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Abstract— Time-Triggered Cooperative (TTC) schedulers 

provide simple, low-cost software architecture for many 
embedded applications which have severe resource constraints 
and require high degrees of predictability. Basic implementations 
of TTC scheduler can be achieved using Super Loop (SL). Such 
implementations, however, lack the provision of high 
predictability in case where tasks running in the system have 
unpredictable execution durations or various execution periods. 
This paper reviews the previously developed TTC-SL scheduler 
and presents an alternative scheduler implementation called 
“Fixed-Tick TTC-SL scheduler”. The implemented scheduler is 
evaluated in terms of tick- and task-jitter using a popular family 
of ARM-based microcontrollers. The results show that such an 
implementation – although simple – can help to achieve a 
significant reduction in release jitter at the tick and the ‘top 
priority’ task at negligible cost in terms of memory overheads. 
 

Index Terms— super loop, sandwich delay, cyclic executive, 
time-triggered, cooperative scheduling, tick interval, jitter.  
 

I. INTRODUCTION 

 he majority of embedded systems run only one 
software program. This program usually starts to execute 

when power is applied to the microcontroller and stops 
executing when the power is removed (or some error occurs) 
[1]. Moreover, there is no operating system returned to by the 
program, and allowing the program to terminate might have 
undesirable consequences. In order to avoid this, a form of 
endless “Super Loop” (SL) is usually employed [1],[2]. In the 
example shown in Listing 1, the application has a “one-shot” 
task to be executed only once and then the program will 
remain in the super loop doing nothing until the whole system 
is reset. It is obvious that the super loop is employed mainly to 
“stop” the system. 
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int main(void) 
{ 
Do_X(); 
while(1); 
 
// Should never reach here 
return 1 
} 

Listing 1: Use of a “Super Loop” to avoid termination of a simple embedded 
application. 

However, the super loop can be used as the basis for 
implementing a simple Time-Triggered Cooperative (TTC) 
scheduler (e.g. [1],[2]). TTC scheduler – which is sometimes 
referred to as "cyclic executive" [3],[4] – operates as follows: 
tasks execute in a sequential order defined prior to system 
activation; the number of tasks is fixed; each task is allocated 
an execution slot (called a minor cycle or a frame) during 
which the task executes; the task – once interleaved by the 
scheduler – can execute until completion without interruption 
from other tasks; all tasks are periodic and the deadline of 
each task is equal to its period; the worst-case execution time 
of all tasks is known; there is no context switching between 
tasks; and tasks are scheduled in a repetitive cycle called 
major cycle [3],[4]. Figure 1 illustrates the (time-triggered) 
cyclic executive model for a simple set of four periodic tasks. 
Note that the final task in the task-group (i.e. Task D) must 
complete execution before the arrival of the next timer 
interrupt which launches a new (major) execution cycle. 

Provided that an appropriate implementation is used, TTC 
schedulers can be a good match for a wide range of embedded 
applications, even those which have hard real-time 
requirements [3] - [9]. 
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Figure 1: A time-triggered cyclic executive model for a set of four periodic 
tasks (adapted from [10]). 

 
A possible implementation of TTC scheduler using super 

loop is illustrated in Listing 2. 
 

int main(void) 
{ 
... 
while(1) 
{ 
TaskA(); 
Delay_6ms(); 
TaskB(); 
Delay_6ms(); 
TaskC(); 
Delay_6ms(); 
} 
// Should never reach here 
return 1 
} 

Listing 2: A very simple TTC scheduler which executes three periodic tasks, 
in sequence. 

 
By assuming that each task in Listing 2 has a fixed duration 

of 4 ms, a TTC system with a 5 ms “tick interval” has been 
created using a combination of super loop and delay functions 
(Figure 2).  

 

  

 Figure 2: The task executions resulting from the code in Listing 2. 

Note that if task durations are variable, then it is almost 
impossible to achieve a precisely fixed tick interval with this 
approach, making the use of such a super-loop-based 
scheduler inappropriate for systems which have rigid timing 
constraints. 

This paper provides one way in which a super loop 
approach can be used to implement a highly-predictable TTC 
system with variable task durations. Such an implementation 
is referred to as Fixed-Tick TTC-SL scheduler. 

The remainder of the paper is organized as follows. Section 
II describes the Fixed-Tick TTC-SL scheduler. Section III 
outlines the experimental methodology used to evaluate the 
Fixed-Tick TTC-SL scheduler. Results in terms of time jitter 
and implementation costs are presented in Section IV. The 
overall conclusion is drawn in Section V. 

II. FIXED-TICK TTC-SL SCHEDULER 

The Fixed-Tick TTC-SL scheduler is based on the use of 
“Sandwich Delay” [11] that is placed around the tasks. 
Briefly, a Sandwich Delay (SD) is a mechanism – based on a 
hardware timer – which can be used to ensure that a particular 
code section always takes approximately the same period of 
time to execute.  The SD operates as follows: 

• A timer is set to run.  
• An activity is performed.  
• The system waits until the timer reaches a pre-

determined count value.  
   

In these circumstances – as long as the timer count is set to 
a duration that exceeds the WCET of the sandwiched activity 
– SD mechanism has the potential to fix the execution period. 
Listing 3 shows how the tasks in Figure 2 can be scheduled – 
again using a 10 ms tick interval – if their execution durations 
are not fixed.  

 
int main(void) 
   { 
   ... 
 
   while(1)  
      { 
     // Set up a Timer for sandwich delay 
     SANDWICH_DELAY_Start(); 
    
     // Add Tasks in the first tick interval 
     Task_A(); 
 
     // Wait for 10 millisecond sandwich delay 
     // Add Tasks in the second tick interval  
     SANDWICH_DELAY_Wait(10); 
     Task_B(); 
 
     // Wait for 20 millisecond sandwich delay 
     // Add Tasks in the second tick interval 
     SANDWICH_DELAY_Wait(20); 
     Task_C(); 
 
     // Wait for 30 millisecond sandwich delay 
     SANDWICH_DELAY_Wait(30); 
      } 
   // Should never reach here  
   return 1 
   } 

Listing 3: A TTC scheduler which executes three periodic tasks with variable 
durations, in sequence. 

Using the code listing shown, the successive function calls 
will take place at fixed intervals, even if these functions have 
large variations in their execution durations (Figure 3). 
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Figure 3: The task executions expected from the TTC-SL scheduler code 
shown in Listing 3. 

In general, software architectures based on super loop can 
be seen simple, highly efficient and portable [1],[2]. 
Moreover, by simple modifications, the unwanted jitter levels 
in such architectures can be controlled as will be shown in the 
results of this paper.   

III. EXPERIMENTAL METHODOLOGY 

A.  Hardware platform 

The empirical studies reported in this paper were conducted 
using Ashling LPC2000 evaluation board supporting Philips 
LPC2106 processor  [12]. The LPC2106 is a modern 32-bit 
microcontroller with an ARM7 core which can run – under 
control of an on-chip PLL – at frequencies from 12 MHz to 60 
MHz [13]. The oscillator frequency used was 12 MHz, and a 
CPU frequency was 60 MHz. 

The compiler used was the GCC ARM 4.1.1 operating in 
Windows by means of Cygwin (a Linux emulator for 
windows). The IDE and simulator used was the Keil ARM 
development kit (v3.12). 

B. Jitter test 

For meaningful comparison of jitter results, the following 
two task-sets were used (Figure 4 and Figure 5). In task-set 
#1, all tasks have fixed durations and they are scheduled to 
run in each tick interval. Task-set #2 was used to allow 
exploring the impact of schedule-induced jitter by scheduling 
Task A to run every two ticks. Moreover, all tasks were set to 
have variable execution durations to allow exploring the 
impact of task-induced jitter.  
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Figure 4: Graphical representation of the task-set #1 in jitter test. 

Note that in both task sets, the maximum duration of Task 
A is 2 ms which is double the duration of Task B and Task C 
(each with duration equals 1 ms). Also, Task A has the highest 
priority and Task C has the lowest priority. The tick interval 

used was 5 ms. 
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Figure 5: Graphical representation of the task-set #2 in jitter test. 

Listing 4 shows how the task-set illustrated in Figure 5 was 
implemented in the TTC-SL scheduler. 
 
int main(void) 
{ 
... 
while(1) 
{ 
 
// Add Tasks in the first tick interval 
TaskA(); // its max duration is 2 ms 
TaskB(); // its max duration is 1 ms 
TaskC(); // its max duration is 1 ms 
 
// Wait for 1 millisecond delay to complete the 5 ms tick  
// interval  
Delay_1ms(); 
 
// Add Tasks in the second tick interval  
TaskB(); 
TaskC(); 
 
// Wait for 3 millisecond delay to complete the 5 ms tick  
// interval  
Delay_1ms(); 
 
} 
// Should never reach here 
return 1 
} 

Listing 4: Implementing the TTC-SL scheduler for tasks shown in Figure 5. 

Listing 5 shows how the task-set illustrated in Figure 5 was 
implemented in the Fixed-Tick TTC-SL scheduler. 

 
int main(void) 
   { 
   ... 
   while(1)  
      { 
   // Set up Timer 1 for sandwich delay 
   SANDWICH_DELAY_T1_Start(); 
 
   // Add Tasks in the first tick interval 
   Task_A(); 

   Task_B(); 
     Task_C(); 
 
   // Wait for 5 millisecond sandwich delay       
   SANDWICH_DELAY_Wait (5); 
 
   // Add Tasks in the second tick interval 
   Task_B();  
     Task_C(); 
 
   // Wait for 10 millisecond sandwich delay 
   SANDWICH_DELAY_Wait (10); 
   } 
 
   return 1;  // Should never reach here ... 
   } 

Listing 5: Implementing the Fixed-Tick TTC-SL scheduler for tasks shown in 
Figure 5. 
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Jitter was measured at the release time of tick and each task. 
To measure jitter experimentally, we set a pin high at the 
beginning of the tick or task (for a short time) and then 
measure the periods between every two successive rising 
edges (Figure 6). We recorded 5000 samples in each 
experiment. The periods were measured using a National 
Instruments data acquisition card ‘NI PCI-6035E’ [14], used 
in conjunction with appropriate software LabVIEW 7.1 [15].  

 

TimeTick 0 Tick 1 Tick 2 Tick 3

Period 1 Period 2 Period 3

 

Figure 6: The technique used to measure release jitter in tick (for example). 

To assess the jitter levels, we report two values: “average 
jitter” and “difference jitter”.  The difference jitter is obtained 
by subtracting the minimum period from the maximum period 
obtained from the measurements in the sample set. This jitter 
is sometimes referred to as “absolute jitter” [16]. The average 
jitter is represented by the standard deviation in the measure 
of average periods. Note that there are many other measures 
that can be used to represent the levels of task jitter, but these 
measures were felt to be appropriate for this study. 

C. CPU test 

To obtain CPU overhead measurements in each scheduler, 
we run the scheduler for 25 seconds and then, using the 
performance analyzer supported by the Keil simulator, the 
total time used by the scheduler code was measured. The 
percentage of the measured CPU time out of the total running 
time was also reported. 

D. Memory test 

In this test, CODE and DATA memory values required to 
implement each scheduler were recorded. Memory values 
were obtained using the “.map” file created when the source 
code is compiled. The STACK usage was also measured (as 
part of the DATA memory overhead) by initially filling the 
data memory with ‘DEAD CODE’ and then reporting the 
number of memory bytes that had been overwritten after 
running the scheduler for sufficient period. 

IV. RESULTS 

A. Jitter 

Table 1 and Table 2 present the measured release jitter in 
the tick and all tasks in the TTC-SL and Fixed-Tick TTC-SL 
schedulers, respectively.  

TABLE 1 
TICK AND TASK JITTER FROM THE TTC- SCHEDULER (ALL VALUES IN µS).  

  Tick Task   A 
Task 

B 
Task   C 

TTC-SL 

Task-set 
#1 

Min Period 
4999.

6 
4999.6 4999.6 4999.6 

Max Period 
5000.

5 
5000.5 5000.5 5000.5 

Average 
Period 

5000.
0 

5000.1 5000.0 5000.1 

Diff. Jitter 0.9 0.9 0.9 0.9 

Avg. Jitter 0.3 0.3 0.3 0.3 

TTC-SL 

Task-set 
#2 

Min Period 
1005.

5 4005.5 1005.5 1005.5 

Max Period 
5000.

5 10000.2 7000.5 6000.5 

Average 
Period 

3000.
5 7002.5 3000.5 3000.5 

Diff. Jitter 
3995.

0 5994.7 5995.0 4995.0 

Avg. Jitter 1020 1135 1116 1025 

 

The results in the table show that with the task-set #1, the 
jitter levels are small and can be accepted. On the other hand, 
when the task-set #2 is applied (where tasks vary in their 
durations) the jitter levels at both tick and tasks are very high. 
This jitter is caused by the variation in task durations and 
tasks periods. Recall that the scheduler is originally designed 
to run tasks with fixed and known execution times. Such a 
jitter behavior is unacceptable in many applications where 
deterministic timing is required for predictable operation. 

 
TABLE 2 

TICK AND TASK JITTER FROM THE FIXED-TICK TTC-SL SCHEDULER (ALL 

VALUES IN µS).  

  Tick Task   A 
Task 

B 
Task   C 

Fixed-Tick TTC-
SL 

Task-set #1 

Min Period 
4999.

7 
4999.7 4999.7 4999.7 

Max Period 
5000.

5 
5000.5 5000.5 5000.5 

Average 
Period 

5000.
1 

5000.1 5000.1 5000.1 

Diff. Jitter 0.8 0.8 0.8 0.8 

Avg. Jitter 0.2 0.2 0.2 0.2 

Fixed-Tick TTC-
SL 

Task-set #2 

Min Period 
4999.

8 
10000.1 2993.9 2100.8 

Max Period 5001 10001.6 7010.1 7873 

Average 
Period 

5000.
5 

10000.9 4923.7 4947.2 

Diff. Jitter 1.2 1.5 4016.2 5772.2 

Avg. Jitter 0.3 0.3 1179 1248.6 

 
From the results in this table, it can be seen that with the 

Fixed-Tick TTC-SL scheduler the tick occurs at deterministic 
timing (with very low levels of release jitter). It is worth 
noting that obtaining zero jitter in the release time of the tick 
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is difficult, however, the tick jitter can still be very low. Also 
from the results, when fixing the duration times and periods of 
tasks (as with the task-set #1) the jitter in the release time of 
all tasks was maintained very low. This behavior is expected. 
Moreover, even if all tasks vary in their execution durations 
and regardless of the frequency (i.e. period) of the running 
tasks, the "top priority" task (which possesses the highest 
priority) always runs with low jitter in its release time (as with 
the task-set #2).  

Results also show that when the scheduler major cycle had 
more than one tick (as in task-set #2) the tick jitter and Task A 
jitter values have slightly increased. This is due to the 
variation in time taken to leave the software loop – which is 
used in the SD mechanism – and begin to execute the tasks in 
the next tick. In Listing 6, one way of implementing such a 
SD mechanism is shown.  
 
void SANDWICH_DELAY_ Wait(const unsigned int DELAY_MS) 
  { 
   // The timer is set so that one count equals to one 
microsecond 
   int i = DELAY_MS;  
 
   // Wait for Timer 1 count to reach delay    
   while (T1TC < i) 
     { 
     ; 
     } 
  } 

Listing 6: An example of “sandwich delay” function used in TTC-SL 
scheduler.  

B. CPU and memory requirements 

Table 3 shows the CPU overhead for the TTC-SL and 
Fixed-Tick TTC-SL schedulers. From the results shown in the 
table, super loop scheduler always requires a full CPU load 
(100%). This is since the scheduler does not use the low-
power “idle” mode [1] when not executing tasks: instead, the 
scheduler waits in a “while” loop. 

 
TABLE 3 

CPU OVERHEAD FOR THE TTC-SL AND FIXED-TICK TTC-SL SCHEDULERS. 

 
Scheduler time 

(s): 
Total time 

(s): 
Overhead 

% 

TTC-SL 

Task-set #2 
25.00 25.00 100 

Fixed-Tick TTC-
SL 

Task-set #2 

25.00 25.00 100 

 
Note that in any super loop scheduler, the CPU uses 100% 

of the time resources. Such a CPU requirement causes an 
increase in the overall system power consumption.  

The memory required to implement the TTC-SL and Fixed-
Tick TTC-SL schedulers are summarized in Table 4 for 
comparison purposes. Note that there is no difference in 
memory requirements between the task-set #1 and #2. Hence, 
only task-set #2 was considered.  

 

TABLE 4 
MEMORY REQUIREMENTS (ROM AND RAM) FOR THE TTC-SL AND FIXED-

TICK TTC-SL SCHEDULERS 

 

ROM 
requirements 

(Bytes) 

RAM 
requirements 

(Bytes) 

TTC-SL 2150 120 

Fixed-Tick TTC-
SL 

Task-set #1 

2264 124 

 
It can be seen from the table that implementing the Fixed-

Tick TTC-SL scheduler would only required 5% and 3% 
increases in code and data memories, respectively. Such 
memory costs are totally insignificant. 

V. CONCLUSIONS 

Time-triggered cooperative (TTC) architectures provide a 
good solution for a wide range of embedded applications 
where predictability is a key concern and resources are 
limited. This paper discussed ways for implementing TTC 
scheduler using simple super loop architecture aimed at 
matching the requirements for the aforementioned types of 
real-time embedded applications. 

This paper is only concerned with enhancing the 
performance of simple TTC schedulers based on the use of 
super loop. The results show that the time accuracy can be 
enhanced by applying a form of sandwich delay around each 
tick interval in the super-loop scheduler. The modified 
scheduler implementation was referred to as Fixed-Tick TTC-
SL scheduler. Such a modification – as indicated in the results 
– required only a slight increase in memory overheads while 
achieving high timing predictability.  

In general, software architectures based on super loop can 
be seen simple, highly efficient and portable. However, these 
approaches lack the provision of accurate timing and the 
efficiency in using the power resources, as the system always 
operates at full-power which is not necessary in many 
applications. An appropriate solution to this problem is to 
make use of the hardware resources to control the timing and 
power behavior of the system. For example, a TTC scheduler 
implementation can be created using “Interrupt Service 
Routine” (ISR) linked to the overflow of a hardware timer. 
This approach is beyond the scope of this paper and is 
discussed in detail in [2].  

Further work in this area may include the utilization of ISR 
approach (and low-power idle mode) along with advanced 
software techniques to achieve high timing predictability at 
low power requirements. Examples of some highly-
predictable implementations of the TTC algorithm are 
discussed in [8],[17],[18]. Such implementations, however, 
require relatively large memory requirements.  
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