Consider the following optimization
problem

f (x) = min
x,y

v (x)+ h (y)

s.t Mx + Ny = b ∀ x ∈ X and y ∈ Y , (4)

the simplified Lagrangian approximation is given by

L (x, y, z, ) = v (x)+ h (y)+ zT (Mx + Ny− b) (5)

A typical ADMM problem with the dual update considered
in Algorithm 2 has a convergence rate given by the gradient
accent [41] z (t+1)← z+1r (

∑k
i=1Mx

r+1
i +Nyr+1i −b) =

O( 1
r2
)

C. HEURISTIC APPROACH
A heuristic approach is a broad range of computational tech-
niques that generally aim to solve problems faster while
sacrificing optimality and accuracy. In slice admission con-
trol, a heuristic approach may be adopted in cases where a
strict optimal solution is relaxed but still maintain some good
degree of sufficiency. Such solutions are not mathematically
intensive. As an illustration, assume a slice admission based
on a priority index which defines the QoE as depicted in [12],
and [22]. Let us denote a slice sn ∈ S ∀ n = (1, 2, 3, ..S) at
time t and a priority index ps normalized by the Boltzmann
distribution such that

∑
s∈S ps = 1. To derive ps, a set

random slice request parameters have been passed though
dimensionality reduction. The aim is to determine a single
parameter for sorting. Let us assume a priority threshold λ
such that any slice request with a priority larger than the
threshold will be admitted subject to resource availability.
A simplified heuristic algorithm may be written as shown in
Algorithm 3

Algorithm 3 An Illustration of a Heuristic Algorithm for
Slice Admission
1: for n = 1 to N do
2: calculate psn =

esn∑N
n=1 e

sn

3: output psn for sn ∈ S,∀n = (1, 2, 3 . . .N )
4: end for
5: γ = minimum threshold
6: for n = 1 to N do
7: check resource availability
8: if psn ≥ γ then
9: ADMIT
10: else
11: REJECT
12: end if
13: end for

From Algorithm 3 we can see that any slice request with
priority index greater or equal to γ is admitted. Although this
guarantees any slice request falling in the category an admis-
sion, the consensus is that the algorithm may miss optimal-
ity as low priority resources may consume more expensive
resources over time as opposed to short-time high priority
slices.

1) COMPLEXITY ANALYSIS
Algorithm 3 shows a simplified heuristic method for slice
admission control. The complexity of such algorithm highly
depend on the number of single loop or nested loops
used and the quantity of iterations needed for one episodic
search. In the above algorithm there are two loops of N iter-
ations each, therefore the total number of iterations required
for one episode is 2N . The computational cost required grows
as the value of N grows. Delgado et al. [42] proposes a joint
application admission control and network slicing in virtual
sensor networks. The proposed method employs heuristic
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method for the admission control, Algorithm 3 in the liter-
ature employs two nested loops of length Pd× Ig and Pf × Ig.
The total duration required to execute the entire algorithm is
therefore given by t = τ (Pd × Ig + Pf × Ig + σ ) where
τ is the unit time required to execute each code and σ is a
time variance. The computational cost is therefore given by
cost = βt where β is the unit cost per episode.

D. MACHINE LEARNING APPROACH
The use of machine learning for resource management in 5G
has been gainingmomentum,more so, in slice admission con-
trol. Intuitively, RL has been applied in slice admission con-
trol, as evident in the following literature [10], [16], [17], [23],
[43]–[48]. RL generally reduces complexity which comes
with problem models that require strict constraining as such
constraints can be formulated as rewards or penalties. More-
over, in RL (Figure 9), a learning agent reads the the environ-
ment normally the admission request parameters and receives
the reward value based on the action taken, the reward deter-
mines how good an action is. An action in slice admission
control is a binary value indicating either a slice admission
or rejection. The reward for admitting or rejecting a slice is
evaluated by the agent to improve the next action. In mul-
tistage decision process (MDP) RL problems, the solution
can be arrived in the following ways: value iteration, pol-
icy iteration, and Q-learning. In value iteration approach,
the objective is to evaluate the state-action pair with optimum
values, while in policy iteration, the aim is to resolve the best
policy which leads to the objective while minimizing cost
or maximizing the overall reward. In Q-learning approach a
lookup Q-table consisting of state-action pairs and possible
rewards is created. The RL algorithm is therefore applied to
learn the state-action pairs. In slice admission control such a
table may be too large hence becoming memory-intensive in
what is known as the curse of dimensionality. Artificial neural
networks used for value approximation have been adopted to
solve such problems. This is referred to as deep RL. An actor-
critic [61] model may be adopted where actor learns the best
policy of state-action choice while the critic evaluates the
actor’s choice and generates the reward signal. The reward
signal is used to improve the choice of the next action and the
critic is trained to provide minimized criticism.

FIGURE 9. An illustration of reinforcement learning.

The following steps are applicable in RL algorithm:

i. Formulate the problem as an Multistage Decision Pro-
cess (MDP) by defining the initial state-space, action-
space, next-state give by (s∪S, a∪A, s′∪S) = (s, a, s′)
and the transition probability p. In slice admission, a set
of parameters that define a slice request corresponds to
a union of the states that form the state space(s), while
the actions a ∈ {0, 1} is binary variable and it defines a
slice rejection or admission.

ii. The learning agent selects a state from the state-space
and performs an action. In this case, an action is either
slice request admission or rejection. For any action
taken a reward is calculated.

iii. The next step is to move to the next state. The state
is influenced by the current state and action such that
s′ = f (s, a), this is known as state a transition. In RL
state transitions are based on a MDP model. The learn-
ing agent maximizes the total reward or minimizes
total cost based on the predefined admission objec-
tive. In slice admission control, reward accumulation
is ordinarily the objective of the agent which may be
translated to revenue accumulation [10]. The reward
function r = f (s, a, s′) is a function of the current state,
current action and next state.

iv. The process of maximum reward accumulation is used
to create a policy π , the policy is improved in every
step so that the value of the current policy is less than
or equal to the value of the next policy that is V (π ) ≤
V (π ′) until an optimum policy π∗ is obtained.

v. The obtained policy is applied in any subsequent slice
admission control.

A simplified algorithm based on dynamic programming (DP)
is given in Algorithm 4. The algorithm according to [20]
performs state value iteration.

Algorithm 4 An Illustration of DP Algorithm for Slice
Admission
1: initialize V (s) = 0 ∀s ∈ S
2: repeat
3: 1← 0
4: for each s ∈ S do
5: v← V (s)
6: perform action
7: determine p(s′r|s, a)
8: determine r
9: V (s)← maxa

∑
s′,r p(s

′r|s, a)[r + γV (s)]
10: 1← max(1, |v− V (s)|)
11: end for
12: until 1 ≤ θ (a very small value)

RL solution to slice admission control is quite appealing
as mandatory system modeling is not necessary. However,
not every resource management problem can be formulated
as an MDP problem. Similarly creating and MDP may be
too complex hindering the application of RL in resource
management. The reader may refer to [20] detailed discussion
on RL. The machine learning algorithms in 5G networks may
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TABLE 2. A summary of optimization algorithms: Strengths and weakness.

be applied to easily classify slice requests thereby simpli-
fying slice admission control. Moreover, the complexity of
designing conventional algorithms and dealing with big data
analytics is largely solved by adopting machine learning [49].

1) COMPLEXITY ANALYSIS
Machine learning algorithms are known to be highly data
intensive and the quantity of data determines the computa-
tional complexity and processing time. Specifically, in all
RL algorithms, states and actions spaces must be defined.
The size of state-action space is directly proportional to the
computational cost and time involved. The complexity may
increase further if states are continuous and must all be
explored. If for each state an action has to be taken followed
by a reward calculation then the time duration for training
becomes even longer. Also, if a state-action-reward table
has to be updated then memory requirement may increase
exponentially. However, this problemmay only bemandatory
in Q-learning and not all RL solutions. For instance, an envi-
ronment involving N ×M state matrix, the action space may
be inO(NM ). Indeed, if the state becomes too large the action
space my grow exponentially [50] and the computational cost
involved in solving the MDP becomes too intensive. One
solution to this problem is to perform value approximation
with ANN or simply state-action aggregation.

E. GENETIC ALGORITHM
Genetic Algorithm (GA) is an optimization technique based
on natural selection of evolution. Generally, in GA, a random
selection is performed on the set known as the initial popula-
tion which in slice admission control may denote slice admis-
sion requests. Each sample in the population is evaluated to
determine its fitness. In its simple form, GA follows three
main steps [7].

i. Reproduction stage: In this stage, every policy is copied
into a new set and arranged according to the fitness.

Algorithm 5 An Illustration of GA Algorithm
1: start
2: generate initial population
3: evaluate fitness
4: repeat
5: perform selection
6: perform crossover
7: perform mutation
8: evaluate fitness
9: until convrgence
10: end

The best performing policy is arranged on top while
the worst performing policy is arranged at the bottom.
If revenue maximization is an objective, policies that
generate more revenue are the fittest set in the popula-
tionwhile those that are contrary becomes unfit policies
and are discarded.

ii. Crossover Stage: In this stage, the reproduced poli-
cies are randomly paired with the aim of swapping
the progression. The subsequent policy (child) inherits
both parents ‘‘genes’’. The child is considered to be a
superior policy than the parents.

iii. Mutation stage: This operation is performed over sev-
eral iterations of bit inversions. The aim is to produce
genetic diversity from the initial policy. The probability
of a mutation should be set low otherwise a high prob-
ability may just create a simple random search. In slice
admission control, the mutation process is the creation
of a superior policy for best request selection.

A simplified pseudo-code for GA is provided inAlgorithm 5.
Consider x(n) = x(1), n(2), n(3) . . . x(N ) random population.
The probability of selecting any candidate of binary string b
of length l is given by p(b), where each individual binary set
bi is a possible solution to a problem defined by an objective
function [51]. The selection process depends the fitness of
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TABLE 3. Summary of analysis of slice admission control from research papers.

each candidate which can be obtained from Boltzmann dis-
tribution z(n) = ex(ni)∑N

n=1 e
x(n) . The crossover operation can be

applied based on some probability po ∈ [0, 1]. The mutation
operation of a candidate n may be obtained by flipping bit
k occurring with a probability pq. For instance if b = 00100
and b̄ = 110111 then bymutating pq ·pq ·(1−pq)·pq ·pq ·pq =
pj(1 − pq)l−j. The probability that b similar to b̄ is therefore
given by;

Pb→ b̄ = pH (b,|b)
q (1− pq)l−H (b,b̄) (6)

where H (b, b̄) is the Hamming distance between b and b̄ [51]

GA nonetheless, has several limitations such as i) repeated
policy evaluation. ii) scalability problem iii) sub-optimal con-
vergence, and iv) not performing well on binary decisions.

1) COMPUTATIONAL ANALYSIS
The computational complexity of solving slice admission
control with GA is dictated by the candidate population and
the number of binary sequence in the code book representing
each candidate. Assume S slices where each slice request has
N features to be considered. If each feature in a request can be
mapped to a binary condition representing the possibility of
meeting the demand then all the possible constructions can be
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inO(2S×N ) [7], [51], [52]. This value can be further increased
if each reproduction stage involves for instance, M copies.
If the number of iterations involved during crossover and
selection is β then the time duration before convergence is
in O(2S×N × β ×M ).

In Table 2, we provide a summary of the optimization
algorithms applied in slice admission control.

IV. SUMMARY OF ANALYSIS OF SLICE ADMISSION
CONTROLS
Slice admission control has attracted attention from many
researchers with variant objectives, ranging from revenue
optimization, QoS control, congestion control and fairness
of admission. Each of the objectives requires an admission
strategy and optimization technique. An admitted slice can
occupy an end-to-end domain, be owned by a single tenant or
more, be elastic, inelastic or a combination of both. An end-
to-end slicing domain requires more resources that may be
owned by different InPs. For a slice request to be prop-
erly admitted and provisioned, a proper coordination among
the InPs is required in order to guarantee seamless service
delivery without violating SLA. In Table 3, we present a
summary of slice admission control objectives from different
authors and their associated features. It is clear that majority
of the researchers have considered revenue optimization as
the main objective of slice admission control and adopted
both machine learning and variable heuristic techniques in
optimization. Other optimization algorithms such as SCA and
GA have been used as well.

While a slice may be considered as elastic or inelastic,
the concept has not been elaborately explored by many
researches. We have reviewed existing literature and classi-
fied the considered slice dimensions as either elastic, inelastic
or, both.

Multi-tenancy in the 5G slicing has gained extensive attrac-
tion frommany researchers, and its consideration has attained
more publications compared to single tenancy. This is as a
result of the diversity and heterogeneity in the 5G network.

The 5G infrastructure offers flexibility in resource alloca-
tion, which enables InPs to provision resources based on the
requested domain i.e RAN, cloud and end-to-end. It is noted
that, not much work has been done on end-to-end and specific
cloud slicing admission control. Similarly many researchers
have not distinctly specified the slicing domain considered.
Therefore it reasonable to say that these areas still require
more insight.

The trade-off in achieving optimal slice admission strat-
egy and the practical application of an ideal optimization
algorithm has made researchers to weigh between reducing
complexity and achieving the best results. Many of the con-
siderations so far have been based on priority admission.
Subsequently, on the choice of an optimization algorithm,
we have considered SCA and machine learning techniques as
optimal because they strive to settle at the global optimum.
Other techniques such as heuristic approach are known to be
best-effort and mostly do not necessarily give optimal results.

Finally, more researchers have explored machine learning
techniques in the 5G network slice admission control com-
pared to heuristic and GA approaches.

V. CONCLUSION
Network slicing is a key component of the 5G wireless net-
work. An efficient admission control algorithm is needed to
make slice admission decisions in the 5G network. In this
paper, we have reviewed recent slice admission control algo-
rithms. We have discussed admission objectives applied by
different authors and also elaborated on diverse aspects of
network slices such as slice elasticity, slice tenancy, slice
admission domain and queuing. Different slicing strategies
have been presented, and these strategies plays important
roles in determining how a slice admission control objective
is achieved. In order to enhance slice admission objectives,
optimization algorithm are used.We have discussed fivemain
optimization algorithms applied in the literature for opti-
mizing slice admission control. We have also presented the
merits and demerits of the algorithms followed by simplified
examples of the algorithms for easy comprehension. A sum-
mary of these optimization schemes are given in compacted
form in Table 3. Finally, it is observed that not much work
has been done in slice admission control, particularly in the
following areas, 1) dealing with inter and intra-slice isolation,
ii) extensive end-to-end slice admission, iii) exploration of
deep learning approach in slice admission control. Thus, there
is need for further research in these areas.
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