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ABSTRACT
In a previous paper, a simple approach to lane detection us-

ing the Hough transform and iterated matched filters was de-

scribed [1]. This paper extends this work by incorporating an

inverse perspective mapping to create a bird’s-eye view of the

road, applying random sample consensus to help eliminate

outliers due to noise and artifacts in the road, and a Kalman

filter to help smooth the output of the lane tracker.

Index Terms— Lane detection, Hough transform, Kalman

filter.

1. INTRODUCTION

Driver safety on the highways has been an area of interest for

many years. With the development of fast, cheap, low-power,

and sophisticated electronics, automobiles with sensors, elec-

tronics, and warning systems are beginning to appear on the

market.

One of the interesting areas of research and development

is collision avoidance. An important component for effec-

tive collision avoidance is lane detection. The ability to de-

tect sudden or unexpected lane changes when there is traf-

fic in the lane a driver is moving into could help a driver to

avoid collisions. Effective monitoring of the position of a car

within a lane could be used to help avert a collision due to

driver distractions, fatigue, or driving under the influence of a

controlled substance. There are obvious difficulties and chal-

lenges in designing collision avoidance systems, and some of

the challenges fall outside the realm of engineering and in-

volve complicated issues related to law and liability.

In this paper, we address some of the image processing

challenges is designing a lane detection system. It is or-

ganized as follows. After a brief survey of some previous

research, we then describe the various components of the

system. These include image pre-processing using temporal

blurring, inverse projective mapping to create a bird’s-eye

view of the road, a Hough transform for detecting candidate

lane markers, a random sample consensus algorithm to help

deal with outliers in the image, and tracking of the lane pa-

rameters using a Kalman filter. Then, we briefly describe the

hardware that was used to collect data, and then show the

performance of the lane tracking system. It is shown that this

system exhibits considerable improvement in performance

compared to a system using only the Hough transform and

matched filtering that was previously described [1].

2. PRIOR RESEARCH

Numerous techniques for vision-based lane detection have

been developed in an attempt to robustly detect lanes. In the

extraction of features for lane detection, one of the most com-

monly used approaches it to apply an edge detector to the data

[2, 3]. With this approach, a Canny edge detector is typically

used to generate a binary edge map. From the binary edge

map, the classical Hough transform is then used to extract a

set of lines as candidates for the lane markers. While this

approach shows good results in general, the detected lanes

are often skewed due to surface irregularities or navigational

text markers on the road. Color segmentation to extract lane

markers is another approach that is often used [4, 5]. Unfor-

tunately, color segmentation is sensitive to ambient light and

requires additional processing to avoid undesirable effects.

The majority of the approaches used for lane detection op-

erate directly on the images that are captured by the camera

without any geometrical correction or change in camera per-

spective [1, 2, 4, 6]. Although dealing with images from the

camera perspective allows access to raw data values, defin-

ing the properties of the features of interest may be compli-

cated. For example, a forward-looking camera will capture

images that have lane markers that are not parallel and have

line widths that vary as a function of the distance from the

camera. These variations often necessitate processing each

row of a captured image in a different manner.

Many of the systems described above perform well under

certain driving conditions and often require that a certain set

assumptions are valid. Some of these assumptions include the

presence of strong lane marker contrast and roads devoid of

artifacts such as cracks, arrows, or similar markers. Unfor-

tunately, these assumptions do not hold in many high traffic

urban streets and highways.
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3. METHODOLOGY

This paper extends the layered lane detection approach in [1]

by (1) using an inverse perspective mapping, (2) applying a

random sample consensus to help eliminate outliers, and (3)

using a Kalman filter for prediction and smoothing. In the fol-

lowing sections, the various components of the lane detection

system are described.

3.1. Image Enhancement

The captured color images undergo a grayscale transforma-

tion and temporal blurring by averaging N = 3 successive

frames. This smoothing helps connect dashed lane markers to

form a near continuous line [1].

3.2. Inverse Perspective Mapping

The next step is to perform an inverse perspective mapping

(IPM) on the images. This transformation is used to change

the captured images from a camera perspective to a bird’s-eye

view as illustrated in Fig. 1. [7, 8, 9]. With this transforma-

(a) Camera perspective view. (b) Bird’s-eye view.

Fig. 1: Inverse perspective mapping transforms a camera per-

spective image into a bird’s-eye view image.

tion, lane detection now becomes a problem of detecting a

pair of parallel lines that are generally separated by a given,

fixed distance. In addition, this transformation enables a map-

ping between pixels in the image plane to world co-ordinates

(feet) as shown in Fig. 1b. The camera’s intrinsic and extrin-

sic parameters are necessary to ensure an accurate transfor-

mation.

3.3. Lane Candidate Location Detection

Next, an adaptive threshold is applied to the IPM image to

generate a binary image [1]. Each binary image is then split

into two two halves, each one presumably containing one lane

marker. A low-resolution Hough transform is then computed

on the binary images and the ten highest scoring lines are

found for each half image [1]. Each line is then sampled along

its length at a specified distance as illustrated by the red plus

signs in Fig. 2. To find the approximate center of each line,

a one-dimensional matched filter is applied at each sample

Fig. 2: The green lines represent high-scoring lines from the

Hough transform, and the plus signs indicate the points where

each line is to be sampled.

point along each line. As described in [1], the matched fil-

ter is a Gaussian with a variance that is a function of the line

width. Since the bird’s-eye view created with the IPM pro-

duces lines of approximately constant width, a fixed variance

Gaussian kernel may be used for the matched filter. After the

matched filtering, the pixel with the largest correlation co-

efficient at each sample point that exceeds a predetermined

threshold is selected as the best estimate of the center of the

lane marker as indicated by the green plus signs in Fig. 3.

The minimum threshold helps in ignoring false positives like

cracks, tar patches or cases where lane markers do not exist.

Fig. 3: Line fitted through one set of candidate points and

parameterized with ρ and θ.

3.4. Outlier Elimination and Data Modeling

Once the center of each candidate line at each sample point

has been estimated, Random Sample Consensus (RANSAC)

is applied to the data points. The generic RANSAC algorithm

robustly fits a model through the most probable data set or

inliers while rejecting outliers [10, 11]. Linear Least Squares

Estimation (LSE) is then used to fit to a line on the inliers.

Fig. 3 illustrates the parametrization of the fitted line in terms

of ρ and θ where ρ is the distance from the origin (top left

corner pixel) to the line and θ is the angle as indicated in Fig.

3 (generally is close to 90◦).

3.5. Tracking

The parameters of each line is predicted using a Kalman filter.

The state vector x(n) and observation vector y(n) are defined

as

x(n) = y(n) =
[

ρ(n) ρ̇(n) θ(n) θ̇(n)
]T

(1)
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where ρ and θ define the line orientation and ρ̇ and θ̇ are the

derivatives of ρ and θ that are estimated using the difference

in ρ and θ between the current and previous frame. The state

transition matrix A is

A =

⎡
⎢⎢⎣

1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

⎤
⎥⎥⎦ (2)

and the matrix C in the measurement equation is the identity

matrix. The noise in the state and measurement equations is

assumed to be white and each process is assumed to be un-

correlated with the others. Therefore, the covariance matrices

for these vector random processes are constant and diagonal.

The variance of each noise process is estimated off-line using

frames in which accurate estimates of the lanes were being

produced. In the case of a lane markers not being detected,

the matrix C is set to zero forcing the Kalman filter to rely

purely on prediction. Finally, the estimated line is mapped

back to the camera perspective to portray the lane detection

results.

4. EXPERIMENTAL ANALYSIS

4.1. Hardware

The hardware used to test and evaluate this new lane detection

system is built around an Intel based computer. A forward

facing Firewire color camera is installed below the rear-view

mirror so that it has a clear view of the road ahead. Video is

captured in VGA resolution at 30fps.

4.2. Results

The lane detection algorithm was implemented in Matlab and

requires approximately 0.8 seconds to process each frame.

Table 1 and Table 2 illustrate the performance of the cur-

rent and previous lane detection systems when applied to over

10 hours of captured video. The results in Table 1 show an

improvement in accuracy over the system described in [1]

when tested with similar data sets. The lack of accessibil-

ity to other lane detection algorithms and turnkey software

systems makes it extremely difficult to compare results. In

addition, defining a ground truth for the data is extremely te-

dious; hence, it is commonly avoided. Consequently, detec-

tions were qualitative and based purely on visual inspection

by single user. The following rules were used to quantify the

results into the different categories: i) a correct detection oc-

curs when more than 50% the of lane marker estimate is over-

laid on a lane marker in the scene, ii) an incorrect detection

occurs when the estimate is overlaid on something else other

than a lane marker, and iii) a missed detection occurs when no

estimate is presented despite a relevant lane marker being vis-

ible. The detection rates of left and right markers are averaged

to produce the numbers in the tables. Fig. 4 shows a few in-

stances of correct lane detections. The results are presented in

terms of detection rate per minute. This metric allows to nor-

malize the results when data is captured using cameras with

different frame rates.

Table 1: Accuracy of the current lane detection system

Road Type Traffic
Avg. Detection Rate Per Minute

Correct Incorrect Misses

Isolated Light 99.08% 0.99% 0%

Highway Moderate 98.34% 1.65% 0%

Metro Light 98.37% 1.65% 0%

Highway Moderate 96.34% 3.65% 0%

City Variable 86.39% 12.71% 0.78%

Table 2: Accuracy of the previous lane detection system [1]

Road Type Traffic
Avg. Detection Rate Per Minute

Correct Incorrect Misses

Isolated Light 89.69% 5.31% 5.19%

Highway Moderate 89.69% 5.31% 5.19%

Metro Light 91.47% 6.65% 1.87%

Highway Moderate 84.97% 10.33% 4.68%

City Variable 76.55% 11.94% 11.95%

(a) Active toll plaza. (b) Presence of other markings on the

road.

(c) Busy Highway. (d) Busy city streets.

Fig. 4: Examples of accurate lane detection.

Despite noisy measurements, the Kalman filter recur-

sively estimates the dynamics of the state vector. Fig. 5

shows a comparison between the observed and predicted

value of ρ.
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Fig. 5: Comparison between observed and predicted values

of ρ over a range of frames. A blow up shows the Kalman

filter smoothing the noisy measurements.

(a) Unsettled after a bump. (b) Poorly maintained city streets.

Fig. 6: Examples of incorrect lane detection.

A few instances of incorrect lane detections are also

shown in Fig. 6. Fortunately in Fig. 6a, the Kalman filter

is able to settle within a few milliseconds after passing the

bump on the road. However, in Fig. 6b, the absence of lane

markers due to road aging and wear leads to the detection and

tracking of false signals such as cracks.

5. CONCLUSIONS

The work presented in this paper is a significant improvement

over the layered lane detection system presented in [1]. The

addition of features such as (1) Inverse Perspective Mapping

(IPM), (2) Random Sample Consensus (RANSAC), and (3)

Kalman filtering has added to the novelty and extension over

the previous system. IPM aids in simplifying the process of

finding candidate lane markers, while RANSAC helps in re-

jecting outliers within the estimations. Finally, the Kalman

filter ignores minor perturbations and keeps the lane marker

sequence on its track.

The data set used to test the accuracy of the proposed sys-

tem was recorded on highways and streets in and around At-

lanta, GA. Despite the variety in traffic conditions and road

quality encountered, the proposed system still yielded good

performance as reflected in Table 1.

6. FUTURE WORK

Lane Departure Warning (LDW) will be implemented in the

future. It will leverage from the lane detection system’s ability

to accurately determine the distance to the lane markers as

shown in Fig. 4. In addition, the implemented algorithms

will be ported to C# and C++ to facilitate a real-time system.

Future data sets will also include ground truth information to

allow accurate error calculation. Additional users will also

perform visual inspection. Finally, the image enhancement

stage will be made adaptive by computing N as a function of

the speed of the vehicle.
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