
Moritz Vinzent Seiler- University of Münster
Moritz Vinzent Seiler
- University of Münster
About
16
Publications
3,446
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
173
Citations
Current institution
Publications
Publications (16)
In many recent works,the potential of Exploratory Landscape Analysis (ELA) features to numerically characterize single-objective continuous optimization problems has been demonstrated. These numerical features provide the input for all kinds of machine learning tasks in the domain of continuous optimization problems, ranging, i.a., from High-level...
Classic automated algorithm selection (AS) for (combinatorial) optimization problems heavily relies on so-called instance features, i.e., numerical characteristics of the problem at hand ideally extracted with computationally low-demanding routines. For the traveling salesperson problem (TSP) a plethora of features have been suggested. Most of thes...
In recent years, feature-based automated algorithm selection using exploratory landscape analysis has demonstrated its great potential in single-objective continuous black-box optimization. However, feature computation is problem-specific and can be costly in terms of computational resources. This paper investigates feature-free approaches that rel...
Exploratory Landscape Analysis is a powerful technique for numerically characterizing landscapes of single-objective continuous optimization problems. Landscape insights are crucial both for problem understanding as well as for assessing benchmark set diversity and composition. Despite the irrefutable usefulness of these features, they suffer from...
Abuse and hate are penetrating social media and many comment sections of news media companies. These platform providers invest considerable efforts to moderate user-generated contributions to prevent losing readers who get appalled by inappropriate texts. This is further enforced by legislative actions, which make non-clearance of these comments a...
Nowadays fake news are heavily discussed in public and political debates. Even though the phenomenon of intended false information is rather old, misinformation reaches a new level with the rise of the internet and participatory platforms. Due to Facebook and Co., purposeful false information - often called fake news - can be easily spread by every...
In this work we focus on the well-known Euclidean Traveling Salesperson Problem (TSP) and two highly competitive inexact heuristic TSP solvers, EAX and LKH, in the context of per-instance algorithm selection (AS). We evolve instances with nodes where the solvers show strongly different performance profiles. These instances serve as a basis for an e...
In this work we focus on the well-known Euclidean Traveling Salesperson Problem (TSP) and two highly competitive inexact heuristic TSP solvers, EAX and LKH, in the context of per-instance algorithm selection (AS). We evolve instances with 1,000 nodes where the solvers show strongly different performance profiles. These instances serve as a basis fo...
Artificial neural networks in general and deep learning networks in particular established themselves as popular and powerful machine learning algorithms. While the often tremendous sizes of these networks are beneficial when solving complex tasks, the tremendous number of parameters also causes such networks to be vulnerable to malicious behavior...
Nowadays fake news are heavily discussed in public and political debates. Even though the phenomenon of intended false information is rather old, misinformation reaches a new level with the rise of the internet and participatory platforms. Due to Facebook and Co., purposeful false information - often called fake news - can be easily spread by every...