
1098 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 62, NO. 11, NOVEMBER 2015

NISC-Based Soft-Input–Soft-Output Demapper
Mostafa Rizk, Student Member, IEEE, Amer Baghdadi, Member, IEEE, Michel Jézéquel, Senior Member, IEEE,

Yasser Mohanna, and Youssef Atat

Abstract—Applications in wireless digital communication field
are becoming increasingly complex and diverse. Circuits and sys-
tems adopted in this application domain must not only consider
performance and implementation constraints but also the require-
ment of flexibility. The combination of flexibility and the ever
increasing performance requirements demands design approach
that provides better ways of controlling and managing hardware
resources. An application-specific instruction-set processor (ASIP)
design approach is a key trend in designing flexible architectures.
The ASIP concept implies dynamic scheduling of a set of instruc-
tions that generally leads to an overhead related to instruction de-
coding. The no-instruction-set-computer (NISC) concept has been
introduced to reduce this overhead through the adoption of static
scheduling. In this brief, the NISC approach is explored through
a case-study design of universal demapper for multiple wireless
standards. The proposed design has common main architectural
choices as a state-of-the-art ASIP for comparison purpose. The
obtained results illustrate a significant improvement in execution
time and implementation area while using identical computational
resources and supporting same flexibility parameters.

Index Terms—Demapper, flexibility, iterative processing, multi-
standard wireless system, no-instruction-set-computer (NISC).

I. INTRODUCTION

CURRENTLY, flexibility is a major design requirement of
embedded systems and circuits. Hardware architectures

are supposed to accommodate multitude system configurations
as well as their corresponding algorithmic variants. Because of
the rapid evolution of related standards, modern wireless digital
communication systems are highly concerned about the flexi-
bility feature. However, the emergent flexibility need should not
come at the cost of performance and implementation require-
ments. Application-specific processors are increasingly adopted
to implement definite blocks of wireless system since they pro-
vide a good solution in designing flexible architectures that can
fulfill nowadays requirements in terms of low error-rate perfor-
mance and high throughput, and satisfy the tight constraints on
implementation area and power consumption.

The application-specific instruction-set processor (ASIP)
concept offers a tradeoff in terms of the flexibility of general-
purpose processors and the efficiency of application-specific
integrated circuit (ASIC) by customizing the functionality and

Manuscript received March 1, 2015; revised April 23, 2015; accepted
June 12, 2015. Date of publication July 13, 2015; date of current version
October 30, 2015. This brief was recommended by Associate Editor G. Masera.

M. Rizk, A. Baghdadi, and M. Jézéquel are with the Department of Elec-
tronics, Telecom Bretagne, Le Centre national de la recherche scientifique
(CNRS) unites mixtes de recherche (UMR) 6285 Laboratoire des Sciences et
Techniques de l’Information, de la Communication et de la Connaissance (Lab-
STICC), 29238 Brest, France (e-mail: mostafa.rizk@telecom-bretagne.eu;
amer.baghdadi@telecom-bretagne.eu; michel.jezequel@telecom-bretagne.eu).

Y. Mohanna and Y. Atat are with the Faculty of Sciences, Lebanese Univer-
sity, Beirut, Lebanon (e-mail: yamoha@ul.edu.lb; youssef.atat@ul.edu.lb).

Color versions of one or more of the figures in this brief are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCSII.2015.2455991

the data path structure through a custom instruction set [1].
This tradeoff can be tuned in a language-based ASIP design
approach, when the degree of flexibility is limited, to reach an
implementation efficiency comparable to parameterized archi-
tectures using classical register-transfer level (RTL) design ap-
proach [2]. However, when hardware is dedicated for a specific
application, processes of specifying and describing instructions
at the designing phase and decoding them at runtime form an
overhead in terms of productivity, execution performance, and
implementation costs. The no-instruction-set-computer (NISC)
concept [3] adopts static scheduling of operations instead of
dynamic scheduling (i.e., decoding instructions at runtime to
determine which operations to execute) to simplify the ASIP
approach. Design productivity is increased by obviating the
task of finding and designing a custom instruction set. The
design quality is better ensured by reducing design complexity
to match exactly the requirements of the desired application.

In a previous work, presented in [4], the NISC concept has
been explored to realize flexible turbo equalizer. The compari-
son with a similar ASIP implementation, which uses identical
computational resources and supports the same flexibility pa-
rameters, illustrates significant improvement in throughput with
reduced implementation costs. However, additional memory
locations are required to implement the control memory with
respect to the ASIP program memory. In fact, this is directly
related to the considered application and devised architecture
choices. the NISC concept is evaluated in this brief through a
different application design and architecture choices. This brief
presents a novel NISC-based universal demapper. The proposed
architecture is thoroughly described. In addition, the design
is compared with a state-of-the-art ASIP-based equivalent im-
plementation in terms of performance, throughput, and area
of implementation. Recent emergent wireless communication
standards, support various modes and configurations related to
the characteristics of the target constellation such as modulation
type and mapping style. Different order constellations have
been employed starting from binary phase-shift keying (BPSK)
up to 256-ary quadrature amplitude modulation (QAM).

Constellations with Gray mapping are adopted to achieve
the lowest possible bit-error probability [5]. Furthermore, the
independence between the in-phase (I) and the quadrature (Q)
components of a symbol in Gray-mapped constellations can
be exploited to reduce the computational complexity without
suffering any performance loss. Accordingly, numerous sim-
plifications have been proposed for specific constellations [6].
These simplifications can not be applied when incorporating
signal space diversity (SSD) with rotated constellation intro-
duced in DVB-T2 standard since the independence between I
and Q components is broken.

On the other hand, an iterative receiver can significantly
improve the performance compared with the noniterative re-
ceiver [7]. In iterative schemes, a priori information, which
is generated by the decoder, is involved in demapping and
imposes additional complexity.

1549-7747 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

RIZK et al.: NISC-BASED SOFT-INPUT–SOFT-OUTPUT DEMAPPER 1099

Fig. 1. Iterative receiver block diagram.

Most demapper implementations reported in the literature are
of limited flexibility. In [8], the proposed soft-decision demap-
per architecture supports only four modulation schemes as spe-
cified in the DVB-S2 standard. Other demapper design has been
presented in [9] for rotated QAM constellations targeting the
DVB-T2 standard. To the best of our knowledge, only one uni-
versal demapper has been introduced in [2]. The demapper ar-
chitecture is ASIP based and covers all flexibility requirements
for recent wireless standards. Such wide flexibility to support
different mapping styles, modulation schemes, SSD with rotated
constellation, iterative and noniterative processing schemes be-
comes crucial in the current trend toward the convergence of
wireless communication services [10] and the requirement of
multistandard terminals. Furthermore, demonstrating the ability
of designing highly flexible, yet efficient, demapping archi-
tectures can trigger the proposal of new modulation schemes
and parameters that better suit the application and environment
conditions. Such new schemes, associated with efficient flexible
implementations, can then constitute potential candidates for
adoption in next-generation communication systems.

II. SYSTEM MODEL AND ALGORITHM

Fig. 1 shows the block diagram of iterative receiver. Depend-
ing on the transmitter configuration and propagation conditions,
the input from the wireless channel can be either directly deliv-
ered to the demapper or passed through a channel equalizer. To
reduce the computational complexity, the demapper works in
logarithmic domain and generates probabilities ṽ on received
sequence in the form of log-likelihood ratios (LLRs), where
v represents the binary mapping of the transmitted sequence.
These LLRs construct, after deinterleaving, the input c̃ to chan-
nel the decoder. Through the feedback loop, the a posteriori
information output from the decoder is interleaved and then fed
back to the demapper and the equalizer. In this brief, the channel
fading has a Rayleigh distribution with additive white Gaussian
noise (AWGN). To compute the LLRs, the following expression
is used [11]:

L
(
ṽit
)
= ln

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∑
x∈X i

1

⎛
⎝e−

1

2σ2 |yt−ρt ·x|2 ·
m−1∏
l=0
l �=i

P
(
v̂lt
)
⎞
⎠

∑
x∈X i

0

⎛
⎝e−

1

2σ2 |yt−ρt·x|2 .
m−1∏
l=0
l �=i

P
(
v̂lt
)
⎞
⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(1)

where m is the number of bits per symbol, i = 0, 1, . . . ,m− 1,
L(ṽit) is the LLR of the ith bit of transmitted symbol at time
t, X i

0 and X i
1 are the symbol sets of constellation for which

symbols have their ith bit equals b ∈ {0, 1}, ρt is the channel
fading coefficient and σ2 is the AWGN variance, and P (v̂lt) is
the probability of lth bit of symbol x computed through a priori

information. To reduce the complexity, max-log approximation
[12] is applied by using the following formulas:

ln
a

b
= ln(a)− ln(b)

ln(eδ1+···+eδn) ≈ max
i∈{1,...,n}

δimax(a)−max(b)

= min(−b)−min(−a).

The expression in (1) becomes

L
(
ṽit
)
≈ min

x∈X i
0

(D −Api)− min
x∈X i

1

(D −Api) (2)

where

D =

∣∣yIt − ρIt · xI
∣∣2 +

∣∣∣yQt − ρQt · xQ
∣∣∣
2

2σ2
(3)

Api =

m−1∑
l=0

l �=i and vl=1

L
(
v̂lt
)

(4)

where vl is the lth bit of each received modulated symbol.
The simplified expression in (2) exhibits four main computa-

tion steps: 2-D Euclidean distance computation, a priori LLR
summation, minimum operations referred by the min functions,
and subtraction operation of minimum values. In the case of
noniterative demodulation, no a priori information is provided
to the demapper. The expression of LLRs in (2) becomes

L
(
ṽit
)
≈ min

x∈X i
0

(D)− min
x∈X i

1

(D). (5)

Moreover, for Gray-mapped constellations, I andQ components
are independent from each other; hence, the Euclidean distance
is calculated in one dimension. In case where m is even, further
simplification can be applied. LLR computation expression in
(5) can be transformed in this case into the following [6]:

L
(
ṽit
)
≈ min

x∈X (I)i0

(DI)− min
x∈X (I)i1

(DI) for i = 0, 1, . . . ,
m

2
− 1

(6)

L
(
ṽit
)
≈ min

x∈X (Q)j0

(DQ)− min
x∈X (Q)j1

(DQ) for j =
m

2
, . . . ,m−1

(7)

where

DI =

∣∣yIt − ρIt · xI
∣∣2

2σ2
DQ =

∣∣∣yQt − ρQt · xQ
∣∣∣
2

2σ2

and X (I)ib and X (Q)jb are the constellation point sets on I-axis
and Q-axis with ith and jth bits of symbol x that have a value
equals to b. Applying this simplification,2m/21-D Euclidean dis-
tances are computed instead of 2m 2-D Euclidean distances for
each LLR. For rotated constellations, a simplification has been
proposed in [9] to reduce the number of Euclidean distance
computations by dividing the constellation into four subregions.
This subpartitioning technique reduces the number of candidate
constellation points involved in computing 2-D Euclidean dis-
tances of QAM schemes from 2m to (2(m−2)/2 + 1)2.

III. ARCHITECTURE DESIGN

The variety of specifications in multiple wireless standards
imposes designing hardware architecture of high flexibility to
enable the computation of LLR values for different system

1100 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 62, NO. 11, NOVEMBER 2015

Fig. 2. Block diagram of the proposed NISC-based architecture detailing the pipeline structure of DemaNISC module.

configurations. The resources of the demapper flexibility are
related to the characteristics of target constellation and the
iterative demodulation concept. In this section, the architecture
design proposed for the universal demapping is described. It is
capable to generate soft-output probabilities in the logarithmic
domain for various modulation schemes starting from BPSK
up to 256-QAM with and without iterative demodulation using
either the generic form or simplifications relative to the
constellation rotation and the Gray mapping.

A. Architecture Choices

Toward achieving flexible demapper design, the following
architecture choices are considered:

1) Modulation Order: Constellation information is stored
in a lookup table (LUT) whose depth varies according to
m. I and Q components of symbols and their corresponding
binary mapping μ are rewritten for each target constellation.
In addition, sufficient hardware operators, which are required
to find minimum values and perform their corresponding sub-
tractions required in (2), (5), (6), and (7), are allocated con-
sidering the largest target constellation (256-QAM). For lower
order modulation schemes, unused resources are not activated.
Sharing hardware resources among these operations decreases
the throughput particularly for high-order modulation schemes.
Furthermore, this architecture choice allows a fair comparison
with the ASIP-based design presented in [2].

2) Mapping Style: The same hardware operators are utilized
in computing Euclidean distances for Gray or non-Gray map-
ping styles. In fact, the computation of one 2-D distance is
equivalent to that of two separate 1-D distances.

3) Iterative Demapping: Operators involved in a priori
LLR summation are instantiated to accommodate all target
constellations.

4) Quantization and Fixed-Point Arithmetic: To reduce the
implementation complexity, fixed-point arithmetic is used, and
computational values are quantized. Targeting a fair compari-
son with an ASIP-based design [2], identical quantization has
been adopted for all computational parameters. With the aid of
long simulations and analysis, bit widths are carefully selected
to ensure least performance degradation. Using a reference
software model, a degradation below 0.05 dB is measured at
10−3 frame-error rate over a fast fading Rayleigh channel.

5) Pipelining: Temporal parallelism using pipelining is ap-
plied to minimize the length of critical path and to enhance
the computation performance and the efficiency of utilized
hardware resources.

B. NISC Architecture

Fig. 2 presents the structure of the proposed architecture and
shows the input/output connections. The inputs to the demapper
architecture are the LLRs stored in AprMem, variance σ2,
CWs saved in CMem, constellation information arranged in
Constellation LUT, and received symbols and fading factors
reserved in YMem and ρMem, respectively. In addition, the LUT
(1/2x)LUT provides the 1/2x inverse values required in the
inversion operations.

The designed architecture is basically composed of a simple
control unit and the module that performs the demapping
functionality. Here, this module is referred to as DemaNISC.

1) Control Unit: It is mainly responsible for loading CWs
from CMem into the components of DemaNISC module. To
accomplish this functionality, the unit handles the address of
CMem memory and constructs links to distribute the control-
signal bits of CWs to appropriate components. In addition, the
control unit manages the flow of input data coming from YMem,
ρMem, and Constellation LUT. These basic tasks reveal the
simple hardware structure required to implement the control unit.

2) DemaNISC Module: It is considered the main core of
the demapper architecture. From a hierarchical scope, it can be
viewed as a concatenation of five units.

a) EDU: This unit includes all hardware resources that
incorporate in computing the Euclidean distance expressed in
(3). It is supplied by I and Q components of received sym-
bol yI and yQ, constellation symbol xI and xQ, and fading
factor ρI and ρQ in addition to the noise variance σ2. At each
computation, Euclidean distance unit (EDU) can deliver two
1-D distances or one 2-D distance. EDU contains 18 registers,
6 real multipliers, 1 real adder, 2 real subtractors, and 1 2-to-1
multiplexer. The operators of the Euclidean distance calculator
spread over five pipeline stages (stages 2–6, Fig. 2). In the sec-
ond, third, and fourth pipeline stages, I and Q components of
y,x, andρ are exploited to compute two 1-D Euclidean distances.
At the 5th pipeline stage, the two calculated distances may be
added into one 2-D distance ED satisfying the implementation
requirements of (2) and (5). In the case of Gray mapping style
with no a priori information, the two 1-D distances are trans-
ferred to the next stage (EDI and EDQ). At this stage (fifth), the
inverse value of σ2, being provided at the 1/2x LUT index in
the third pipeline stage, is retrieved. I andQ components of 1-D
Euclidean distance (DI and DQ) or 2-D Euclidean distance D
are ready at the end of the sixth pipeline stage (see Fig. 2).

b) ASU: In the case of turbo demodulation, the hardware
resources embedded in this unit are responsible for generating

RIZK et al.: NISC-BASED SOFT-INPUT–SOFT-OUTPUT DEMAPPER 1101

Fig. 3. Architecture of the minimum finder block.

the summation of input a priori LLRs as described in (4). The
inputs to a priori LLR summation unit (ASU) are LLR values
saved in AprMem memory and vector v representing the binary
mapping μ of symbols from the Constellation LUT. ASU con-
tains 38 registers, 7 real adders, 8 real subtractors, and 16 2-to-1
multiplexers. These components spread over five pipeline
stages (stages 3–7, Fig. 2). The summation process is managed
by the bit values of v, which represents the binary mapping
of constellation symbol x under consideration and propagates
along pipeline stages. In the case of turbo demodulation, input
LLRs L(v̂it), which are loaded in the second pipeline stage, are
summed cumulatively in the third, fourth, and fifth stages. At
this computational level, a copy of input a priori information
is needed to subtract the LLR corresponding to bit vi as
expressed in (4). The final a priori information summations
Api corresponding to all bits are delivered at the end of the
6th pipeline stage.

c) ISU: This unit collects a priori LLR summation val-
ues produced by ASU and subtracts them in parallel from
the value of 2-D Euclidean distance calculated by EDU. To
perform this functionality, intersubtraction unit (ISU) includes
a subtractor set, which is made of eight real subtractors con-
sidering the highest modulation order with m = 8. ISU also
contains nine registers to store the subtraction results (Di =
D −Api) in addition to the value of the Q-component of the
1-D Euclidean distance DQ. Subtractors of ISU are placed in
the seventh pipeline stage and are capable of producing up to
eight Di values (D0 to D7). If turbo demodulation is omitted,
the computed values of Euclidean distance are transferred to
the next pipeline stage (eighth) with no modifications. At the
end of the seventh stage, three types of data are possible to be
achieved:

• one 2-D distance minus the a priori information as ex-
pressed in (2);

• one 2-D distance only (noniterative demodulation case) as
expressed in (5);

• two 1-D distances (Gray mapping with noniterative de-
modulation case) as expressed in (6) and (7).

d) MFU: This unit integrates eight minimum finder
blocks whose architecture is presented in Fig. 3 and are es-
tablished to realize minimum functions listed in (2), (5), (6),
and (7) considering 256-QAM constellation. Each block is
concerned to find minimum values associated to a bit loca-
tion vi along all constellation symbols. As shown in Fig. 3,
the minimum finder structure contains two registers. The first
register stores the updated minimum value that corresponds to
symbol set X i

0 ; whereas the second register stores the minimum
value corresponding to X i

1 . For each new received symbol y, the
two registers are initialized by loading the maximum numerical
value. Each minimum finder benefits from new-updated Di

values in addition to vi bits. Depending on vi value (“0” or “1”),
one of the two registers is chosen to be updated. The current
value is replaced by input value Di if the latter is smaller than

TABLE I
SYNTHESIS RESULTS

TABLE II
EXECUTION PERFORMANCE RESULTS

the former. Otherwise, the register maintains its current value.
A comparison is established by evaluating the sign S of the
difference resulting from the subtraction operation of current
value from input value Di. At the input of each minimum finder
block, a multiplexer is allocated to control input data flow to
minimum finder block according to the required dimension of
the Euclidean distance. Overall, minimum finder unit (MFU) is
composed of 16 registers, 8 real subtractors, 31 2-to-1 multi-
plexers, 16 AND-gates, and 16 negators. All these components
are placed at the eighth pipeline stage.

e) OU: This unit is in charge of delivering finally the
LLR values corresponding to each bit L(ṽit) constellation sym-
bol x. Inputs of the output unit (OU) are the minimum values
available in the registers of MFU. Once minimum values of
all constellation points are determined, the OU produces the
difference between minimum pairs (minxt∈X i

0
and minxt∈X i

1
)

corresponding to each bit location vi. After processing all
constellation symbols, final resultant differences are loaded to
their corresponding output registers (out0 to out7).

IV. RESULTS AND COMPARISON

In this brief, the NISC design toolset has been used. The
adopted design flow is thoroughly described in [13]. Table I
summarizes the synthesis results, whereas Table II shows the
number of clock cycles required to produce LLRs for different
system configurations along with the achieved throughput. The
results are in addition compared with those of DemASIP [2],
which is an ASIP dedicated for demapping with customized
data path and instruction set. Both processors support same
flexibility parameters, use identical computational resources,
and adopt identical quantization for all computational param-
eters. The comparison between the two designs shows a
significant improvement in terms of execution time and im-
plementation area. For fair comparison, logic synthesis of the
proposed architecture HDL description has been conducted
targeting the same device (Xilinx Virtex-5 LX330 FPGA) and
using the same synthesis options and tools. Logic utilization
is reduced by 30.8% for slice registers and 52.4% for slice
LUTs compared with DemASIP. In fact, the implementation
of resources responsible for instruction fetching and decod-
ing increases hardware resource utilization. Whereas, in the
NISC-based proposed demapper, the architecture is designed

1102 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 62, NO. 11, NOVEMBER 2015

to match exactly the requirements of the application. More-
over, DemASIP can operate at a maximum frequency of
186 MHz, whereas the proposed architecture can achieve
a maximum operating frequency of 240 MHz. Hence, it is
1.29 times faster than DemASIP. This is due to the DemASIP
critical path that includes several levels of combinational logic
and which is related to fetch program address generator,
whereas only one level of logic exists in the critical path of
the proposed design. In addition, Table I shows a comparison
between the ASIC implementation of DemASIP and that of the
NISC-based architecture on dedicated chips. In fact, the HDL
code generated by Synopsys (ex CoWare) for the ASIP-based
design (which is available at our research group) and the HDL
code generated by NISC toolset for NISC-based design are
delivered as sources to the Design Compiler tool from Synopsys
to achieve the ASIC implementation targeting the ST CMOS
65-nm technology. The comparison shows that the NISC-based
design offers about 10% area reduction compared with the
ASIP-based design. Note that the detailed results illustrate that
the control unit occupies only 1.6% of total implementation
area of proposed architecture, whereas the components ded-
icated for fetching and decoding instructions occupy 7% of
DemASIP implementation area.

On the other hand, operations in ASIP-based design are lim-
ited to the available instruction set. Overlapping of operations
is not allowed. The instructions are fetched and decoded at
runtime, and their functionalities are limited to their structure.
Whereas, the NISC-based proposed design enables a direct and
mastered access to control signals of hardware resources. Differ-
ent operations are combined and then scheduled statically. Merg-
ing of operations ensures less execution time compared with
DemASIP. At runtime, operations are directly performed, and
LLRs are generated with no additional overhead. Table II shows
that the proposed architecture outperforms DemASIP in all sys-
tem configurations. For all combinations of mapping styles, mod-
ulation types, and SSD, better throughput is always provided.

Concerning CMem requirements, its width is significantly
optimized (from 91 bits to 18 bits) by specifying same control
bits to all components that have the same executions in all
steps, whereas its depth varies according to the number of the
needed execution steps to compute all LLRs corresponding to
one input symbol. The required memory size varies from 23 B
for quadrature PSK (QPSK) with Gray-mapped constellation
to 594 B for 256-QAM with non-Gray mapped constellation.
Compared with the ASIP program memory, CMem requires
less memory space to be implemented. In fact, the assembly
code used for DemASIP includes in addition to PROCESS
instruction, which is the core instruction of LLR generation,
instructions dedicated to loading input data, exporting output
LLRs, looping, and no-operation instructions [2]. The available
assembly code for QPSK non-Gray constellation shows that
these additional instructions forms 54% of the total number
of listed instructions [2]. For this system configuration, the
memory space required to implement the program memory of
DemASIP is 60.3% more than that required to implement the
control memory (CMem) of the NISC-based proposed demap-
per. Note that, for both processors, CWs and assembly code are
produced and optimized by hand as in this case the hardware is
highly dedicated to the application, and it is programmed by its
designers and not by its users.

Furthermore, the proposed demapper is compared with the
dedicated architectures reported in [8] and [9], which use a clas-
sical RTL design approach. These architectures support soft-
decision demapping; however, their flexibility is limited to the
requirements of DVB-S2 and DVB-T2 standards, respectively.
Targeting a fair comparison, our proposed design has been
implemented on the same target devices used in [8] (Virtex II
XC2-V6000) and [9] (Virtex II Pro XC2VP30). Compared with
the architecture in [9], the proposed demapper requires almost
3.33 times less dedicated multipliers, 3.1 times less LUTs, but
2.2 times more registers. In terms of throughput, it outperforms
the design in [9] for QPSK by 6.2 times, for 16-QAM by 3.1
times, and for 64-QAM by 1.2 times. Whereas for 256-QAM,
the design in [9] shows better throughput (2.6 times) since
it can concurrently compute nine Euclidean distances. In [8],
the timing information about the hardware implementation is
not available. The presented logic utilization summary reveals
the need of 1.8 times more logic devices and 2.67 times more
multipliers compared with the proposed NISC-based demapper.

V. CONCLUSION

In this brief, an NISC-based architecture of universal demap-
per for multiple wireless communication standards has been
proposed. The flexibility of the demapper is not restricted
to certain modulation types and/or mapping styles. Hardware
design and implementation have been conducted using the
NISC design approach. While using identical computational
resources and supporting same flexibility parameters, the pro-
posed NISC-based demapper architecture outperforms state-of-
the-art ASIP-based architecture with reduced implementation
costs. In addition, less memory space is required to implement
control memory compared with the ASIP program memory.

REFERENCES

[1] F. Vahid and T. Givargis, Embedded System Design: A Unified Hardware/
Software Introduction. New Delhi, India: Wiley, 2006.

[2] A. R. Jafri, “Architectures multi-ASIP pour turbo recepteur flexible,”
Ph.D. dissertation, Elect. Dept., Telecom Bretagne, Brest, France, 2011.

[3] D. Gajski, “NISC: The ultimate reconfigurable component,” Center Em-
bedded Comput. Syst. (CECS), Univ. California, Irvine, CA, USA, Tech.
Rep., Oct. 2003.

[4] M. Rizk et al., “Flexible and efficient architecture design for MIMO
MMSE-IC linear turbo-equalization,” in Proc. IEEE ICCIT , Jun. 2013,
pp. 340–344.

[5] E. Agrell et al., “On the optimality of the binary reflected Gray code,”
IEEE Trans. Inf. Theory, vol. 50, no. 12, pp. 3170–3182, Dec. 2004.

[6] E. Akay and E. Ayanoglu, “Low complexity decoding of bit-interleaved
coded modulation for M-ary QAM,” in Proc. IEEE ICC, Jun. 2004, vol. 2,
pp. 901–905.

[7] X. Chen et al., “VLSI implementation of a high-throughput iterative fixed-
complexity sphere decoder,” IEEE Trans. Circuits Syst. II, Exp. Briefs,
vol. 60, no. 5, pp. 272–276, May 2013.

[8] J. W. Park et al., “Low complexity soft-decision demapper for high order
modulation of DVB-S2 system,” in Proc. IEEE ISOCC, Nov. 2008, vol. 2,
pp. II 37–II 40.

[9] L. Meng, C. Abdel Nour, C. Jego, and C. Douillard, “Design of ro-
tated QAM mapper/demapper for the DVB-T2 standard,” in Proc. IEEE
Workshop SiPS, Oct. 2009, pp. 18–23.

[10] A. Osseiran et al., “Scenarios for 5G mobile and wireless communica-
tions: The vision of the METIS project,” IEEE Commun. Mag., vol. 52,
no. 5, pp. 26–35, May 2014.

[11] C. Abdel Nour, “Spectrally Efficient Coded Transmission for Wireless and
Satellite Applications,” Ph.D. dissertation, Dept. Elect., Telecom Bretagne,
Brest, France, 2008.

[12] P. Robertson et al., “Optimal and sub-optimal maximum a posteriori
algorithms suitable for turbo decoding,” Eur. Trans. Telecom., vol. 8, no. 2,
pp. 119–125, Mar./Apr. 1997.

[13] M. Rizk et al., “Design and prototyping flow of NISC-based flexi-
ble MIMO turbo-equalizer,” in Proc. IEEE Int. Symp. RSP, Oct. 2014,
pp. 16–21.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

