Mostafa Rahimi Azghadi

Mostafa Rahimi Azghadi
James Cook University · College of Science and Engineering

BEng, MEng, PhD

About

108
Publications
41,754
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
2,445
Citations
Citations since 2017
78 Research Items
1918 Citations
20172018201920202021202220230200400600
20172018201920202021202220230200400600
20172018201920202021202220230200400600
20172018201920202021202220230200400600
Additional affiliations
January 2011 - December 2013
University of Adelaide
May 2010 - April 2014
University of Adelaide
Position
  • PhD Student
Description
  • Neuromorphic Engineering Spiking Neural Networks Synaptic Plasticity

Publications

Publications (108)
Article
Full-text available
Hardware implementations of spiking neural networks offer promising solutions for computational tasks that require compact and low-power computing technologies. As these solutions depend on both the specific network architecture and the type of learning algorithm used, it is important to develop spiking neural network devices that offer the possibi...
Article
Full-text available
Although data processing technology continues to advance at an astonishing rate, computers with brain-like processing capabilities still elude us. It is envisioned that such computers may be achieved by the fusion of neuroscience and nano-electronics to realize a brain-inspired platform. This paper proposes a high-performance nano-scale Complementa...
Article
The ability to carry out signal processing, classification, recognition, and computation in artificial spiking neural networks (SNNs) is mediated by their synapses. In particular, through activity-dependent alteration of their efficacies, synapses play a fundamental role in learning. The mathematical prescriptions under which synapses modify their...
Article
Cortical circuits in the brain have long been recognised for their information processing capabilities and have been studied both experimentally and theoretically via spiking neural networks. Neuromorphic engineers are primarily concerned with translating the computational capabilities of biological cortical circuits, using the Spiking Neural Netwo...
Article
Triplet-based Spike Timing Dependent Plasticity (TSTDP) is a powerful synaptic plasticity rule that acts beyond conventional pair-based STDP (PSTDP). Here, the TSTDP is capable of reproducing the outcomes from a variety of biological experiments, while the PSTDP rule fails to reproduce them. Additionally, it has been shown that the behaviour inhere...
Preprint
Full-text available
One of the main challenges in deep learning-based underwater image enhancement is the limited availability of high-quality training data. Underwater images are difficult to capture and are often of poor quality due to the distortion and loss of colour and contrast in water. This makes it difficult to train supervised deep learning models on large a...
Preprint
Full-text available
Introduction. The stress response has both subjective, psychological and objectively measurable, biological components. Both of them can be expressed differently from person to person, complicating the development of a generic stress measurement model. This is further compounded by the lack of large, labeled datasets that can be utilized to build m...
Preprint
Full-text available
Introduction. We investigate the generalization ability of models built on datasets containing a small number of subjects, recorded in single study protocols. Next, we propose and evaluate methods combining these datasets into a single, large dataset. Finally, we propose and evaluate the use of ensemble techniques by combining gradient boosting wit...
Preprint
Full-text available
Transformer-based models, such as the Vision Transformer (ViT), can outperform onvolutional Neural Networks (CNNs) in some vision tasks when there is sufficient training data. However, (CNNs) have a strong and useful inductive bias for vision tasks (i.e. translation equivariance and locality). In this work, we developed a novel model architecture t...
Preprint
Full-text available
DNN for fish tracking and segmentation based on high-quality labels is expensive. Alternative unsupervised approaches rely on spatial and temporal variations that naturally occur in video data to generate noisy pseudo-ground-truth labels. These pseudo-labels are used to train a multi-task deep neural network. In this paper, we propose a three-stage...
Article
During the past two decades, epileptic seizure detection and prediction algorithms have evolved rapidly. However, despite significant performance improvements, their hardware implementation using conventional technologies, such as Complementary Metal–Oxide–Semiconductor (CMOS), in power and area-constrained settings remains a challenging task; espe...
Preprint
During the past two decades, epileptic seizure detection and prediction algorithms have evolved rapidly. However, despite significant performance improvements, their hardware implementation using conventional technologies, such as Complementary Metal-Oxide-Semiconductor (CMOS), in power and area-constrained settings remains a challenging task; espe...
Preprint
Full-text available
Marine ecosystems and their fish habitats are becoming increasingly important due to their integral role in providing a valuable food source and conservation outcomes. Due to their remote and difficult to access nature, marine environments and fish habitats are often monitored using underwater cameras. These cameras generate a massive volume of dig...
Preprint
Full-text available
Underwater fish segmentation to estimate fish body measurements is still largely unsolved due to the complex underwater environment. Relying on fully-supervised segmentation models requires collecting per-pixel labels, which is time-consuming and prone to overfitting. Self-supervised learning methods can help avoid the requirement of large annotate...
Preprint
Full-text available
Spike sorting algorithms are used to separate extracellular recordings of neuronal populations into single-unit spike activities. The development of customized hardware implementing spike sorting algorithms is burgeoning. However, there is a lack of a systematic approach and a set of standardized evaluation criteria to facilitate direct comparison...
Article
Full-text available
Marine scientists use remote underwater image and video recording to survey fish species in their natural habitats. This helps them get a step closer towards understanding and predicting how fish respond to climate change, habitat degradation and fishing pressure. This information is essential for developing sustainable fisheries for human consumpt...
Article
Full-text available
Working memory is a fundamental feature of biological brains for perception, cognition, and learning. In addition, learning with working memory, which has been show in conventional artificial intelligence systems through recurrent neural networks, is instrumental to advanced cognitive intelligence. However, it is hard to endow a simple neuron model...
Article
Suspended sediment is a significant threat to the Great Barrier Reef (GBR) ecosystem. This catchment pollutant stems primarily from terrestrial soil erosion. Bulk masses of sediments have potential to propagate from river plumes into the mid-shelf and outer-shelf regions. Existing sediment forecasting methods suffer from the problem of low-resoluti...
Preprint
Full-text available
Marine scientists use remote underwater video recording to survey fish species in their natural habitats. This helps them understand and predict how fish respond to climate change, habitat degradation, and fishing pressure. This information is essential for developing sustainable fisheries for human consumption, and for preserving the environment....
Preprint
Full-text available
Spiking and Quantized Neural Networks (NNs) are becoming exceedingly important for hyper-efficient implementations of Deep Learning (DL) algorithms. However, these networks face challenges when trained using error backpropagation, due to the absence of gradient signals when applying hard thresholds. The broadly accepted trick to overcoming this is...
Article
Memristive devices have shown great promise to facilitate the acceleration and improve the power efficiency of Deep Learning (DL) systems. Crossbar architectures constructed using these Resistive Random-Access Memory(RRAM) devices can be used to efficiently implement various in-memory computing operations, such as Multiply Accumulate (MAC) and unro...
Article
The corals of the Great Barrier Reef (GBR) in Australia are under pressure from contaminants including nitrogen entering the sea. To provide decision support in reaching target water quality outcomes, development of a nitrogen forecasting model may be useful. Here, we propose a new technique that considers the whole GBR as a frame and treats foreca...
Preprint
Full-text available
The impact of device and circuit-level effects in mixed-signal Resistive Random Access Memory (RRAM) accelerators typically manifest as performance degradation of Deep Learning (DL) algorithms, but the degree of impact varies based on algorithmic features. These include network architecture, capacity, weight distribution, and the type of inter-laye...
Preprint
Full-text available
Memristive devices being applied in neuromorphic computing are envisioned to significantly improve the power consumption and speed of future computing platforms. The materials used to fabricate such devices will play a significant role in their viability. Graphene is a promising material, with superb electrical properties and the ability to be prod...
Article
Full-text available
Using big marine data to train deep learning models is not efficient, or sometimes even possible, on local computers. In this paper, we show how distributed learning in the cloud can help more efficiently process big data and train more accurate deep learning models. In addition, marine big data is usually communicated over wired networks, which if...
Article
Deep Learning (DL) systems have demonstrated unparalleled performance in many challenging engineering applications. As the complexity of these systems inevitably increase, they require increased processing capabilities and consume larger amounts of power, which are not readily available in resource-constrained processors, such as Internet of Things...
Preprint
Full-text available
Health professionals extensively use Two- Dimensional (2D) Ultrasound (US) videos and images to visualize and measure internal organs for various purposes including evaluation of muscle architectural changes. US images can be used to measure abdominal muscles dimensions for the diagnosis and creation of customized treatment plans for patients with...
Article
Full-text available
Harrisia cactus, Harrisia martinii, is a serious weed affecting hundreds of thousands of hectares of native pasture in the Australian rangelands. Despite the landmark success of past biological control agents for the invasive weed and significant investment in its eradication by the Queensland Government (roughly $156M since 1960), it still takes h...
Article
Full-text available
Estimating fish body measurements like length, width, and mass has received considerable research due to its potential in boosting productivity in marine and aquaculture applications. Some methods are based on manual collection of these measurements using tools like a ruler which is time consuming and labour intensive. Others rely on fully-supervis...
Article
Oceanic temperature has a great impact on global climate and worldwide ecosystems, as its anomalies have been shown to have a direct impact on atmospheric anomalies. The major parameter for measuring the thermal energy of oceans is the sea surface temperature (SST). SST prediction plays an essential role in climatology and ocean-related studies. Ho...
Article
Neuromorphic computing is a promising technology that realizes computation based on event-based spiking neural networks (SNNs). However, fault-tolerant on-chip learning remains a challenge in neuromorphic systems. This study presents the first scalable neuromorphic fault-tolerant context-dependent learning (FCL) hardware framework. We show how this...
Article
Full-text available
Health professionals extensively use 2D US videos and images to visualize and measure internal organs for various purposes including evaluation of muscle architectural changes. US images can be used to measure abdominal muscles dimensions for the diagnosis and creation of customized treatment plans for patients with LBP, however, they are difficult...
Article
Memristive devices including resistive random access memory (RRAM) cells are promising nanoscale low-power components projected to facilitate significant improvement in power and speed of Deep Learning (DL) accelerators, if structured in crossbar architectures. However, these devices possess non-ideal endurance and retention properties, which shoul...
Article
Stochastic Computing (SC) is a computing paradigm that allows for the low-cost and low-power computation of various arithmetic operations using stochastic bit streams and digital logic. In contrast to conventional representation schemes used within the binary domain, the sequence of bit streams in the stochastic domain is inconsequential, and compu...
Preprint
Full-text available
Stochastic Computing (SC) is a computing paradigm that allows for the low-cost and low-power computation of various arithmetic operations using stochastic bit streams and digital logic. In contrast to conventional representation schemes used within the binary domain, the sequence of bit streams in the stochastic domain is inconsequential, and compu...
Article
The cerebellum plays a vital role in motor learning and control with supervised learning capability, while neuromorphic engineering devises diverse approaches to high-performance computation inspired by biological neural systems. This article presents a large-scale cerebellar network model for supervised learning, as well as a cerebellum-inspired n...
Article
Full-text available
Machine learning (ML) has been slowly entering every aspect of our lives and its positive impact has been astonishing. To accelerate embedding ML in more applications and incorporating it in real-world scenarios, automated machine learning (AutoML) is emerging. The main purpose of AutoML is to provide seamless integration of ML in various industrie...
Preprint
Full-text available
Estimating fish body measurements like length, width, and mass has received considerable research due to its potential in boosting productivity in marine and aquaculture applications. Some methods are based on manual collection of these measurements using tools like a ruler which is time consuming and labour intensive. Others rely on fully-supervis...
Preprint
Full-text available
The unpredictability of seizures continues to distress many people with drug-resistant epilepsy. On account of recent technological advances, considerable efforts have been made using different hardware technologies to realize smart devices for the real-time detection and prediction of seizures. In this paper, we investigate the feasibility of usin...
Article
Full-text available
The Internet of Underwater Things (IoUT) is an emerging communication ecosystem developed for connecting underwater objects in maritime and underwater environments. The IoUT technology is intricately linked with intelligent boats and ships, smart shores and oceans, automatic marine trans-portations, positioning and navigation, underwater exploratio...
Preprint
Full-text available
The Internet of Underwater Things (IoUT) is an emerging communication ecosystem developed for connecting underwater objects in maritime and underwater environments. The IoUT technology is intricately linked with intelligent boats and ships, smart shores and oceans, automatic marine transportations, positioning and navigation, underwater exploration...
Article
Full-text available
With the advent of dedicated Deep Learning (DL) accelerators and neuromorphic processors, new opportunities are emerging for applying deep and Spiking Neural Network (SNN) algorithms to healthcare and biomedical applications at the edge. This can facilitate the advancement of the medical Internet of Things (IoT) systems and Point of Care (PoC) devi...
Preprint
Full-text available
Aquaculture industries rely on the availability of accurate fish body measurements, e.g., length, width and mass. Manual methods that rely on physical tools like rulers are time and labour intensive. Leading automatic approaches rely on fully-supervised segmentation models to acquire these measurements but these require collecting per-pixel labels...
Preprint
Full-text available
With the advent of dedicated Deep Learning (DL) accelerators and neuromorphic processors, new opportunities are emerging for applying deep and Spiking Neural Network (SNN) algorithms to healthcare and biomedical applications at the edge. This can facilitate the advancement of the medical Internet of Things (IoT) systems and Point of Care (PoC) devi...
Article
Full-text available
Neuromorphic Computing In article number 1900189, Mostafa Rahimi Azghadi, Yao‐Feng Chang, and co‐workers discuss challenges and opportunities and shed light on recent advances in CMOS, SiOx‐based memristive, and mixed CMOS‐memristive hardware for neuromorphic systems. New and published results are provided from various devices that are developed to...
Preprint
Full-text available
Memristive devices have shown great promise to facilitate the acceleration and improve the power efficiency of Deep Learning (DL) systems. Crossbar architectures constructed using memristive devices can be used to efficiently implement various in-memory computing operations, such as Multiply-Accumulate (MAC) and unrolled-convolutions, which are use...
Article
Full-text available
The ever‐increasing processing power demands of digital computers cannot continue to be fulfilled indefinitely unless there is a paradigm shift in computing. Neuromorphic computing, which takes inspiration from the highly parallel, low‐power, high‐speed, and noise‐tolerant computing capabilities of the brain, may provide such a shift. Many research...
Article
Supervised, unsupervised, and reinforcement learning (RL) mechanisms are known as the most powerful learning paradigms empowering neuromorphic systems. These systems typically take advantage of unsupervised learning because they can learn the distribution of sensory information. However, to perform a task, not only is it important to have sensory i...
Preprint
Full-text available
While hardware implementations of inference routines for Binarized Neural Networks (BNNs) are plentiful, current realizations of efficient BNN hardware training accelerators, suitable for Internet of Things (IoT) edge devices, leave much to be desired. Conventional BNN hardware training accelerators perform forward and backward propagations with pa...
Article
Full-text available
Learning algorithms and devices are an essential part of neural networks and neuromorphic architectures. Astrocyte, as an important element in the learning of neural networks, is believed to play a key role in long‐term synaptic plasticity and memory. In addition, recent experimental observations indicate that astrocytes are active elements in lear...
Preprint
Full-text available
The quantization of weights to binary states in Deep Neural Networks (DNNs) can replace resource-hungry multiply accumulate operations with simple accumulations. Such Binarized Neural Networks (BNNs) exhibit greatly reduced resource and power requirements. In addition, memristors have been shown as promising synaptic weight elements in DNNs. In thi...