
International Journal of Electrical & Computer Sciences IJECS-IJENS Vol: 11 No: 04 33

 117404-8989 IJECS-IJENS © August 2011 IJENS I J E N S

Abstract— Time-Triggered Cooperative (TTC) schedulers

provide simple, low-cost software architecture for many
embedded applications which have severe resource constraints
and require high degrees of predictability. Basic implementations
of TTC scheduler can be achieved using Super Loop (SL). Such
implementations, however, lack the provision of high
predictability in case where tasks running in the system have
unpredictable execution durations or various execution periods.
This paper reviews the previously developed TTC-SL scheduler
and presents an alternative scheduler implementation called
“Fixed-Tick TTC-SL scheduler”. The implemented scheduler is
evaluated in terms of tick- and task-jitter using a popular family
of ARM-based microcontrollers. The results show that such an
implementation – although simple – can help to achieve a
significant reduction in release jitter at the tick and the ‘top
priority’ task at negligible cost in terms of memory overheads.

Index Terms— super loop, sandwich delay, cyclic executive,
time-triggered, cooperative scheduling, tick interval, jitter.

I. INTRODUCTION

 he majority of embedded systems run only one
software program. This program usually starts to execute

when power is applied to the microcontroller and stops
executing when the power is removed (or some error occurs)
[1]. Moreover, there is no operating system returned to by the
program, and allowing the program to terminate might have
undesirable consequences. In order to avoid this, a form of
endless “Super Loop” (SL) is usually employed [1],[2]. In the
example shown in Listing 1, the application has a “one-shot”
task to be executed only once and then the program will
remain in the super loop doing nothing until the whole system
is reset. It is obvious that the super loop is employed mainly to
“stop” the system.

Manuscript submitted July 09, 2011.
M. Nahas is with Umm Al-Qura University, Makkah, Saudi Arabia (phone:
+966(2) 5270000; e-mail: mmnahas@uqu.edu.sa).

int main(void)
{
Do_X();
while(1);

// Should never reach here
return 1
}

Listing 1: Use of a “Super Loop” to avoid termination of a simple embedded
application.

However, the super loop can be used as the basis for
implementing a simple Time-Triggered Cooperative (TTC)
scheduler (e.g. [1],[2]). TTC scheduler – which is sometimes
referred to as "cyclic executive" [3],[4] – operates as follows:
tasks execute in a sequential order defined prior to system
activation; the number of tasks is fixed; each task is allocated
an execution slot (called a minor cycle or a frame) during
which the task executes; the task – once interleaved by the
scheduler – can execute until completion without interruption
from other tasks; all tasks are periodic and the deadline of
each task is equal to its period; the worst-case execution time
of all tasks is known; there is no context switching between
tasks; and tasks are scheduled in a repetitive cycle called
major cycle [3],[4]. Figure 1 illustrates the (time-triggered)
cyclic executive model for a simple set of four periodic tasks.
Note that the final task in the task-group (i.e. Task D) must
complete execution before the arrival of the next timer
interrupt which launches a new (major) execution cycle.

Provided that an appropriate implementation is used, TTC
schedulers can be a good match for a wide range of embedded
applications, even those which have hard real-time
requirements [3] - [9].

Implementation of highly-predictable time-
triggered cooperative scheduler using simple

super loop architecture

Mouaaz Nahas, Member, IEEE

T

International Journal of Electrical & Computer Sciences IJECS-IJENS Vol: 11 No: 04 34

 117404-8989 IJECS-IJENS © August 2011 IJENS I J E N S

Task B

Task C

Task D

Task A

Figure 1: A time-triggered cyclic executive model for a set of four periodic
tasks (adapted from [10]).

A possible implementation of TTC scheduler using super

loop is illustrated in Listing 2.

int main(void)
{
...
while(1)
{
TaskA();
Delay_6ms();
TaskB();
Delay_6ms();
TaskC();
Delay_6ms();
}
// Should never reach here
return 1
}

Listing 2: A very simple TTC scheduler which executes three periodic tasks,
in sequence.

By assuming that each task in Listing 2 has a fixed duration

of 4 ms, a TTC system with a 5 ms “tick interval” has been
created using a combination of super loop and delay functions
(Figure 2).

 Figure 2: The task executions resulting from the code in Listing 2.

Note that if task durations are variable, then it is almost
impossible to achieve a precisely fixed tick interval with this
approach, making the use of such a super-loop-based
scheduler inappropriate for systems which have rigid timing
constraints.

This paper provides one way in which a super loop
approach can be used to implement a highly-predictable TTC
system with variable task durations. Such an implementation
is referred to as Fixed-Tick TTC-SL scheduler.

The remainder of the paper is organized as follows. Section
II describes the Fixed-Tick TTC-SL scheduler. Section III
outlines the experimental methodology used to evaluate the
Fixed-Tick TTC-SL scheduler. Results in terms of time jitter
and implementation costs are presented in Section IV. The
overall conclusion is drawn in Section V.

II. FIXED-TICK TTC-SL SCHEDULER

The Fixed-Tick TTC-SL scheduler is based on the use of
“Sandwich Delay” [11] that is placed around the tasks.
Briefly, a Sandwich Delay (SD) is a mechanism – based on a
hardware timer – which can be used to ensure that a particular
code section always takes approximately the same period of
time to execute. The SD operates as follows:

• A timer is set to run.
• An activity is performed.
• The system waits until the timer reaches a pre-

determined count value.

In these circumstances – as long as the timer count is set to
a duration that exceeds the WCET of the sandwiched activity
– SD mechanism has the potential to fix the execution period.
Listing 3 shows how the tasks in Figure 2 can be scheduled –
again using a 10 ms tick interval – if their execution durations
are not fixed.

int main(void)
 {
 ...

 while(1)
 {
 // Set up a Timer for sandwich delay
 SANDWICH_DELAY_Start();

 // Add Tasks in the first tick interval
 Task_A();

 // Wait for 10 millisecond sandwich delay
 // Add Tasks in the second tick interval
 SANDWICH_DELAY_Wait(10);
 Task_B();

 // Wait for 20 millisecond sandwich delay
 // Add Tasks in the second tick interval
 SANDWICH_DELAY_Wait(20);
 Task_C();

 // Wait for 30 millisecond sandwich delay
 SANDWICH_DELAY_Wait(30);
 }
 // Should never reach here
 return 1
 }

Listing 3: A TTC scheduler which executes three periodic tasks with variable
durations, in sequence.

Using the code listing shown, the successive function calls
will take place at fixed intervals, even if these functions have
large variations in their execution durations (Figure 3).

International Journal of Electrical & Computer Sciences IJECS-IJENS Vol: 11 No: 04 35

 117404-8989 IJECS-IJENS © August 2011 IJENS I J E N S

Figure 3: The task executions expected from the TTC-SL scheduler code
shown in Listing 3.

In general, software architectures based on super loop can
be seen simple, highly efficient and portable [1],[2].
Moreover, by simple modifications, the unwanted jitter levels
in such architectures can be controlled as will be shown in the
results of this paper.

III. EXPERIMENTAL METHODOLOGY

A. Hardware platform

The empirical studies reported in this paper were conducted
using Ashling LPC2000 evaluation board supporting Philips
LPC2106 processor [12]. The LPC2106 is a modern 32-bit
microcontroller with an ARM7 core which can run – under
control of an on-chip PLL – at frequencies from 12 MHz to 60
MHz [13]. The oscillator frequency used was 12 MHz, and a
CPU frequency was 60 MHz.

The compiler used was the GCC ARM 4.1.1 operating in
Windows by means of Cygwin (a Linux emulator for
windows). The IDE and simulator used was the Keil ARM
development kit (v3.12).

B. Jitter test

For meaningful comparison of jitter results, the following
two task-sets were used (Figure 4 and Figure 5). In task-set
#1, all tasks have fixed durations and they are scheduled to
run in each tick interval. Task-set #2 was used to allow
exploring the impact of schedule-induced jitter by scheduling
Task A to run every two ticks. Moreover, all tasks were set to
have variable execution durations to allow exploring the
impact of task-induced jitter.

B1

Major
cycle

A1

B2

A2

C1

t = 0 1

C2

t = 0 1

t (Ticks)t = 0 1

t (Ticks)

t (Ticks)
Figure 4: Graphical representation of the task-set #1 in jitter test.

Note that in both task sets, the maximum duration of Task
A is 2 ms which is double the duration of Task B and Task C
(each with duration equals 1 ms). Also, Task A has the highest
priority and Task C has the lowest priority. The tick interval

used was 5 ms.

B1

A1

B2

C1

t = 0 1

C2

t = 0 1

t (Ticks)t = 0 1

Task A

Task B

Task C

t (Ticks)

t (Ticks)

Major cycle

B3

A2

C3

2

2

2

Figure 5: Graphical representation of the task-set #2 in jitter test.

Listing 4 shows how the task-set illustrated in Figure 5 was
implemented in the TTC-SL scheduler.

int main(void)
{
...
while(1)
{

// Add Tasks in the first tick interval
TaskA(); // its max duration is 2 ms
TaskB(); // its max duration is 1 ms
TaskC(); // its max duration is 1 ms

// Wait for 1 millisecond delay to complete the 5 ms tick
// interval
Delay_1ms();

// Add Tasks in the second tick interval
TaskB();
TaskC();

// Wait for 3 millisecond delay to complete the 5 ms tick
// interval
Delay_1ms();

}
// Should never reach here
return 1
}

Listing 4: Implementing the TTC-SL scheduler for tasks shown in Figure 5.

Listing 5 shows how the task-set illustrated in Figure 5 was
implemented in the Fixed-Tick TTC-SL scheduler.

int main(void)
 {
 ...
 while(1)
 {
 // Set up Timer 1 for sandwich delay
 SANDWICH_DELAY_T1_Start();

 // Add Tasks in the first tick interval
 Task_A();

 Task_B();
 Task_C();

 // Wait for 5 millisecond sandwich delay
 SANDWICH_DELAY_Wait (5);

 // Add Tasks in the second tick interval
 Task_B();
 Task_C();

 // Wait for 10 millisecond sandwich delay
 SANDWICH_DELAY_Wait (10);
 }

 return 1; // Should never reach here ...
 }

Listing 5: Implementing the Fixed-Tick TTC-SL scheduler for tasks shown in
Figure 5.

International Journal of Electrical & Computer Sciences IJECS-IJENS Vol: 11 No: 04 36

 117404-8989 IJECS-IJENS © August 2011 IJENS I J E N S

Jitter was measured at the release time of tick and each task.
To measure jitter experimentally, we set a pin high at the
beginning of the tick or task (for a short time) and then
measure the periods between every two successive rising
edges (Figure 6). We recorded 5000 samples in each
experiment. The periods were measured using a National
Instruments data acquisition card ‘NI PCI-6035E’ [14], used
in conjunction with appropriate software LabVIEW 7.1 [15].

TimeTick 0 Tick 1 Tick 2 Tick 3

Period 1 Period 2 Period 3

Figure 6: The technique used to measure release jitter in tick (for example).

To assess the jitter levels, we report two values: “average
jitter” and “difference jitter”. The difference jitter is obtained
by subtracting the minimum period from the maximum period
obtained from the measurements in the sample set. This jitter
is sometimes referred to as “absolute jitter” [16]. The average
jitter is represented by the standard deviation in the measure
of average periods. Note that there are many other measures
that can be used to represent the levels of task jitter, but these
measures were felt to be appropriate for this study.

C. CPU test

To obtain CPU overhead measurements in each scheduler,
we run the scheduler for 25 seconds and then, using the
performance analyzer supported by the Keil simulator, the
total time used by the scheduler code was measured. The
percentage of the measured CPU time out of the total running
time was also reported.

D. Memory test

In this test, CODE and DATA memory values required to
implement each scheduler were recorded. Memory values
were obtained using the “.map” file created when the source
code is compiled. The STACK usage was also measured (as
part of the DATA memory overhead) by initially filling the
data memory with ‘DEAD CODE’ and then reporting the
number of memory bytes that had been overwritten after
running the scheduler for sufficient period.

IV. RESULTS

A. Jitter

Table 1 and Table 2 present the measured release jitter in
the tick and all tasks in the TTC-SL and Fixed-Tick TTC-SL
schedulers, respectively.

TABLE 1
TICK AND TASK JITTER FROM THE TTC- SCHEDULER (ALL VALUES IN µS).

 Tick Task A
Task

B
Task C

TTC-SL

Task-set
#1

Min Period
4999.

6
4999.6 4999.6 4999.6

Max Period
5000.

5
5000.5 5000.5 5000.5

Average
Period

5000.
0

5000.1 5000.0 5000.1

Diff. Jitter 0.9 0.9 0.9 0.9

Avg. Jitter 0.3 0.3 0.3 0.3

TTC-SL

Task-set
#2

Min Period
1005.

5 4005.5 1005.5 1005.5

Max Period
5000.

5 10000.2 7000.5 6000.5

Average
Period

3000.
5 7002.5 3000.5 3000.5

Diff. Jitter
3995.

0 5994.7 5995.0 4995.0

Avg. Jitter 1020 1135 1116 1025

The results in the table show that with the task-set #1, the
jitter levels are small and can be accepted. On the other hand,
when the task-set #2 is applied (where tasks vary in their
durations) the jitter levels at both tick and tasks are very high.
This jitter is caused by the variation in task durations and
tasks periods. Recall that the scheduler is originally designed
to run tasks with fixed and known execution times. Such a
jitter behavior is unacceptable in many applications where
deterministic timing is required for predictable operation.

TABLE 2

TICK AND TASK JITTER FROM THE FIXED-TICK TTC-SL SCHEDULER (ALL

VALUES IN µS).

 Tick Task A
Task

B
Task C

Fixed-Tick TTC-
SL

Task-set #1

Min Period
4999.

7
4999.7 4999.7 4999.7

Max Period
5000.

5
5000.5 5000.5 5000.5

Average
Period

5000.
1

5000.1 5000.1 5000.1

Diff. Jitter 0.8 0.8 0.8 0.8

Avg. Jitter 0.2 0.2 0.2 0.2

Fixed-Tick TTC-
SL

Task-set #2

Min Period
4999.

8
10000.1 2993.9 2100.8

Max Period 5001 10001.6 7010.1 7873

Average
Period

5000.
5

10000.9 4923.7 4947.2

Diff. Jitter 1.2 1.5 4016.2 5772.2

Avg. Jitter 0.3 0.3 1179 1248.6

From the results in this table, it can be seen that with the

Fixed-Tick TTC-SL scheduler the tick occurs at deterministic
timing (with very low levels of release jitter). It is worth
noting that obtaining zero jitter in the release time of the tick

International Journal of Electrical & Computer Sciences IJECS-IJENS Vol: 11 No: 04 37

 117404-8989 IJECS-IJENS © August 2011 IJENS I J E N S

is difficult, however, the tick jitter can still be very low. Also
from the results, when fixing the duration times and periods of
tasks (as with the task-set #1) the jitter in the release time of
all tasks was maintained very low. This behavior is expected.
Moreover, even if all tasks vary in their execution durations
and regardless of the frequency (i.e. period) of the running
tasks, the "top priority" task (which possesses the highest
priority) always runs with low jitter in its release time (as with
the task-set #2).

Results also show that when the scheduler major cycle had
more than one tick (as in task-set #2) the tick jitter and Task A
jitter values have slightly increased. This is due to the
variation in time taken to leave the software loop – which is
used in the SD mechanism – and begin to execute the tasks in
the next tick. In Listing 6, one way of implementing such a
SD mechanism is shown.

void SANDWICH_DELAY_ Wait(const unsigned int DELAY_MS)
 {
 // The timer is set so that one count equals to one
microsecond
 int i = DELAY_MS;

 // Wait for Timer 1 count to reach delay
 while (T1TC < i)
 {
 ;
 }
 }

Listing 6: An example of “sandwich delay” function used in TTC-SL
scheduler.

B. CPU and memory requirements

Table 3 shows the CPU overhead for the TTC-SL and
Fixed-Tick TTC-SL schedulers. From the results shown in the
table, super loop scheduler always requires a full CPU load
(100%). This is since the scheduler does not use the low-
power “idle” mode [1] when not executing tasks: instead, the
scheduler waits in a “while” loop.

TABLE 3

CPU OVERHEAD FOR THE TTC-SL AND FIXED-TICK TTC-SL SCHEDULERS.

Scheduler time

(s):
Total time

(s):
Overhead

%

TTC-SL

Task-set #2
25.00 25.00 100

Fixed-Tick TTC-
SL

Task-set #2

25.00 25.00 100

Note that in any super loop scheduler, the CPU uses 100%

of the time resources. Such a CPU requirement causes an
increase in the overall system power consumption.

The memory required to implement the TTC-SL and Fixed-
Tick TTC-SL schedulers are summarized in Table 4 for
comparison purposes. Note that there is no difference in
memory requirements between the task-set #1 and #2. Hence,
only task-set #2 was considered.

TABLE 4
MEMORY REQUIREMENTS (ROM AND RAM) FOR THE TTC-SL AND FIXED-

TICK TTC-SL SCHEDULERS

ROM
requirements

(Bytes)

RAM
requirements

(Bytes)

TTC-SL 2150 120

Fixed-Tick TTC-
SL

Task-set #1

2264 124

It can be seen from the table that implementing the Fixed-

Tick TTC-SL scheduler would only required 5% and 3%
increases in code and data memories, respectively. Such
memory costs are totally insignificant.

V. CONCLUSIONS

Time-triggered cooperative (TTC) architectures provide a
good solution for a wide range of embedded applications
where predictability is a key concern and resources are
limited. This paper discussed ways for implementing TTC
scheduler using simple super loop architecture aimed at
matching the requirements for the aforementioned types of
real-time embedded applications.

This paper is only concerned with enhancing the
performance of simple TTC schedulers based on the use of
super loop. The results show that the time accuracy can be
enhanced by applying a form of sandwich delay around each
tick interval in the super-loop scheduler. The modified
scheduler implementation was referred to as Fixed-Tick TTC-
SL scheduler. Such a modification – as indicated in the results
– required only a slight increase in memory overheads while
achieving high timing predictability.

In general, software architectures based on super loop can
be seen simple, highly efficient and portable. However, these
approaches lack the provision of accurate timing and the
efficiency in using the power resources, as the system always
operates at full-power which is not necessary in many
applications. An appropriate solution to this problem is to
make use of the hardware resources to control the timing and
power behavior of the system. For example, a TTC scheduler
implementation can be created using “Interrupt Service
Routine” (ISR) linked to the overflow of a hardware timer.
This approach is beyond the scope of this paper and is
discussed in detail in [2].

Further work in this area may include the utilization of ISR
approach (and low-power idle mode) along with advanced
software techniques to achieve high timing predictability at
low power requirements. Examples of some highly-
predictable implementations of the TTC algorithm are
discussed in [8],[17],[18]. Such implementations, however,
require relatively large memory requirements.

International Journal of Electrical & Computer Sciences IJECS-IJENS Vol: 11 No: 04 38

 117404-8989 IJECS-IJENS © August 2011 IJENS I J E N S

ACKNOWLEDGMENT

The work described in this paper was part of a project
carried out in the Embedded Systems Laboratory (ESL) at
University of Leicester, UK. The author would like to thank
Professor Michael Pont for supervising this project.

REFERENCES

[1] M.J. Pont, Patterns for time-triggered embedded systems: Building
reliable applications with the 8051 family of microcontrollers, ACM
Press / Addison-Wesley, 2001.

[2] S. Kurian, and M.J. Pont, “Maintenance and evolution of resource-
constrained embedded systems created using design patterns,” Journal
of Systems and Software, vol. 80, No. 1, pp. 32-41, 2007.

[3] T.P. Baker and A. Shaw, "The cyclic executive model and Ada," Real-
Time Systems, vol. 1, No. 1, pp. 7 – 25, 1989.

[4] C.D. Locke, "Software architecture for hard real-time applications:
cyclic executives vs. fixed priority executives," Real-Time Systems, vol.
4, pp. 37 – 52, 1992.

[5] M.J. Pont and M.P. Banner, "Designing embedded systems using
patterns: A case study," Journal of Systems and Software, vol. 71, No, 3,
pp. 201 – 213, 2004.

[6] D. Ayavoo, M.J. Pont and S. Parker, "Does a ‘simulation first’ approach
reduce the effort involved in the development of distributed embedded
control systems?," in 6th UKACC International Control Conference,
Glasgow, Scotland, 2006.

[7] T. Nghiem, G.J. Pappas, R. Alur, and A. Girard, "Time-triggered
implementations of dynamic controllers," in Proceedings of the 6th ACM
& IEEE International conference on Embedded software, Seoul, Korea,
2006, pp. 2-11.

[8] T. Phatrapornnant and M.J. Pont, "Reducing jitter in embedded systems
employing a time-triggered software architecture and dynamic voltage
scaling," IEEE Transactions on Computers, vol. 55, No. 2, pp. 113 –
124, 2006.

[9] M. Short and M.J. Pont, "Fault-Tolerant Time-Triggered
Communication Using CAN," IEEE Transactions on Industrial
Informatics, vol. 3, No. 2, pp. 13 – 142, 2007.

[10] D. Kalinsky, “Context switch,” Embedded Systems Programming, vol.
14, No. 1, pp. 94 – 105, 2001.

[11] M.J. Pont, S. Kurian and R. Bautista-Quintero, "Meeting real-time
constraints using ‘Sandwich Delays’," Transactions on Pattern
Languages of Programming I, 5770/2009, 2009, Springer Berlin /
Heidelberg, pp. 94 – 102, 2010.

[12] LPC2000 Evaluation and Development Kits datasheet, Ashling
Microsystems, 2007. Available:
http://www.ashling.com/pdf_datasheets/DS266-EvKit2000.pdf

[13] LPC2106/2105/2104 USER MANUAL, Philips Semiconductors, 2003.
Available:
http://www.standardics.nxp.com/products/lpc2000/datasheet/lpc2104.lpc
2105.lpc2106.pdf

[14] Low-Cost E Series Multifunc-tion DAQ – 12 or 16-Bit, 200 kS/s, 16
Analog Inputs, National Instruments, 2006. Available:
http://www.ni.com/pdf/products/us/4daqsc202-204_ETC_212-213.pdf

[15] LabVIEW 7.1 Documentation Re-sources, LabVIEW, 2007. Available:
http://digital.ni.com/public.nsf/allkb/06572E936282C0E486256EB0006
B70B4

[16] G. Buttazzo, Hard real-time computing systems: predictable scheduling
algorithms and applications, Springer, New York, 2005.

[17] M. Nahas, M.J. Pont and A. Jain, "Reducing task jitter in shared-clock
embedded systems using CAN". In: Koelmans, A., Bystrov, A. and Pont,
M.J. (Eds.) Proceedings of the UK Embedded Forum 2004 (Bir-
mingham, UK, October 2004), Published by University of Newcastle
upon Tyne, 2004, pp. 184 – 194.

[18] Z.M. Hughes and M.J. Pont, "Reducing the impact of task overruns in
resource-constrained embedded systems in which a time-triggered
software architecture is employed", Transactions of the Institute of
Measurement and Control, vol. 30, 2008, pp.427 – 450.

Mouaaz Nahas (M’01) was born in UK on 1977. He received the B.Sc.
degree (Electrical Engineering) from Jordan University of Science and
Technology, Jordan, in 2001, the M.Sc. degree (Communications
Engineering) from Loughborough University, UK, in 2002, and the Ph.D.
degree (Embedded Systems) from University of Leicester, UK, in 2009. He is
currently an Assistant Professor in the Department of Electrical Engineering at
Umm Al-Qura University, Makkah, Saudi Arabia. His main research interest
is in the development of cost-effective techniques for maximizing the

reliability of real-time, resource-constrained
embedded systems. He is also interested in
wireless communications research.

